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Abstract

Coxiella burnetii, the etiologic agent of human Q fever, is a Gram-negative and naturally obligate intracellular bacterium. The
O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two
unusual sugars b-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a
metabolic intermediate to GDP-b-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive
reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion
to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose
pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a
virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three
open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were
functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671,
failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP)
mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC
(GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to
complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays.
CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data
from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for
the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM
and GMP is critical to fully understand the biosynthesic pathway of GDP-b-D-virenose and LPS structure in C. burnetii.

Citation: Narasaki CT, Mertens K, Samuel JE (2011) Characterization of the GDP-D-Mannose Biosynthesis Pathway in Coxiella burnetii : The Initial Steps for GDP-b-
D-Virenose Biosynthesis. PLoS ONE 6(10): e25514. doi:10.1371/journal.pone.0025514

Editor: Ben Adler, Monash University, Australia

Received January 20, 2011; Accepted September 7, 2011; Published October 31, 2011

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This work was supported by NIAID/NIH grant number U54AI057156. CT Narasaki was supported by the United States Air Force. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: JSamuel@medicine.tamhsc.edu

Introduction

Lipopolysaccharide (LPS) is a complex molecule and represents

the major component of the outer leaflet of the outer membrane of

Gram-negative bacteria. The LPS molecule consists of three

structural domains: (1) lipid A, which represent the hydrophobic

anchor of the LPS molecule and is responsible for the endotoxic

properties, (2) a short non-repeating inner and outer core

oligosaccharide, which is attached to lipid A and extends

outwardly and (3) the O-specific polysaccharide chain (O-PS),

which is composed of repeating sugar units and determines the

serological heterogeneity among bacterial isolates. The primary

function of LPS is to serve as a permeability barrier against

external agents such as hydrophobic antibiotics and to maintain

the structural integrity of the Gram-negative cell wall [1].

C. burnetii, a Gram-negative small pleomorphic coccobacillus, is

the causative agent of the zoonosis Q fever. Q fever manifests in

humans generally as an acute, debilitating flu-like illness or less

common as chronic Q fever, which develops mainly as

endocarditis or hepatitis. C. burnetii is a naturally obligate

intracellular bacterium and so far no method for generation of

specific mutants has been established. C. burnetii is considered a

potential biological weapon because it consistently causes

disability, can be manufactured on a large scale, remains stable

under various conditions and can be efficiently disseminated [2].

The U.S. Centers for Disease recently designated C. burnetii as a

category B bioterrorism agent. There is no licensed vaccine for C.

burnetii infection in the U.S. because of adverse reactions to killed

whole cell vaccination. Therefore, the understanding of C. burnetii

physiology and vaccine development remains an important public

health and U.S. national security objective [3].

Upon serial passage in an immune-incompetent host, virulent C.

burnetii undergoes a shortening of its LPS, traditionally referred to as

phase variation in Enterobacteriaceae. Phase variation of C. burnetii is

characterized by a non-reversible switch from virulent phase I

smooth LPS (S-LPS), which has a full length O-polysaccharide (O-

PS) chain to an avirulent phase II rough-LPS (R-LPS). The R-LPS

variant is missing the O-PS chain and unknown sugar residues

located within the outer core oligosaccharide [4]. Previous studies

showed that no significant loss of protein content on the surface of C.

burnetii occurred during phase variation and the only characterized

difference between virulent phase I and avirulent phase II isolates is
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LPS [5,6,7,8]. Furthermore, vaccine studies showed that BALBc

mice vaccinated with formalin killed whole cell phase I bacteria

were protected from C. burnetii challenge while mice vaccinated with

whole cell phase II bacteria were not protected [8]. These studies

highlight the importance of C. burnetii LPS.

Structural and compositional studies revealed several unique

characteristics of the LPS molecule of C. burnetii LPS

[9,10,11,12,13,14,15,16,17]. The lipid A moiety contains a typical

1 and 49 phosphorylated, b-(1?6)-linked D-glucosamine (GlcN)

disaccharide backbone, but is tetraacylated [17]. The inner core

oligosaccharide is composed of D-mannose (D-Man), D-glycero-D-

manno-heptose (D,D-Hep) and 3-deoxy-a-D-manno-oct-2-ulopyra-

noside (Kdo), in the molar ratio 2:2:3, comparable to the

enterobacterial inner core region [13]. However, composition

and structure of the O-PS chain is not entirely resolved. Two

unique branched sugar residues, b-D-virenose (6-deoxy-3-C-

methyl-D-gulose) and L-dihydrohydroxystreptose (3-C-(hydroxy-

methyl)-L-lyxose), were detected in heteropolysaccharide fractions

of isolated LPS [18,19]. To our knowledge, virenose is not found

on the surface structures of any other microorganism except C.

