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As a novel lactate-derived post-translational modification (PTM), lysine lactylation (Kla) is involved in
diverse biological processes, and participates in human tumorigenesis. Identification of Kla substrates
with their exact sites is crucial for revealing the molecular mechanisms of lactylation. In contrast with
labor-intensive and time-consuming experimental approaches, computational prediction of Kla could
provide convenience and increased speed, but is still lacking. In this work, although current identified
Kla sites are limited, we constructed the first Kla benchmark dataset and developed a few-shot
learning-based architecture approach to leverage the power of small datasets and reduce the impact of
imbalance and overfitting. A maximum 11.7% (0.745 versus 0.667) increase of area under the curve
(AUC) value was achieved in contrast to conventional machine learning methods. We conducted a com-
prehensive survey of the performance by combining 8 sequence-based features and 3 structure-based
features and tailored a multi-feature hybrid system for synergistic combination. This system achieved
>16.2% improvement of the AUC value (0.889 versus 0.765) compared with single feature-based models
for the prediction of Kla sites in silico. Taken few-shot learning and hybrid system together, we present
our newly designed predictor named FSL-Kla, which is not only a cutting-edge tool for Kla site profile
but also could generate candidates for further experimental approaches. The webserver of FSL-Kla is
freely accessible for academic research at http://kla.zbiolab.cn/.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Warburg effect, originally known for the ravenous con-
sumption of glucose leading to lactate production, even in the
presence of oxygen, is involved in diverse cellular processes such
as cell signaling, macrophage polarization, immunological
response and participates in human tumorigenesis [1-3]. Lactate,
the end metabolite produced during fermentative glycolysis which
is a phenotype described as part of the Warburg effect, not only
serves metabolic functions but also acts as non-metabolic roles
[4,5]. Although the former has been extensively studied, its non-
metabolic functions in physiology and disease remain largely
unknown. Recently, a novel lactate-derived post-translational
modification (PTM), lysine lactylation (Kla) was discovered, which
belongs to metabolite-derived PTMs similar to lysine acetylation
(Kac) [6]. Biochemically, Kac introduces a small acetyl group on
the e amine group of the lysine residue, with a mass of 42.0106
Daltons (Da) [7]. Kla attaches a lactyl group to the e amino group
of a lysine residue, with a much larger mass of 72.021 Da [6]. Sim-
ilar to Kac, Kla occurs in both histone and non-histone proteins,
and faithfully orchestrates numerous biological processes, such
as signal transduction, metabolism and inflammatory responses
[6,8]. In addition, dysregulation of lactylation contributes to
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tumorigenesis [9]. Kla represents a typical non-metabolic role of
lactate and illuminates a new avenue to study the diverse physio-
logical functions of lactate. Although the biological importance of
protein lactylation has been rapidly recognized in recent years,
its underlying mechanisms are still largely unclear.

Identification of Kla targets and their precise sites is fundamen-
tal for understanding the molecular mechanisms and regulatory
roles of Kla. Conventionally, Kla was initially detected by mass
spectrometry-based approaches, with a mass shift of 72 Da and
further confirmed by chemical and biochemical methods, such as
peptide synthesis and isotopic labeling [10]. In 2019, Zhang et al.
first identified 26 and 16 histone Kla sites from human HeLa cells
and mouse bone marrow-derived macrophages, respectively. Sub-
sequent study by Gao identified 273 Kla sites in 166 proteins using
LC-MS/MS [10]. In contrast to labor-intensive and time-consuming
experiments, computational prediction of Kla sites from protein
sequences is an alternative approach to efficiently prioritize highly
potential candidates for further experimental consideration.
Although lactylation is comparable with other major PTMs for
which a variety of computational approaches were explored, the
dedicated computational resource for Kla remains to be developed.

However, for computational prediction of Kla, three important
challenges remain, including few-shot samples, extreme imbalance
of benchmark dataset and overfitting in deep learning models. Pre-
viously, we had integrated seven types of sequence features and
designed the hybrid-learning framework HybridSucc for lysine
succinylation sites prediction with an accuracy of 17.8%-50.6%
higher than the existing method [11]. Moreover, we developed
hybrid learning-based graphic presentation system GPS-Palm to
accurately predict S-palmitoylation sites and achieved a much
higher accuracy of 31.3% than the second-best tool [12]. In addi-
tion, the hybrid-learning architecture performed outstanding in
quite different types of datasets. We had designed HUST-19, an
artificial intelligence diagnostic software to automatically achieve
the diagnosis of CT imaging and clinical features, which had signif-
icantly improved the accuracy for predicting the prognosis of
patients with COVID-19 [13]. Although hybrid-learning architec-
tures have achieved fairly promising performance, especially on
large datasets, it easily tends to overfit because of a huge number
of model parameters but few samples of Kla sites. This phe-
nomenon is common for many deep learning-based architectures
in such a scenario. Notably, the few-shot learning, which was pro-
posed to predict unseen classes with a few training examples, has
attracted a lot of attention and was successfully implemented in
biological context such as drug response in recent years [14]. In
this regard, an interesting question has emerged: can we introduce
the intriguing possibility of the few-shot learning-based multi-
feature hybrid architecture for Kla sites prediction?

In this work, we manually collected 343 unique lactylation sites
across 191 unique proteins from 3 species to construct the first Kla
benchmark dataset (Fig. 1A, Table S1). We comprehensively ana-
lyzed and assessed 11 types of feature encoding schemes, consist-
ing of 8 types of sequence-derived features including amino acid
composition (AAC), amino acid index (AAindex), composition of
k-spaced amino acid pairs (CKSAAP), composition/transition
(CTDC, CTDT), conjoint triad (CTriad), di-peptide composition
(DPC) as well as position specific scoring matrix (PSSM), and the
three additional types of structural features including accessible
solvent accessibility (ASA), backbone torsion angles (BTA) and sec-
ondary structure (SS) (Fig. 1B) [15–20]. In this study, heteroge-
neous few-shot strategies were developed for balancing dataset
and reducing overfitting (Fig. 1C). A multi-feature hybrid system
was designed for integrating and combining up to 11 individual
features synergistically. Taken together, we developed a novel tool
named FSL-Kla for computational prediction of Kla sites (Fig. 1D).
We hope that FSL-Kla might be a helpful tool to analyze Kla sys-
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tematically and could inspire approaches for predicting many
types of PTM sites. A webserver for FSL-Kla was implemented for
free access at http://kla.zbiolab.cn/ to facilitate academic research.
2. Methods