burnetii LPS. Subsequent studies resolved the structure of virenose,

while linkage and chemical compositional analysis indicated that

C. burnetii O-PS is likely a heteropolymer of 1?4 linked b-D-

virenose, dihydrohydroxystreptose and mannose [19,20]. These

findings are consistent with the observation that ABC transporter

encoding genes wzm (CBU0703) and wzt (CBU0704) are located in

a genomic region associated with O-PS synthesis [21]. ABC

transporters are usually involved in biosynthesis of homopolymeric

or small repeating units containing herteropolymeric O-PS [1].

Phase variation in C. burnetii is accompanied by the deletion of a

large chromosomal fragment which contains glycosyl transferases

and sugar processing genes required to complete b-D-virenose

biosynthesis, O-PS chain elongation and inner membrane

transport [21,22]. This deletion is likely the O-PS operon and is

responsible for the loss of O-PS in the C. burnetii Nine Mile strain

RSA439 [21]. Based on the structure of b-D-virenose and the

genes located within the deleted region of the C. burnetii phase II

variant, the in Figure 1 presented GDP-b-D-virenose biosynthesis

pathway is proposed. The aim of this study was to demonstrate the

biological significance of three C. burnetii enzymes for the

biosynthesis of GDP-D-mannose and examine the initial steps of

GDP-b-D-virenose biosynthesis. The presented data provide

fundamental knowledge necessary to further characterize the

formation of GDP-b-D-virenose, a novel saccharide, and may help

develop potential vaccine candidates such as in vivo and in vitro

generated glycoconjugates.

Figure 1. Putative GDP-b-D-virenose biosynthesis pathway. 1. F6P, fructose-6-phosphate; PMI, phosphomannose isomerase 2. M6P,
mannose-6-phosphate; PMM, phosphomannomutase 3. M1P, mannose-1-phosphate, GMP, GDP-mannose pyrophosphorylase 4. GMD, GDP-mannose
4,6-dehydratase; NADP+ nicotinamide adenine dinucleotide phosphate 5. GFS, fucose synthase 6. Ado-Met, S-adenosyl methionine.
doi:10.1371/journal.pone.0025514.g001

Synthesis of GDP-D-Mannose in Coxiella burnetii

PLoS ONE | www.plosone.org 2 October 2011 | Volume 6 | Issue 10 | e25514



Results

Bioinformatic analysis was carried out on the C. burnetii enzymes

predicted to be responsible for GDP-D-mannose biosynthesis

(Table 1). Amino acid sequence alignments indicated that each

enzyme had a high degree of similarity to characterized GDP-

mannose biosynthesis enzymes. C. burnetii CBU0671 has the

bioinformatic signatures of a type II phosphomannose isomerase

(PMI), a small but growing class of PMIs identified in Gram-

negative bacteria [23]. Type II PMIs are bifunctional enzymes

that catalyze the isomerisation of fructose-6-phosphate to

mannose-6-phosphate and the transfer of GDP to D-mannose-1-

phosphate to form GDP-D-mannose [24]. However, C. burnetii

CBU0671 appeared to be unrelated to a type I PMI from E. coli

EDL933, but contains the conserved PMI active site, which is

characteristic of the type II PMIs [23]. C. burnetii CBU0294 is

predicted to catalyze the second step in the GDP-mannose

biosynthesis pathway, the conversion of D-mannose 6-phosphate

to D-mannose 1-phosphate. Amino acid sequence alignment

indicated a high degree of identity to P. aeruginosa AlgC, which was

shown to be bifunctional and exhibits phosphoglucomutase (PGM)

as well as phosphomannomutase (PMM) activity [1,25]. CBU0689

is annotated as GDP-mannose-4,6-dehydratase (GMD) and might

provide the virenose biosynthetic intermediate GDP-6-deoxy-D-

lyxo-hex-4-ulopyranose (GDP-Sug) by conversion of GDP-D-

mannose. Further CBU0671 and CBU0689 are located within a

genomic region associated with O-PS biosynthesis [26].

C. burnetii CBU0671 exhibited GDP-mannose
pyrophosphorylase (GMP) but not PMI activity

In order to characterize the enzymatic activities of C. burnetii

CBU0671, this protein was expressed in its native form and used

for complementation of E. coli manA and manC mutant strains,

defective for O-PS or CPS synthesis, respectively. To test for PMI

activity the CBU0671 containing plasmid pCN606_2 was

introduced into the manA mutant strain E. coli CWG634 and O-

PS patterns compared to wild type E. coli CWG28 O9a.