2.1. Data collection

In FSL-Kla, all references were obtained from PubMed and were
searched according to the following keywords: ‘‘lactylation” or
‘‘post-translational modifications and lactate” or ‘‘PTMs and lac-
tate”. Since 2013, the researches on lactylation have been acceler-
ated. We searched experimentally identified Kla sites by carefully
checking abstracts or full texts of the scientific literature published.
Currently, our benchmark dataset covers 343 unique lactylation
sites across 191 unique proteins from 3 species including Homo
sapiens, Mus musculus and Botryotinia fuckeliana (Table S1). Here,
we defined a Kla site peptide KSP(m, n) as a lysine residue flanked
by m residues upstream and n residues downstream. As previously
described [17], we adopted KSP(10, 10) for model training and
parameter optimization in a rapid manner. For KSPs located at N-
or C-terminals, we added one or multiple special characters ‘‘*”
to complement the full KSP(10, 10) entries. To obtain the bench-
mark data set for the initial model training, KSP(10, 10) peptides
around known Kla sites were regarded as positive data, whereas
KSP(10, 10) items derived from the remaining non-lactylated
lysine residues in the same proteins were taken as negative data.
The redundancy at the peptide level was cleared for positive and
negative data, respectively, and only one KSP(10, 10) was reserved
if multiple identical peptides were detected.

2.2. Feature encoding schemes

Sequence representation has been widely adopted in various
computational methods for proteins. It has been proved that com-
prehensive and effective feature encodings are of great importance
in producing a high-performance predictor [15]. A structural or
physiochemical property could be extracted from protein or pep-
tide sequences by a descriptor [12,21,22]. To make robust and
accurate prediction, we adopted two sets of features including 7
amino acid composition-based features (feature set 1) as well as
position specific scoring matrix (PSSM) profile [16] and 3
structure-based features (feature set 2) [23]. In the past study,
these two groups of features were regarded as independent but
highly complementary features. Advances of multiple feature
encodings are obvious and facilitate the in silico PTM site predic-
tion to a large extent [12,17]. Reproduceable and stable extraction
is important for feature encodings [12]. Automatic feature encod-
ing is considered in this work. Hereby, we used iFeature, a state-
of-the-art toolkit for protein and peptide sequence encoding [15]
to generate features for feature set 1 (Fig. 2A). As for the feature
set 2, we generated a sequence-based feature, including PSSM by
PSI-BLAST [18] as well as three structure-based features such as
ASA, BTA and SS by SPIDER2 [19] (Fig. 2A). Finally, a peptide-to-
vector transformation (PVT) approach was adopted to generate
the input matrix of the two sets of features (Fig. 2B).

Feature set 1: Amino acid composition-based features

2.2.1. AAC
The feature AAC reflects the amino acid frequencies of the

sequence fragments surrounding the PTM sites [20]. As one of
the basic methods to analyze the sequence, there are also some
places to be modified. Because a number of Kla sites are located
at the N- or C-terminus of proteins, special characters such as ‘‘*”
should be added to complement the full peptides [24]. In addition,

http://kla.zbiolab.cn/


Fig. 1. The protocol of this study. A. From the latest literature, we obtained and collected 343 unique Kla sites as the dataset. All the entries must have a PMID and specify a
clear position for Kla. Then we corrected the above dataset by UniProt and formed the benchmark dataset. All the entries are labeled and the non-Kla sites in the same protein
or peptide are regarded as negative samples. B. The feature encoding schemes for both feature set 1 and set 2 with their corresponding imbalance strategy. The generated
feature encodings including AAC, CTriad, AAindex, DPC, CTDT, CTDC, CKSAPP are grouped in feature set 1 while other four encodings ASA, BTA, PSSM and SS are grouped in
feature set 2. Stratified cross-validations with few-shot strategies were conducted. FSL-1 was applied in feature set 1 while only FSL-2 was applied in feature set 2 because of
some principles of few-shot strategies. C. The diagram of EDL-1 for feature set 1 and EDL-2 for feature set 2. The upper cell shows the strategic combination for both major and
minor class and then a vote determines the combinatory results. The lower cell shows the process of ensemble. Samples that are wrongly classified will attain higher weight
values in the next iteration. The final box is an optimized box based on many base classifiers. An adaptive decision boundary was also shown in the final box. D. The
construction of FSL-Kla webserver and some evaluation metrics of Kla sites prediction.

Fig. 2. Architecture and implemental steps of the ensemble method with imbalance strategy. A. Data collection and feature encoding schemes for both amino acid
composition-based features as well as PSSM profile and structure-based features. B. Generating encodings for labeled proteins and peptides: A procedure for peptides to
vectors transformation (PVT). C. Implementation of FSL-1 with EDL-1 for feature set 1 while FSL-2 with EDL-2 for feature set 2. Probability calibration performs an important
role in correcting prediction after primary ensemble. Base learners’ outputs after probability calibration are stacked as information for the input of mFHS. The 4, 6, 8 and 10-
fold stratified cross-validations were executed to evaluate the performance. Conducting few-shot strategies in training data and keeping testing data untouched provides a
reasonable evaluation approach from the data aspect. ROC curves with some evaluation metrics including Sn, Sp, Ac, PPV, NPV and MCC are utilized.
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there might be some atypical amino acids in protein or peptide
sequences. Thus, the additional pseudo amino acid ‘‘*” was also
considered to encode such unusual residues. In this work, we cal-
culated the frequencies of 21 types of amino acids in alphabetic
order (A, C, D, . . ., Y, *) from Kla peptides, and each peptide i was
encoded into a 21-dimensional vector as follows:

Vi ¼ FA; FC ; FD; � � � ; FY ; F�ð Þ21
2.2.2. AAindex
AAindex is a database of amino acid physiochemical properties

containing up to 566 amino acid indices [25–27]. This database is
widely used to generate amino acid index-based physicochemical
properties for a protein or peptide. In this study, each position of
residue in Kla peptide (with a fixed length of 21 residues) was sub-
stituted by corresponding indices according to adopted physio-
chemical properties. To consider all the amino acid indices
comprehensively, we concatenated all the numerically applicable
indices together for next feature processing. Then, the dimension
of generated feature vector of AAindex is 21 � 531 = 11,151.
2.2.3. CKSAAP
CKSAAP is short for Composition of k-spaced Amino Acid Pairs.