Inactivation of manA in E. coli CWG364 was shown to abolish

synthesis of mannose-6-phosphate, the precursor of GDP-D-

mannose and resulted in a R-LPS phenotype [27]. Complemen-

tation of E. coli CWG634 with CBU0671 did not result in

restoration of an S-LPS phenotype. Analysis of LPS from wild

type, mutant and complemented strains using silver stained SDS-

PAGE detected only revealed R-LPS chemotypes (data not

shown). However, complementation of E. coli CWG634 with E.

coli DH5a manA (pCN601a_5), which encoded a type I PMI,

resulted in a smooth LPS phenotype (data not shown).

To test if CBU0671 exhibits GMP activity, plasmid pCN606_2

was introduced into the E. coli manC mutant strain CWG152 and

the CPS pattern was compared to wild type E. coli CWG44 K30

[28,29]. As a positive control, manC from E. coli DH5a was cloned

and expressed in its native form and the resulting plasmid,

pCN603_1, was introduced into CWG152. CPS isolated from

wild-type strain E. coli CWG44, manC mutant strain E. coli

CWG152 and complemented strains E. coli CWG152/pCN606-2

and E. coli CWG152/ pCN603_1 were analyzed using silver-

stained SDS-PAGE and immunoblot with anti-K30 antiserum.

Complementation of E. coli CWG152 with CBU0671 or E. coli

DH5a manC resulted in typical high and low molecular mass CPS

bands as detected for the wild type strain (Fig. 2). Taken together

these data clearly demonstrated that CBU0671 exhibits GMP

activity, but could not complement a type I PMI.

C. burnetii CBU0294 exhibits PMM and PGM activity
The enzymatic function of C. burnetii CBU0294 was evaluated

by complementation of an algC mutant of P. aeruginosa PAO1

serotype O5. PMM function of AlgC catalyzes the formation of

mannose-1-phosphate, which is a metabolic precursor for synthesis

of GDP-D-mannose [25]. The latter is converted to GDP-D-

rhamnose, the sugar residue composing the O5 A-band homo-

polymer [30]. It has been shown that PGM function of P. aeruginosa

AlgC is required for formation of D-glucose-1-phosphate, which is

necessary for biosynthesis of UDP-D-glucose, a component of the

core heterooligosaccharide [25,31]. Therefore both, PMM and

PGM functions of AlgC are required to visualize the P. aeruginosa

PAO A-band. C. burnetii CBU0294 was cloned into the P. aeruginosa

shuttle vector pUCP20 and the resulting plasmid, pCN620, used

for transformation of P. aeruginosa PAO1 algC::tet. LPS samples

prepared from transformed PAO1 algC::tet strains were separated

by SDS-PAGE and visualized by silver staining (Fig. 3). Both, the

parental and complemented mutant strains produced a typical

LPS banding pattern, while PA01 algC::tet alone as well as the

vector control did not produce A-band LPS.

To evaluate the PGM activity of C. burnetii CBU0294, pCN620

was transformed into E. coli W1485 pgm::tet and selected on

MacConkey agar for the ability to metabolize galactose. E. coli

W1485 pgm::tet that harbored pCN620 generated deep red

colonies identical to E. coli W1485 wild type, whereas E. coli

Table 1. Predicted C. burnetii proteins catalyzing formation of GDP-D-mannose.

Bacteria Gene Gene bank accession no. % Identity/% Similarity Putative function

C. burnetii CBU0671 AAO90215.1 Type II PMI

E. coli EDL933 manA AAG56600.1 37/54 PMI

E. coli EDL933 manC AAG57091.1 43/61 GMP

P. aeruginosa PAO1 wbpW AAG08837.1 41/60 PMI/GMP

C. burnetii CBU0294 AAO89851.2 PMM

P. aeruginosa PAO1 algC AAG08707.1 55/74 PMM/PGM

E. coli MS 175-1 PMM_PGM EFJ67760 32/52 PMM/PGM

C. burnetii CBU0689 NP_819719 GMD

E. coli E110019 gmd ZP_03050267 54/71 GMD

GMD, GDP-mannose-4,6-dehydratase; GMP, GDP-mannose pyrophosphorylase; PGM, phosphoglucomutase; PMI, phosphomannose isomerase; PMM,
phosphomannomutase.
doi:10.1371/journal.pone.0025514.t001
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W1485 pgm::tet alone or the empty vector control E. coli W1485

pgm::tet/pUCP20 produced light pink colonies (data not shown).

These data indicate that CBU0294 might encode a bifunctional

enzyme, which exhibits PMM as well as PGM activity. Thus,

CBU0294 is likely to catalyze the second step in the GDP-

mannose biosynthesis pathway of C. burnetii.

Determination of PMI, PMM and GMP activities of
purified C. burnetii proteins

C. burnetii CBU0671 and CBU0294 were expressed as His-

tagged proteins in E. coli DH5a and isolated to near homogeneity.

Kinetic analyses of purified enzymes were carried out by

measuring initial enzyme specific activity relative to varying

concentrations of substrate. Km and Vmax values were deter-

mined by Lineweaver-Burk Plot analysis with a regression

coefficient greater than 0.99 (Fig. 4). Obtained Km and Vmax

values as well as specific enzymatic activity for purified CBU0671

with mannose-1-phosphate or GDP-D-mannose as substrate

indicate PMI and GMP activity (Table 2). PMI and GMP activity

were also detectable in bacterial crude extracts comparable to E.

coli ManA and ManC (Table 3). Specific enzymatic activity

obtained for purified CBU0294 with mannose-1-phosphate

indicates PMM activity, which is also detectable in crude extracts

(Table 2 and 3).

GMD activity of C. burnetii CBU0689 was tested using the

method described by Alberman et al. [32] by expression of the

native protein in E. coli. Therefore C. burnetii CBU0689 was cloned

into pBAD and the resulting plasmid, pCN608c-1, transformed E.

coli DH5a. Enzyme activity was then measured directly in crude

extracts by monitoring the increase in GDP-Sug at OD320

(e320 nm = 2.20 L?mmol21?cm21) in alkaline conditions. GMD

activity for CBU0689 was determined as 14 NKat/mg. Taken

together these data clearly show that all three C. burnetii open

reading frames (orf’s) exhibit the necessary enzymatic activities for

formation of GDP-D-mannose and GDP-Sug as intermediates for

virenose synthesis.

Discussion

The goal of this work was to characterize the enzymatic steps

responsible for formation of GDP-D-mannose in C. burnetii, which

were bioinformatically predicted as the initial steps of GDP-b-D-

virenose biosynthesis. Structural evidence of b-D-virenose isolated

from the virulent phase I C. burnetii RSA493 O-PS further supports

this hypothesis [19]. Although C. burnetii CBU0671, a predicted

bifunctional type II PMI, failed to complement an E. coli manA

mutant strain (PMI), it did complement an E. coli manC mutant

strain (GMP). An exhaustive bioinformatic search of the annotated

genome failed to reveal an alternative C. burnetii PMI. Clustal

analysis showed that CBU0671 contained the signature sites

observed in other type II PMIs, such as WbpW or AlgA of P.

aeruginosa; pyrophosphorylase signature, GMP active site, nucleo-

tidyl transferase domain, mannose-6-phosphate isomerase domain,

zinc binding motif and PMI active site [23]. Althrough C. burnetii

failed to complement a manA mutation in E. coli in vitro assays using

natively formed and His-tagged C. burnetii CBU0671 showed

specific activities, Km and Vmax values, comparable to previously

reported values for PMI and GMP [33]. Differences in regulation

or catalytic process might explain the observed distinct activities

for CBU0671 in a manA deficient background or in vitro observed

enzymatic activities, respectively. Both, type I and type II PMI’s

possess a highly conserved motif within the active side, but other

proteins have lost the specific catalytic function despite the shared

motif [24]. Further investigations, such as complementation of

other type II PMI’s are necessary to clearly identify the catalytic

activities of CBU0671. Taken together, we report that CBU0671

is a new member of the small and poorly characterized class of

proteins known as type II PMIs, based on complementation assays

and biochemical characterization.

C. burnetii CBU0294 successfully complemented a P. aeruginosa

O5 algC mutant strain and restored expression of a smooth LPS.

Figure 2. C. burnetii CBU0671 (GMP) restores K30 expression in
the E. coli cpsB (manC) mutant strain CWG152. Immunoblot
analysis with K30-specific antiserum of proteinase K treated whole cell
lysates of 1. wild type E. coli CWG44, E. coli cpsB mutant strain CWG152,
3. E. coli CWG152/pCN603-1 (E. coli cpsB) induced, 4. E. coli CWG152/
pCN603-1 (E. coli cpsB) not induced, 5. E. coli CWG152/pBAD (vector
control), 6. E. coli CWG152/pCN606-2 (C. burnetii CBU0671) induced, 7. E.
coli CWG152/pCN606-2 (C. burnetii CBU0671) not induced.
doi:10.1371/journal.pone.0025514.g002