As the supplement of AAC, this feature encoding contains the fre-
quency of amino acids pairs with k spaces separation [28]. CKSAAP
provides local context information of Kla sites at the scale of given
distance k which is quite flexible. For instance, if the value of k is 0,
there are 20 � 20 = 400 possible residue pairs (from AA, AC, AD, . . .
to YY). Then again, we must consider rare amino acids or ‘‘place
filling” virtual amino acid ‘‘*” [24], so the ultimate dimension of
CKSAAP feature vector of Kla peptides is 21 � 21 = 441. We could
also count the values of arbitrary k-space amino acid pairs and
define the feature vector as follows:

NAA

Ntotal
;
NAC

Ntotal
;
NAD

Ntotal
; � � � ; N��

Ntotal

� �
441

The values of numerators denote how many times a corre-
sponding residue pair appears in a protein or peptide for the given
space k. And the values of denominators are the total number of
k-space residue pairs in the protein or peptide. It was noteworthy
that the values of Ntotal are not the same. For instance, the values of
Ntotal are l-1, l-2, l-3, l-4 for a protein of sequence length l for k = 0, 1,
2, 3 respectively.
2.2.4. CTDC
CTDC is one sub conception of the method of composition,

transition, and distribution (CTD). Three descriptors are composi-
tion (C) descriptor, transition (T) descriptor, and distribution (D)
descriptor, which help to define the status and its change of differ-
ent amino acid groups [29]. CTD is a well-known and classic
sequence feature generation method proposed by Dubchak et al.
[30].

As the first part of CTD method, CTDC was used to generate 39
features from each protein or peptide referring to the ratio of the
number of single amino acid with specific properties [31,32]. The
formulation is expressed as follows:

C rð Þ ¼ N rð Þ
N

; r 2 polar; neutral; hydrophobicf g

where N(r) is the number of amino acids of type r in the encoded
sequence and N is the length of the sequence. Hydrophobicity is
the studied property r and amino acids are categorized into three
different groups including polar, neutral or hydrophobic regarding.
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2.2.5. CTDT
CTDT is the second part of the CTD method. This part describes

the transition from one subgroup to another subgroup in the stud-
ied property and summaries the percentage frequency of transition
[30]. Still taking hydrophobicity as an example, transitions
between the hydrophobic group and the neutral group and those
between the hydrophobic group and the polar group are counted,
organized and formulated as below:

T r;sð Þ¼ N r;sð ÞþN s;rð Þ
N�1 ;

r;s2 polar; neutralð Þ; neutral; hydrophobicð Þ; hydrophobic; polarð Þf g

where N(r,s) and N(s,r) are the respective dipeptides numbers
encoded as ‘‘rs” and ‘‘sr” in the sequence, while N is the full length
of the sequence.

2.2.6. CTriad
The Conjoint Triad descriptor (CTriad) is the property of one

residue and its vicinal amino acids by regarding three adjacent
amino acids as a single unit [33]. Compared with AAC and CKSAAP,
CTraid provides additional information of amino acid composition
not by offering Tripeptide composition (TPC) but follows the below
manners. First, the protein sequence is represented in a binary
space (V, F), where V denotes the sequence features’ vector space,
and each feature (Vi) represents a kind of triad type; F is the corre-
sponding number vector for V, where fi, the value of the i-th dimen-
sion of F, is the number of types Vi appearing in the protein
sequence. Here, all amino acids have been catalogued into eight
classes, the size of V should be equal to 8 � 8 � 8 = 512. Accord-
ingly, i = 1, 2, 3, . . ., 512. It is worth noting that protein sequences
with longer full length tend to have larger f values which con-
founds the comparison of proteins with different lengths. So, we
need to normalize fi by a following standardization.

di ¼ f i �min f 1; f 2; . . . ; f 512f g
max f 1; f 2; . . . ; f 512f g

The di, a newly standardized parameter, is calculated by the equa-
tion above.

2.2.7. DPC
DPC is short for the dipeptide composition [34], which gives a

20 � 20 = 400 dimension vector. Although DPC is a special case
of CKSAAP where the value of k is 0, it is still an indispensable
sequence statistic counting the dipeptide composition of a protein
or peptide. We use the DPC as an independent feature which’s for-
mula is defined as follows:

D r; sð Þ ¼ Nrs

N � 1
; r; s 2 A;C;D; . . .Yf g

where Nrs is the number of dipeptides represented by two amino
acids r and s.

Feature set 2: PSSM profile and structure-based features

2.2.8. PSSM
PSSM (position-specific scoring matrix) measures the evolu-

tionary information of Kla sites, by calculating the probability that
an amino acid will appear at a specific position. As previously
described, the position-specific iterative BLAST (PSI-BLAST) [18]
program in the BLAST package, was adopted to align all Kla pep-
tides of each data set to Swiss-Prot protein sequences downloaded
from the UniProt database [35]. Evolutionary information for each
amino acid was encapsulated in a row vector of 20 dimensions and
the size of PSSM for a peptide with n residues is 20 � n. A unique
PSSM was returned for each Kla peptide, and the probability values
of the 20 types of typical amino acids at 21 positions (Pi, i = 1, 2, 3,
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. . ., 21) were obtained. Then we encoded each Kla peptide i into a
420-dimensional number vector as:

Vi ¼ P1A ; P1C ; P1D ; � � � ; P1Y

� �
20

� �
; P2A ; P2C ; P2D ; � � � ; P2Y

� �
20

� �
; � � � ;

P21A ; P21C ; P21D ; � � � ; P21Y

� �
20

� �
For instance, P1A was the PSSM value for amino acid A at position 1
for the given peptide.

2.2.9. ASA
ASA (accessible surface area) indicates the approximately

exposed area of an amino acid residue to solvent [36,37]. ASA also
takes the residue’s position in the 3D configuration of a protein
into account [38]. By representing different surface areas among
21 types of amino acids, ASA was also encapsulated in the form
of vector. The SPIDER2 tool [19] was adopted to compute potential
ASA values Ai (i = 1, 2, 3, . . ., 21) for each amino acid in the peptides
as wementioned previously. Then, Kla peptides were characterized
by 21-dimensional digital vectors regrading feature ASA as:

V ¼ A1;A2; � � � ;A21ð Þ
2.2.10. SS
SS is short for Secondary Structure. If the secondary structural

information of each amino acid can be provided in an explicit
and numerical form, we could make the prediction more accurate
by introducing the feature SS. As previously described [36,37,39],
the probability score Si (i = 1, 2, 3, . . ., 21) of a-helix, b-strand or coil
was computed by SPIDER2 [19] for each amino acid in the
sequences because the protein structure may also play an indis-
pensable role in the prediction of Kla sites as we hypothesized in
most PTMs [12,39]. Then each Kla peptide was transformed into
a 3 � 21 = 63-dimension vector as:

Vi ¼ S1; S2; � � � ; S21ð Þa-helix S1; S2; � � � ; S21ð Þb-strand S1; S2; � � � ; S21ð Þcoil
where the probability score Si (i = 1, 2, 3, . . ., 21) of a-helix, b-strand
or irregular coiled coil was calculated by SPIDER2.