Figure 3. C. burnetii CBU0294 (PMM) restores a smooth LPS
chemotype in P. aeruginosa PAO1 O5 algC mutant. SDS-PAGE and
silver stain of proteinase K treated whole cell lysates of 1. wild-type P.
aeruginosa PAO1, 2. P. aeruginosa algC mutant, 3. P. aeruginosa algC::tet/
pLPS188 (P. aeruginosa algC), 4. P. aeruginosa algC::tet/pUCP20 (vector
control), 5. P. aeruginosa algC::tet/pCN620.
doi:10.1371/journal.pone.0025514.g003
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Previous studies showed that algC of P. aeruginosa O-serotype O5 is

involved in formation of D-mannose and D-glucose-1-phosphate,

both necessary intermediates for synthesis of the O5 O-specific

chain and core oligosaccharide. Therefore inactivation of algC

leads to a deep rough phenotype in P. aeruginosa O5 [25,30].

Restored expression of a smooth LPS by complementation

indicates that C. burnetii CBU0294 simultaneously carried out

PGM and PMM activities in this strain. To further demonstrate

that C. burnetii CBU0294 also exhibits phosphoglucomutase

activity, a pgm E. coli mutant strain, W1485 pgm::tet, was successfully

complemented with CBU0294. This finding supports the notation

C. burnetii CBU0294 is bifunctional and carries out PGM and

PMM activities as described for algC.

Bioinformatic analysis indicats that CBU0689 encodes a GDP-

mannose 4,6-dehydratase (GMD). When compared to E. coli

GMD, CBU0689 was 52% identical, 69% similar on the amino

acid level with an Evalue of 5610212 [32,34]. Specific activity of

native C. burnetii GMD in crude extracts and its gene location

within the LPS associated genome region in C. burnetii supports its

bioinformatic assignment [26]. GDP-Sug formed by GMD is the

metabolic intermediate of GDP-L-fucose, GDP-colitose, GDP-

perosamine, GDP-D-rhamnose and GDP-6-deoxy-D-talose [35].

The enzymes required to generate the final steps required for

GDP-perosamine (perosamine synthase CBU0830) and GDP-L-

fucose (fucose synthase CBU0688) have been identified in the C.

burnetii genome [26]. However, none of these activated saccharides

have been observed in C. burnetii with the exception of a single

report in which rhamnose was identified by GC-MS in the C.

burnetii LPS outer core [12].

Since the characterization of the avirulent C. burnetii RSA439

genomic deletion [21], the enzymatic mechanism of fucose

synthase, located within this region has become more clear [36].

Clustal analysis of the C. burnetii fucose synthase indicated that it

bears the characteristic Ser-Tyr-Lys catalytic triad necessary to

catalyze three reactions within a single active site; epimerization at

both C30 and C50 and NADPH dependent reduction of the ketone

at C4 [36]. Based on these data, the formation of GDP-b-D-

virenose may ultimately be formed when GDP-L-fucose is

modified by the addition of a methyl group at C30 perhaps by

CBU0691 and inversion of stereochemistry at the C20 (Fig. S1).

A fundamental understanding of C. burnetii LPS biosynthesis and

its structure are lacking. The intracellular nature of C. burnetii, lack

of genetic tools and its status as a select agent has made elucidating

these basic physiological mechanism challenging. This study

establishes the foundation necessary to fully characterize the

GDP-b-D-virenose biosynthesis pathway and ultimately the

formation of C. burnetii O-PS, which is the only known virulence

factor of C. burnetii.

Figure 4. Mechaelis-Menten diagram depicting C. burnetii CBU0294 (PMM) kinetic parameters. Reactions were carried out with D-
mannose-1-P as the fixed substrate. Data points were fitted using Microsoft XLfit model 601. Inset: Cooresponding Lineweaver-Burk Plot, regression
line calculated by least squares.
doi:10.1371/journal.pone.0025514.g004

Table 2. Kinetic parameters for C. burnetii CBU0671 and CBU0294.

CBU no. Tested enzymatic activity Substrate Km [mmol L21] Vmax [mmol min21] Specific activity [mU/mg]

CBU0671 PMI mannose-6-phosphate 11600 3.59 567

GMP GDP-D-mannose 379 0.757 97

CBU0294 PMM mannose-1-phosphate 228 44 4174

GMP, GDP-mannose pyrophosphorylase; PMI, phosphomannose isomerase; PMM, phosphomannomutase.
doi:10.1371/journal.pone.0025514.t002
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Materials and Methods

Bacterial strains and growth conditions
Bacterial strains and plasmids used in this study are described in

Table 4. All bacterial strains were routinely propagated at 37uC in

Luria-Bertani (LB) broth or on LB-1.2% agar plates (Difco

Laboratories). When necessary, ampicillin (100 mg/mL), carben-

icillin (50 mg/mL), chloramphenicol (34 mg/mL), kanamycin

(50 mg/mL), or tetracycline (12.5 mg/mL) was added to the

media. P. aeruginosa strains were selected on carbenicillin

(500 mg/mL) and tetracycline (100 mg/mL), as required.