2.2.11. BTA
BTA is the abbreviation of the backbone torsion angles.

Including the backbone torsion angles u andW, the angle between
Cai-1-Cai-Cai+1 (h) as well as the dihedral angle rotated around the
Cai-Cai+1 bond (s), four parameters were computed by SPIDER2
[19]. The BTA reflected more detailed geometric information at
specific positions. Four classes of angles provided exact space
extension of peptides to facilitate the Kla site prediction. Then,
each Kla peptide was transformed into a 4 � 21 = 84-dimension
vector as:

V i ¼ L1;L2; � � � ;L21ð Þu L1;L2; � � � ;L21ð ÞW L1;L2; � � � ;L21ð Þh L1;L2; � � � ;L21ð Þs
where Li is the BTA angle value for the i-th residue (i = 1, 2, . . ., 21).
The 84-dimensional vector was constructed by these values.

2.3. Heterogeneous few-shot strategies in FSL-Kla

Many types of PTMs have rich datasets which lead to successful
prediction with an ensemble learning approach [12,17,17,22,40].
However, as a sort of PTMs without abundant benchmark datasets
(because of the limited number of identified Kla sites/sequences), a
natural approach is to use few-shot learning along with ensemble
learning. Meanwhile, a reasonable and readily applicable way is to
conduct data augmentation. However, for biomedical data,
pipelines should be carefully designed since some augmentation
methods might lead to ridiculous samples [41]. Accordingly, in
FSL-Kla, we adopted a set of coherent few-shot learning
approaches to enrich our training resources as well as reduce the
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dataset imbalance. We manually designed a two-way data screen
and augmentation method based on the heterogenous feature
encoding schemes’ intrinsic properties and then corresponding
algorithms were designed as well. A brief work flow of FSL-Kla
was as mentioned below. For feature encodings in feature set 1,
we designed FSL-1 for data augmentation and screening, a cascade
ensemble deep learning architecture EDL-1 was then incorporated
for processing FSL-1’s outcomes (Fig. 2). Similarly, a parallel
ensemble deep learning architecture EDL-2 for feature set 2 was
also adopted along with the few-shot strategy FSL-2 for feature
set 2 (Fig. 2C). Since upstream EDL-1 and EDL-2 were efficient
and complementary to each other, we further speculated that the
ensemble of EDL-1 and EDL-2 could improve the accuracy. We
used PLR to play the role of stacking [42] in the hybrid model mFHS
of EDL-1 and EDL-2. The detailed pipeline for FSL-1, FSL-2, EDL-1,
EDL-2 and mFHS was shown in Fig. 3.

Because of the deficiency and imbalance of benchmark dataset,
we carried out two-way FSL methods for both feature set 1 and fea-
ture set 2. For feature set 1, we refined FSL-1 for the augmentation
of original data to enrich data and reduce imbalance. Synthetic
minority over-sampling technique (SMOTE) [43] is a data augmen-
tation approach in which the minority class is over-sampled by
creating ‘‘synthetic” examples instead of over-sampling with
replacement. Briefly, the idea is interpolation, which generates
additional samples in the minority class. Specifically, for a minority
class p sample xi, SMOTE uses its k neighbors (specifying the value
if k in advance) and calculates the k minority class samples with
the nearest distance to xi (the distance is usually defined as the
n-dimensional feature space of the Euclidean distance between
samples). Then we randomly selected one sample from k neighbors
and then generated a new sample by the following formula:

xnew ¼ xi þ bxi � xi
� �� d

where xi is the neighbor selected, and d is a random value between
0 and 1.

Although this augmentation step in FSL-1 will randomly select a
minority of samples to synthesize the new samples, it is likely to
generate samples which provide redundant information or less
information. Another trick here is that a minority of samples may
be noisy if the selected minority samples are surrounded by major-
ity samples. The newly synthesized samples may overlap the sur-
rounding majority samples to a large extent, which will make the
classification difficult [44]. The first step in FSL-1 was to make
the extremely imbalanced feature encodings in feature set 1 more
balanced as it was shown in Fig. 2C. In order to help distinguish the
Kla sites and non-Kla sites in the feature space, after the first step,
we introduced a heuristic step in FSL-1 to remove Tomek links
[45,46]. A Tomek link is defined as such a sample pair that is from
two different categories but sharing the nearest distance in feature
space. For instance, sample p’s (from category P) nearest neighbor
is q (from category Q), and q’s nearest neighbor is p as well. Then p,
q is defined as a Tomek link. The key idea for data screening and
cleaning was to remove redundant or overlapped data by specific
rules, which also achieved the goal of down sampling (Fig. 2C). In
this step, FSL-1 distinguished all Tomek links and deleted them
by removing the majority samples in a Tomek link so that the
Tomek links didn’t exist after deletion. As we mentioned above,
it was hard to discriminate against newly generated minority sam-
ples with their majority neighbors while a data cleansing method
can handle it by removing most of the redundant samples. The
combination of the two aforementioned steps in FSL-1 achieved
the goal of data enrichment and reduction of imbalance.

As for feature encodings in feature set 2, synthesis methods
were not applicable, which means the data augmentation was hard
to carry out. Thus, different from feature set 1, we didn’t perform



Fig. 3. The detailed pipline of FSL-1, FSL-2, EDL-1, EDL-2 and mFHS. The pipeline treats feature encodings from feature set 1 and feature set 2 differently. FSL-Kla introduces
new samples and screening samples out for feature set 1. For feature set 2, the pipeline reduces negative samples’ redundancy to make the data set more balance. The mFHS
incorporates intermediate results from EDL-1 and EDL-2 which were calibrated by the mentioned method for probability calibration. The binary cross-entropy loss was
measured. Back propagation of loss was utilized to train base learners following an end-to-end way.
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FSL-1 in feature set 2 because these four features are not continu-
ous. In other words, for example, if we found a high-level accessi-
ble surface area amino acid residue and another rather lower
accessible surface area residue, we could not generate a ‘‘novel”
peptide based on the two samples although one of these ideas of
FSL-1 was synthesis. Besides, feature encodings in features set 1
were comprehensive statistics features with aligned feature vector
length naturally. In addition, because the design space of protein
sequence was also exponential growth based on the sequence
length, it was reasonable to generate ‘‘novel” peptides in FSL-1.
Almost continuous changes in sequence made the interpolation
possible [47]. On the contrary, feature set 2’s encodings were
tightly related to proteins or peptides’ full length. Here, we tailored
another few-shot strategy FSL-2 to achieve the same two major
goals mentioned in FSL-1 as well, data augmentation and imbal-
ance reduction. Since it was not proper to generate ‘‘novel” pep-
tides as we did in FSL-1, we introduced basic random under
sampling (RUS) to reduce imbalance while maintaining the key
structural components or contexts in proteins or peptides with
Kla sites, which reduced the number of examples in the majority
class (non-Kla proteins or peptides) in the transformed data [48].
FSL-2 was effective in situations where the minority class had a
limited but relatively sufficient number of samples despite the sev-
ere imbalance. FSL-2 mainly performed a role in reducing the
imbalance of feature encodings in feature set 2 (Fig. 2).
2.4. Ensemble deep learning models as components of hybrid system

As a cutting-edge branch in machine learning, ensemble learn-
ing has been utilized the bioinformatics prediction of PTMs suc-
cessfully [22]. Based on the previous attempts [11,12], we
combined multiple deep learning models by ensemble method.
The screened data with less imbalance after FSL-1 and FSL-2 made
it possible to avoid overfitting in deep neural network (DNN)-
based base learners. Then, the ensemble methods would achieve
synergistic performance among multiple base models, which facil-
itated the prediction power of FSL-Kla via EDL-1 and EDL-2. Based
on the distribution, pattern and size of refined data from FSL-1 and
FSL-2, we manually tested and adopted heterogeneous approaches
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in EDL-1 and EDL-2 respectively. Both the absolute number and
features dimensions were higher after FSL-1 compared to dataflow
after FSL-2. We designed EDL-2 as the downstream ensemble deep
learning method with serial ensemble ideas regarding the data pat-
tern and complexity after FSL-2, while a more adaptive model
EasyEnsemble with more sophisticated ensemble idea (both serial
and parallel) was suitable for FSL-1’s downstream method, EDL-1.
We incorporated both AdaBoost for EDL-2 and its unbalanced
application variant, EasyEnsemble for EDL-1 to leverage the whole
samples after FSL-1 and FSL-2 by reusing them circularly. We also
organized all intermediate results by specific ensemble rules to
improve the performance as Dvornik et al. did [49].

The base learners in this study for EDL-1 and EDL-2 were DNNs.
The architecture of the designed DNN included the input layer with
equal nodes to feature dimension, three hidden layers with proper
layer width (128, 64, 48) and one output layer. One of the key com-
ponents of the few-shot learning was avoiding overfitting, so for
feature encodings with dimension larger than 1000, we utilized
the principal component analysis (PCA) to reduce the complexity
and examine the first 200 principal components (PCs). Hence, the
transformed input fitted the proper layer sizes, which didn’t have
extremely large parameters that might lead to overfit. In addition,
when a rather complex feedforward neural network was trained on
small data sets, it was easy to cause overfitting. In order to prevent
overfitting, the performance of the neural network could be
improved by preventing the co-adaptation of the feature detectors
[50]. Then dropout was proposed to avoid overfitting and reduce
some computational load. In EDL-1 and EDL-2, dropout layers have
dropout rate of 0.5 to avoid overfitting in base DNNs. As for the
activation, we used the non-learner function rectified linear unit
(ReLu) followed linear layers. The formula was defined as below:

ReLU xð Þ ¼ x; x � 0
0; x < 0

�

where x was the weighted sum of a neuron. In the first layer, the
input layer received data matrices after FSL-1 or FSL-2. The next
three hidden layers played roles for feature extraction and repre-
sentation, in which each neuron contained the unique feature pat-
terns as feature reservoirs. The last layer performed the role of
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generating predictions. And the sigmoid activation function was
adopted to predict Kla sites with probabilities [51].

A multi-feature hybrid system for synergistic prediction was
designed for integrating and combining up to 11 individual fea-
tures synergistically. This second ensemble of EDL-1 and EDL-2
was conducted to form the multi-feature hybrid architecture mFHS
which was proved to enhance accuracy of Kla sites prediction by
incorporating complementary information from EDL-1 and EDL-2
to facilitate synergistic prediction. Apart from the ensemble step
previously, this was a second ensemble step as well as a multi-
feature incorporation and combined following the stacking idea
[12,42]. A refined PLR method algorithm was adopted as a stacking
method for hybrid multiple features. There were two steps, includ-
ing random mutation and random zeroing [52]. The weight values
of different intermediate outcomes (ensemble outcomes) of EDL-1
and EDL-2 after probability calibration were calculated by PLR with
l2 penalty (Fig. 3).

2.5. Probability calibration

Due to the ensemble approaches for Kla sites prediction, there
were some transformations of the original outputs of base DNNs
in EDL-1 and EDL-2. However, we often wanted to predict not only
the final label (Yes/No), but also the associated probability. This
probability gave some kind of confidence in the prediction. Since
in FSL-Kla, our base models were multiples neural networks but
outer ensemble ideas were boosting, it was necessary to use prob-
ability calibration to obtain reasonable labels with quantitative
consistent confidence [53]. Then, quantitative confidence could
be used as the input for train ensemble models. In this study,
Platt’s logistic model [54] was used to calibrate outcomes of
EDL-1 and EDL-2.

Fitting a calibrator that mapped the output of the classifier was
to a calibrated probability in [0, 1]. Denoting the output of the clas-
sifier for a given sample by fi, the calibrator tried to predict
p yi ¼ 1 f ijð Þ. Here we adopted the sigmoid regressor based on Platt’s
logistic model [54].

p yi ¼ 1 j f ið Þ ¼ 1
1þ exp Af i þ Bð Þ

where yi is the true label of sample i and fi is the output of the un-
calibrated classifier for sample. A and B are real numbers to be
determined when fitting the regressor via maximum likelihood. In
general, the sigmoid method was effective when the un-calibrated
model was under-confident and had similar calibration errors for
both high and low outputs [55].

Brier score is a measure of probability calibration in simple
terms. Brier score is a measure of the calibration of probability pre-
diction, or the cost function. This set of probability must have the
sum of probabilities to be 1 and have mutual exclusivity as well.
The lower Brier score for a set of predicted values is, the better
probability calibration will be. The definition for binary classifica-
tion is originally formulated as follows:

BS ¼ 1
N

XN
t¼1

f t � otð Þ2

where ft is the predicted probability, ot is the actual probability of
event t (0 if it does not occur), and N is the number of predicted
events.

We evaluated our probability calibration by recalculating the
classification prediction probability from original classific function
and then calculated the Brier score. We further judged whether to
support or oppose the initial prediction result according to the
Brier score. It was worth noting that we didn’t have to apply the
probability calibration for the final ensemble model’s output since
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the PLR itself in mFHS had the ability to return well calibrated pre-
diction as it directly optimized log-loss.