General DNA methods
DNA isolation and manipulations were carried out in according

to Sambrook and Russel (2001) [37]. Oligonucleotides used in this

study are listed in Table S1. DNA restriction endonucleases, T4

DNA ligase and Accuprime polymerase (Invitrogen) were used as

advised by the manufacturer. Electrocompetent E. coli and P.

aeruginosa cells were prepared as described elsewhere [38,39] and

transformed using a Bio-Rad Gene-Pulser Transfection Apparatus

(200V, 25 mF, 12.5 kV/cm, 4.7 ms).

Complementation of E. coli manA and manC mutant
strains with C. burnetii CBU0671

CBU071, including the native stop codon, was amplified from

chromosomal DNA of C. burnetii RSA 439 with CBU0672FNcoI

and CBU0671R and cloned into pBAD for native protein

expression. The resulting plasmid, pCN606_2, was used for

complementation LPS manA or CPS manC E. coli mutant strains

Table 3. Enzymatic activity of C. burnetii CBU0671 and CBU0294 in bacterial crude extracts.

Tested enzymatic activity E. coli Specific activity [mU/mg] C. burnetii Specific activity [mU/mg]

PMI ManA 6148 CBU0671 1971

PMM ManB ND CBU0294 72

GMP ManC 185 CBU0671 77.5

GMP, GDP-mannose pyrophosphorylase; PMI, phosphomannose isomerase; PMM, phosphomannomutase; ND, not detected.
doi:10.1371/journal.pone.0025514.t003

Table 4. Bacterial strains and plasmids used in this study.

Strain Characteristics Reference

Bacteria

C. burnetii RSA 439, clone 4 [48]

E. coli DH5a F9(W80dD(lacZ)M15), recA1, endA1, gyrA96, thi1, hsdR17 (rk-mk+), supE44, relA1, deoR, D(lacZYA-argF), U169 Stratagene

E. coli TOP 10 F2 mcrA D(mrr-hsdRMS-mcrBC) W80lacZDM15 DlacX74 recA1 araD139 D(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG Invitrogen

E. coli CWG 28 Trp his lac rpsL cpsK3021 (Smr O9a:K302) [27]

E. coli CWG 634 Trp his lac rpsL cpsK3021 manA4 (Smr Tcr O9a2:K302) [27]

E. coli CWG 44 his trp lac rpsL (09-:K30:H12; rfb09) [28]

E. coli CWG 152 CWG44 but O-:K-:H12rfbM [28]

E. coli W1485 Wild type E. coli [25]

E. coli W1485 pgm:tet pgm mutant of W1485 [25]

P. aeruginosa PAO1 Serotype O5 [25]

P. aeruginosa
PAO1 algC::tet

algC mutant of PAO1 (LPS O52) [25]

Plasmids

pBAD Expression vector, AmpR Invitrogen

pUCP20 P. aeruginosa shuttle vector, CarbR [44]

pLPS188 pUCP18, P. aeruginosa algC [25]

pCN601a_5 pBAD, E. coli DH5a manA, native This study

pCN601c_A1 pBAD, E. coli DH5a manA, poly-His This study

pCN603_1 pBAD, E. coli DH5a cpsB (manC), native This study

pCN603a_A4 pBAD, E. coli DH5a cpsB (manC), poly-His This study

pCN606_2 pBAD, CBU0671, native This study

pCN606c_E1 pBAD, CBU0671, poly-His This study

pCN607a_3 pBAD, CBU0294, native This study

pCN607z_A2 pBAD, CBU0294, poly-His This study

pCN608c_1 pBAD, CBU0689, native This study

pCN620 pUCP20, CBU0294 This study

doi:10.1371/journal.pone.0025514.t004
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CWG634 and CWG152. As positive controls E. coli DH5a manA