2.6. Performance evaluation

Here, including sensitivity (Sn), specificity (Sp), accuracy (Ac),
positive predictive value (PPV), negative predictive value (NPV),
and Mathew Correlation Coefficient (MCC), some widely used eval-
uation metrics were used for the prediction assessment. The defi-
nitions of these six metrices are as below.

Sn ¼ TP
TP þ FN

Sp ¼ TN
TN þ FP

Ac ¼ TP þ TN
TP þ FP þ TN þ FN

PPV ¼ TP
TP þ FP

NPV ¼ TN
TN þ FN

MCC ¼ TP � TNð Þ � FN � FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp

where TP is the number of positive samples with a true predicted
label. TN is the number of negative samples with correct classifica-
tion. FP and FN indicate the numbers of positive and negative sam-
ples that are predicted incorrectly.

Evaluation of the prediction performance was conducted by 4, 6
8, 10-fold cross-validations [51,56-59]. The receiver operating
characteristic curve (ROC) was obtained and plotted at different
thresholds of sensitivities. It was worth noting that ROC was used
to evaluate the performance at multiple sensitivities and could
represent the performance for imbalanced dataset. In this study,
aforementioned imbalance strategies were incorporated to reduce
the imbalance with stratified cross-validations. So, we conducted
resampling in training sets and keep testing sets untouched. In
other words, taking 10-fold stratified cross-validation as an
instance, we had resampled the 9-fold training dataset and made
it less imbalanced. And then, we evaluated on the testing dataset
that was still as imbalanced as the original benchmark dataset
which was exactly what ROC and AUC work for. We finally con-
catenated every single 1-fold testing result and formulated the
final ROCs. The Platt’s logistic model for probability calibration
was adopted in such a manner that after training models with cor-
responding training folds in 4-, 6-, 8-, 10-fold stratified cross-
validations and the Brier scores on the left testing fold were
obtained. By this way, we maintained the power of imbalance algo-
rithm but also evaluated performance without inducing more
‘‘new” data in the testing dataset. This inducing process would sig-
nificantly improve performance but was not correct because the
testing data was going to be more balanced artificially and changed
the original distributions.

2.7. Implementation details

For model training, we used a lab computer with an Intel(R)
CoreTM i7-6700 K@ 4.00 GHz central processing unit (CPU), 32 GB
of RAM and a NVIDIA GeForce GTX 1070 core. The Pytorch version
1.7.1 (http://pytorch.org), a highly useful deep learning API that
was written with Python and developed for auto gradient comput-
ing and rapid parallel computing was adopted. The imbalanced-

http://pytorch.org
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learn which offered a number of re-sampling techniques com-
monly used in datasets showing strong between-class imbalance
was adopted for the application of imbalance learning. The Adam
optimizer in Pytorch was adopted, by using parameters of 0.0005
for learning rate, 0.98 for the first exponential decay rate, 0.998
for the second exponential decay rate and 512 for minibatch size.
Other hyperparameters such as number of base estimators and
number of iterations for AdaBoost and EasyEnsemble and boosting
algorithm were set as default values. The high, medium and low
thresholds were adopted with false positive rate (FPR) of 5, 10
and 15%. We also implemented an ‘‘All” option to output all predic-
tions. FSL-Kla was extensively tested on various web browsers
including Internet Explorer, Mozilla Firefox, and Google Chrome
to ensure its usability.
3. Results

3.1. Construction of the benchmark dataset and analysis of Kla context

Through the literature biocuration, we obtained 343 non-
redundant Kla sites in 191 known substrates. The distribution of
proteins with different Kla sites was summarized in Fig. 4A. In
addition, we also described the proportion of sites in proteins with
different numbers of Kla sites. We found that up to 107 proteins
had 1 Kla site, whereas only 3 proteins had more than 9 Kla sites.
The number of proteins with 2, 3, 4, 5, 6, 7 Kla sites were 44, 18, 10,
3, 2 and 1, respectively. It was worth noting that most proteins
tended to have a few Kla sites. In addition, we found that about half
(56.02%) of Kla sites existed in proteins with only one Kla site, sug-
gesting that the more Kla sites are there in a single protein, the
rarer these kinds of proteins are. Furthermore, we used pLogo
Fig. 4. Data pattern and distribution analysis. A. A pie plot combo of the number of Kla s
potential pattern difference in positive and negative data. C. A bar chart of the predicted
means statistically significant difference at level p-value = 0.05 and ‘‘***” means the same
specific BTA distribution and the aligned heat map for amino acid distribution in Kla sites
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(http://plogo.uconn.edu/) [60], a sequence logo generator to ana-
lyze amino acid preferences around the Kla sites and non-Kla sites
(Fig. 4B). For the Kla sites, lysine residues were also enriched at
positions �4 and +4, while for the non-Kla sites, lysine resides pre-
ferred to occur at position �1. Other amino acids residues such as
A, G, R, Q, S, F tended to enrich within the position �4 and +4. On
the contrary, amino acids P, L, T, I, D, E were more abundant in the
same positions in the non-Kla sites’ ±4 flanks. All these enrich-
ments didn’t lead to a defined motif or pattern but showed much
difference context between Kla sites and non-Kla sites. Taken
together, our results demonstrated the latest profile of currently
collected Kla sites’ context and provided the support to perform
pattern recognition by few-shot learning and ensemble learning.

To clarify whether there is a structure preference for Kla sites,
the SPIDER2 [19] was also implemented for structure analysis
among the positive and negative datasets. The result showed that
approximately 38.45% of Kla sites were found in a helices,
10.35% were located in b strands and the remaining 51.20% were
seen in disordered coils (Fig. 4C), while the non-Kla sites were
found more in b strands and a helices but less in disordered coils.
As for the statistical comparison of secondary structure pattern, b
strands and a helices showed a significant difference in Kla sites’
flanks and non-Kla sites’s flanks at test level p-value = 0.05. There
was a significant difference in coils at test level p-value = 0.01.
These mentioned results suggested that the structural information
such as SS and BTA of the Kla proteins should not be treated as
same as feature encodings in feature set 1. Thus, we developed
FSL-2 and EDL-2 for further training and evaluation. We also pre-
sented our above analysis in a violin plot (Fig. 4D) for BTA distribu-
tions with the aligned heat map for amino acids distribution in Kla
sites’ flanks. The most BTA for Kla sites and non-Kla sites ranged
from 0� to 200�, while distribution of Kla sites and non-Kla sites
ites on logarithm scale and the proportion of sites. B. The pLogo graph indicates the
secondary structure probabilities in Kla lysine and Non-Kla lysine. The symbol ‘‘**”
but at level of p-value = 0.01. D. A combo of violin and heatmap plot with position-
’ flanks. A reference bar is located in the right region for quantitative measurement.

http://plogo.uconn.edu/
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themselves were contracted compared to flank sites. This might be
caused by the space configuration of lysine residues in proteins.
From the BTA distribution, we could also find the range of Kla sites’
flank and non-Kla sites’ flank is almost the same but some hidden
patterns are concealed. The corresponding heat map showed the
amino acid composition in Kla peptides (Fig. 4D). The heat map
could be regarded as a graphic feature representation of AAC.
And the pattern in heat map was also coincident with the pLogo
pattern, which supported our analysis for heterogenous informa-
tion density in feature set 1 and feature set 2.