(EcmanAF/EcmanAR) and manC (EccpsBNcoIF/EccpsBR) were

cloned into pBAD and the resulting plasmids, pCN601a_5 and

pCN603_1, used for native protein expression in the correspond-

ing manA and manB mutant strains. All generated plasmids were

verified by sequencing. Complemented strains were grown in LB

broth supplemented with 0.4% glucose, to avoid uptake of

exogenous mannose, and protein expression induced with 0.2%

arabinose over night [27]. Expression of full length LPS or CPS

was determined by analysis of proteinase K-treated whole cell

lysates of complemented strains and compared to corresponding

LPS and CPS wild type strains E. coli CWG28 (serotype O9a) and

E. coli CWG44 (serotype K30), respectively. Lysates were prepared

as described elsewhere [40] and analyzed by sodium dodecyl

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and

stained with silver nitrate or transferred to nitrocellulose

membrane (Bio-RAD) [40,41,42,43]. O9a (1:2000) or K30-specific

antiserum (1:1000) was used for detection of LPS and CPS

expression and traced with horse radish peroxidase-conjugated

goat anti-rabbit IgG(c) monoclonal antibody (1:5000) with

peroxidase substrate in according to the guidelines of the

manufacturer (Amersham Bioscience).

Complementation of P. aeruginosa algC mutant strain
with C. burnetii CBU0294

CBU0294 was amplified (CBU0294FScaI/CBU0294RXbaI)

from chromosomal C. burnetii RSA 439 DNA and obtained DNA

fragment was digested with ScaI and XbaI. CBU0294 was

subsequently cloned into the ScaI, XbaI treated shuttle vector

pUCP20 to generate pCN620 [44]. Correct insertion of CBU0294

in pCN620 was verified by sequencing. For complementation

studies P aeruginosa PAO1 algC:tet was transformed with pCN620

and additionally with a P. aeruginosa algC containing shuttle vector,

pLPS188 [25]. LPS banding patterns from P aeruginosa PAO1

algC:tet harboring pCN620 or pLPS188 were analyzed as

described under 4.3 and compared to wild type LPS from

P.aeruginosa PAO1. PAO1 specific antiserum (1:1000) was used for

detection of OPS expression and traced with horse radish

peroxidase-conjugated goat anti-rabbit IgG(c) monoclonal anti-

body (1:5000).

Phosphoglucomutase (pgm) complementation of E. coli
with C. burnetii CBU0294

CBU0294 was amplified (CBU0294F/CBU0294R) and cloned

into pBAD for native protein expression. The resulting plasmid,

pCN607a_3, was sequenced and used for transformation of E. coli

W1485pgm::tet. Phosphoglucomutase positive wild type E. coli

W1485 and complemented mutant strains, were then distin-

guished from pgm negative strains using MacConkey agar (Difco

Laboratories) supplemented with 1% (w/v) galactose and 0.2%

(w/v) arabinose as previously described [45].

Cloning and expression of C. burnetii GDP-D-mannose
synthesis genes for enzyme activity assays

C. burnetii CBU0671 (CBU0671F/CBU0671Rpoly-His) and

CBU0294 (CBU0294Fpoly-His/CBU0294Rpoly-His) were am-

plified and subsequently cloned into pBAD for expression of His-

tagged proteins. The generated plasmids pCN606c_E1 and

pCN607z_A2 were sequenced for correct insertion of target genes

and used for transformation of E. coli DH5a. As controls E. coli

DH5a manA and cpsB (manC) genes were amplified with

EcmanAFpoly-His and EcmanARpoly-His or EccpsBFpoly-His

and EccpsBFpoly-His and cloned into pBAD. The resulting

plasmids pCN601c_A1 and pCN603a_A4 were sequenced for

correct insertion of target genes and used for transformation of E.

coli DH5a. Expression was induced with 0.2% arabinose for 4 to

8 h at an OD600 of 0.6. Bacteria were harvested (10,0006g,

10 min, 4uC), resuspended in 10 mL binding buffer (25 mM

NaPO4, 0.5 M NaCl, 10 mM imidazole, pH 8.0) with DNase

(10 mg/mL), RNase (10 mg/mL) and lysozyme (10 mg/mL) and

incubated for 30 minutes on ice. Cells were lysed using French

press and cell debris separated by centrifugation (24,4006g,

60 min, 4uC). His-tagged proteins were isolated from supernatants

(crudes extracts) using the ProBond purification system as

described by the supplier (Invitrogen). Purified proteins were

analyzed for purity and size by SDS-PAGE and silver staining or

immunoblot analysis with 66His monoclonal antibody (1:5000,

Clontech). PMI, PMM or GMD activity was also determined in

bacterial crude extracts that contained natively formed C. burnetii

proteins.

Phosphomannose isomerase (PMI) in vitro assay
PMI enzyme activity was determined by monitoring the

reduction of NADP+ at 340 nm (eM = 6.22 mM21 cm21) [46].