3.2. Performance comparison shows the superiority of few-shot
learning strategies

We first evaluated our heterogenous few-shot learning
approaches FSL-1 and FSL-2. As shown in Fig. 5A and B, some rep-
resentative conventional machine learning methods as well as
deep learning methods without few-shot strategy were performed
to compare with FSL-1 and FSL-2. In other words, we first con-
trolled the existence of imbalance strategy (or None) and ensemble
deep learning (or representative conventional machine learning
methods such as PLR and RF). Single DNN without any strategy
was also performed as a comparison. Considering single set of fea-
ture encodings, DNN, RF and PLR achieved a median AUC of 0.702,
0.685 and 0.667 in feature set 1 while 0.658, 0.662, 0.652 in feature
set 2, respectively. EDL-1 and EDL-2 achieved significant higher
performance compared to DNN, RF and PLR. Along with few-shot
methods FSL-1 and FSL-2, we obtained EDL-1 and EDL-2 with
upgrading values of AUC. We conducted a rank sum test and found
statistical difference at level p-value = 0.05 for both FSL-1 + EDL-1
vs EDL-1 and FSL-2 + EDL-2 vs EDL-2. Then, median AUC values for
FSL-1 + EDL-1, EDL-1, FSL-2 + EDL-2, EDL-2 are 0.745, 0.705, 0.696
and 0.674 in two feature sets respectively. With few-shot learning
Fig. 5. Evaluation of performance for heterogeneous few-shot learning approaches with
encodings of individual models in feature set 1 was summarized into a single box in the b
diagram A was also conducted for feature set 2. C. To profile the performance of tailored
learning method, a violin plot was drawn.
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strategies, a maximum 11.7% (0.745 versus 0.667) increase of AUC
value was achieved compared with conventional machine learning
methods and a maximum 5.7% (0.745 versus 0.705) increase com-
pared with the same EDL-1 algorithm but without few-shot
approaches. It was also worth noting that ensemble approaches
with few-shot strategy had shorter whiskers indicating few-short
learning with ensemble ideas not only upgraded accuracy and
robustness. The detailed values of performance were summarized
in Table S2. We also merged feature encodings in both feature
set 1 and feature set 2 together for profiling the general perfor-
mance (Fig. 5C). These violins included all feature encodings with
corresponding methods. Some double belt peaks in some violins
indicated that the performance of feature set 1 and feature set 2
centered at different AUC values because of the different
accuracies.

3.3. Eleven types of sequence and structural features are efficient and
informative

We then evaluated the performance of 11 aforementioned fea-
ture encodings (including feature set 1 and feature set 2). For fea-
ture set 1, the 4-, 6-, 8-, 10-fold stratified cross validation tests
(Fig. 6) were conducted by FSL-1 and EDL-1. As for the feature
set 2, we still performed the 4-, 6-, 8-, 10-fold stratified cross val-
idation tests but applied the FSL-2 and EDL-2. Final performance
was obtained by mFHS, combining the information from EDL-1
and EDL-2.

The performance for seven feature encoding schemes in feature
set 1 was shown in Fig. 6A with light-blue curve. The mean AUCs
and their standard deviations (4-, 6-, 8-, 10-fold stratified cross val-
idations) from the highest to the lowest for the seven features were
0.765 ± 0.013, 0.749 ± 0.014, 0.747 ± 0.007, 0.745 ± 0.025, 0.711 ± 0.
008, 0.705 ± 0.019 and 0.692 ± 0.018 for AAC, CTriad, AAindex, DPC,
conventional machine learning methods. A. The performance for multiple feature
ox plot to evaluate multiple methods’ performance. B. The same comparison in box
algorithm pipelines for feature set 1 and feature set 2 with conventional machine



Fig. 6. Evaluation of the performance for multiple feature encodings. A. Multiple box plot for the ROC curves and corresponding mean AUC values with standard deviations
for different feature encodings’ base models. Amino acid composition-based models are colored in light blue in curves. PSSM profile and structure-based models are colored in
orange in curves. The final model’s curve is colored in pink. The lightly colored regions up and down solid lines are calculated regions with standard deviations for Sp and Sn
from 4, 6, 8 and 10-fold stratified cross-validations at different thresholds. B. FSL-Kla integrated all these feature encodings and achieved superior and synergistic accuracy in
Kla site prediction. C. A line chart of performance for FSL-Kla from 4-, 6-, 8- and 10-fold stratified cross-validations. The error bars for different folds were too minor to observe
in plot. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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CTDT, CTDC and CKSAPP, respectively (Table S2). The amino acid
composition-based features AAC, DPC and CTriad along with
physicochemical property-based features and AAindex contributed
most and produced rather satisfactory performance. This result
supported that amino acid composition was still one group of sim-
ple but irreplaceable features schemes [17,21]. Two CTD-based fea-
tures performed slightly poorer possibly because we haven’t found
much informative global composition, transition and distribution
pattern of Kla proteins or peptides. CKSAAP is an important feature
scheme when considering the amino acid pairs with separated
positions and has proved to be very useful in many PTMs predic-
tion. However, in this study, CKSAAP didn’t contribute as much
as it in other PTM prediction studies [23].