One unit of enzyme activity was defined as the detection of

1 mmole of product per minute. Concentration of purified enzyme

was determined using the Micro BCA Protein Assay (Invitrogen)

as described by the supplier. PMI activity was determined by a

modified protocol described by Sa-Correia et al. [33]. The reaction

mixture in a 1 mL total volume contained 10 mmol of MgCl2,

1.0 mmol of NADP+, 1 unit phosphoglucose isomerase, 1 unit

glucose-6-phoshphate dehydrogenase, 1.1 mmol of D-mannose-6-

phosphate in 50 mM tris HCl buffer pH 7.55. MgCl2, NADP+

and D-mannose-6-phosphate were dissolved in 50 mM tris HCl

buffer pH 7.55 prior to adding them to the reaction mixture. The

reaction mixture was equilibrated for 5 min at 25uC and the

reaction initiated by adding 50 to 200 mL of crude extract that

contained natively formed PMI or 7–15 mg of purified His-tagged

PMI (CBU0671).

Phosphomannomutase (PMM) in vitro assay
PMM activity was determined by monitoring the reduction of

NADP+ at 340 nm (4.6.1.) as described by Sa-Correia et al. [33].

The reaction mixture in a 1 mL total volume contained 10 mmol

of MgCl2, 1.0 mmol of NADP+, 1 unit phosphoglucose isomerase,

1 unit glucose-6-phoshphate dehydrogenase, 5 units of purchased

PMI (Sigma), 0.25 mmol of D-glucose-1,6-diphosphate (ADGD)

and 5.5 mmol of D-mannose-1-phosphate in 50 mM tris HCl

buffer pH 7.55. C. burnetii CBU0294 is annotated as a bifunctional

phosphomannomutase (PMM) and phosphoglucomutase (PGM).

Therefore, the addition of ADGD moved the kinetics of the

reaction towards the formation of D-gluconate-6-phosphate. The

reaction mixture was equilibrated for 5 minutes at 25uC and the

reaction initiated by adding 50–200 ml of crude extract that

contained natively formed PMM or of 7–15 mg of purified His-

tagged PMM (CBU0294).

GDP-D-mannose pyrophosphorylase (GMP) in vitro assay
GMD activity was determined using a modified protocol

described by Munch-Peterson et al. [47], monitoring the reduction

of NADP+ (4.6.1.). The reaction mixture in a 1 mL total volume

contained 10 mmol of MgCl2, 1.0 mmol of NADP+, 0.1 mmol of

ADP, 2 mmol of PPi, 5.0 mmol of NaF, 1 unit of hexokinase, 1 unit

of nucleoside kinase, 1 unit of glucose-6-phoshphate dehydroge-

nase, 0.8 mmol of glucose, 5.5 mmol of GDP-D-mannose in

50 mM tris HCl buffer pH 7.55. The reaction mixture was

equilibrated for 5 minutes at 25uC, and initiated by adding 50–
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200 ml of crude extract. Endogenous activity in crude extracts of E.

coli DH5a carrying the empty pBAD vector were subtracted from

the test samples.

GDP-D-mannose 4,6-dehydratase (GMD) in vitro assay
CBU0689 was amplified (CBU0689FNcoI/CBU0689R) and

cloned into pBAD, retaining the native stop codon. The resulting

plasmid, pCN608c_1, was used for transformation of E. coli

DH5a. Crude extract GMD activity was determined by a

modified protocol described by Albermann et al. [32]. The

reaction mixture in a total volume of 300 mL contained 10 mmol

of MgCl2, 1.0 mmol of NADP+ and 5.5 mmol of GDP-D-mannose

in 50 mM tris HCl buffer pH 7.55. After equilibrating for

5 minutes at 37uC, the reaction was initiated by adding 60 mL

of prewarmed crude extract. Aliquots of 50 mL were taken every

10 min and added to 950 mL of 37uC 100 mM NaOH. The

reaction was incubated for an additional 20 minutes. The

formation of GDP- 4-keto-6-deoxy-D-mannose was measured

directly at OD320 (eM = 2.2 mM21 cm21) [34].

Supporting Information

Figure S1 Clustal analysis of C. burnetii fucose synthase
CBU0688 (GFS). The C. burnetii GFS has the characteristic

‘‘Catalytic Triad,’’ Ser (S) 107-Tyr (Y) 136-Lys (K) 140 boxed in

black, observed in SDR family enzymes. Additionally, boxed in

red are active sites implicated as the acid/bases involved in

promoting the epimerization reactions.

(TIF)

Table S1 Oligonucleotides used in this study. *Intro-

duced endonuclease restriction sites are underlined.

(DOC)
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