In feature set 2, we obtained the performance of AUC with the
secondary structure (0.710) while the worst performance of AUC
with PSSM (0.653) (Table S2). This indicated the necessity and
importance of exploiting the structure-based features. Although
PSSM was not a structural but sequence-based feature, we took
PSSM into account in feature set 2 because PSSM shared some
common peculiarity with SS, BTA and ASA, not like in Zhang
et al.’s study [22]. It was also noteworthy that the cascade utiliza-
tion of FSL-2 and EDL-2 maximized the prediction power of feature
sets 2, although, in general, there was no single feature encoding to
outperform others significantly. However, three structural features
still contributed more comparing with PSSM with constant and
lower standard deviation in intra feature set 2 or even inter feature
sets (0.007 for SS, BTA and 0.006 for BTA vs. 0.021 for PSSM), which
indicated that structure-based features were more robust (Fig. 6A).
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3.4. Multi-feature hybrid-system achieved superior and synergistic
accuracy

Above performance of 11 different features both in feature set 1
and feature set 2 implied the necessity to combine these effective
features comprehensively from various aspects instead of using
each of them individually. Thus, the application of ensemble meth-
ods broke the limitation of single prediction model (base model)
and leveraged the hybrid predictive power by ensemble intelli-
gence [61]. This was mainly reflected in two aspects as below.
Firstly, the EDL-1 and EDL-2 leveraged the predictive power of sin-
gle feature scheme in corresponding feature sets which achieved
rather plausible performance by training the base DNN learners.
Secondly, the stacking-based multi-feature hybrid idea in the final
mFHS method [11] was adopted to upgrade the base learner per-
formance to form a strong learner by training a downstream PLR
afterwards as the final model. The experiment results in Fig. 5A,
B showed the performance increase of the first aspect (EDL-1 with
DNN as base learner vs. single DNN, EDL-2 with DNN as base lear-
ner vs. DNN) and the ROC curve with pink solid curve in Fig. 6A, the
boxes in Fig. 6B and line chart in Fig. 6C showed the synergistic
promotion of the second aspect. The final strong model FSL-Kla
achieved a mean AUC of 0.889 with the corresponding standard
deviation of 0.023 (Fig. 6B). Compared to the best individual model
(AAC, 0.765) and the worst individual model (PSSM, 0.653), the
final model achieved a 16.2% and a 36.1% increase respectively,
indicating the hybrid algorithm mFHS successfully combined the
supplementary support of single outputs from EDL-1 and EDL-2



P. Jiang, W. Ning, Y. Shi et al. Computational and Structural Biotechnology Journal 19 (2021) 4497–4509
and produced significant synergistic promotion of performance.
Lastly, we carried out a profile for the performance of FSL-Kla at
4-, 6-, 8-, 10-fold stratified cross-validations (Fig. 6C). The mean
values of AUC and standard deviations were 0.882 ± 0.005, 0.880
± 0.006, 0.909 ± 0.003, 0.891 ± 0.002, respectively. Based on the
above analysis, we believed that the FSL-Kla effectively imple-
mented the mFHS to achieve the performance superiorly and
synergistically.

3.5. Performance comparison after probability calibration

The results after probability calibration showed precise predic-
tion with aligned confidence because it directly optimized the log-
loss instead of returning biased probabilities which were widely
observed in many common models. For instance, a well-
calibrated (binary) probabilistic classifier should classify samples
and give a sample with precise predicted probability value. A sam-
ple set with a confidence level close to 0.8, should indicate about
80% actually belong to the positive class. Brier scores before and
after probability calibration in this study were obtained and shown
in Table S3.

There was a significant decrease in the Brier score after proba-
bility calibration. For feature set 1, the average Brier score
decreased from 0.2376 to 0.0496, while the mean Brier score
dropped from 0.2459 to 0.0502 for feature set 2. Although the aver-
age Brier score showed that feature set 2 seemed to have more
biased probabilities than feature set 1, this result was not sup-
ported by statistics since there was no significant difference based
on unpaired t test. The sharp drop before and after probability cal-
ibration was possible related to the extreme imbalance of bench-
mark dataset. Probability calibration might correct biased
probabilities in such circumstances to a large extent. As we men-
tioned in the method section, we didn’t have to conduct the prob-
ability calibration for the final hybrid model’s output, since the
method (PLR) itself had the unbiased predicted probabilities. The
final model’s Brier score for concatenated 10-fold cross-
validation was 0.0181, which was much lower than any Brier score
for the base learners’ results. In other words, the ultimate results
could be regarded as a series of automatic well-calibrated
probabilities.

3.6. Development of online service for predicting Kla sites

To facilitate the community-wide prediction of lactylation sites,
we implemented an online web server. FSL-Kla is a user-friendly
application available at and hosted by extensible Alicloud comput-
ing facility with 8-core processors, 32 GB memory and 2 TB disk. It
is publicly accessible at http://kla.zbiolab.cn/. The user submission
interface (Fig. 1D) allows users to directly input the query protein
or peptide sequences or upload the data set by clicking the Browse
button (both in the FASTA format). The high, medium and low
thresholds were adopted with FPR of 5, 10 and 15%. We also imple-
mented an ‘‘All” option to output all predictions (Table S4). After
specifying the prediction cutoff value, users can click the Submit
button to initiate processing of their tasks. Users can then check
the processing status of the submitted jobs using a unique URL
link. From the result web page, users can download the prediction
result in multiple formats, allowing subsequent in-depth analysis
on their local computers or incorporate this into their customized
pipelines. Using FSL-Kla, we conducted a large-scale prediction to
computationally annotate potential Kla sites in human proteomic
data set, and observed that there were 13,988 potential Kla sites
of 7361 proteins under the high threshold. Furthermore, we per-
formed an enrichment analysis based on gene ontology (GO) anno-
tations with the hypergeometric test [62] (Table S5, p-value <0.05).
Top 20 mostly enriched GO terms were selected and revealed that
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lactylated proteins are mainly involved in microtubule-based
movement (GO:0007018), RRNA processing (GO:0006364), cell
division (GO:0051301) and nucleosome assembly (GO:0006334).
In addition, a number of enriched GO molecular functions and cel-
lular components, such as ATP binding (GO:0005524), RNA binding
(GO:0003723), DNA binding (GO:0003677), nucleus (GO:0005634)
and nucleoplasm (GO:0005654), supported an impact of Kla in
metabolic functions.
4. Discussion

PTMs enrich the functional diversity of most eukaryote proteins
and play essential roles in almost all biological processes. Dysreg-
ulation of protein PTMs is associated with numerous human dis-
eases such as cancer of which Warburg effect is one of the
hallmarks [63,64]. Lactate is the major metabolite generated dur-
ing the Warburg effect in cancer cells, which can not only serve
as an energy source, but also exert a variety of surprising and
important physiological functions, such as a signaling function
[4,5]. However, the physiological mechanisms by which lactate
exerts its diverse effects remain to be explored. Recently, a novel
lactate-derived PTM, lysine Kla was discovered, which is a new
type of histone mark and couples metabolism to gene expression,
representing a novel adapted mechanism for cellular signaling.
Notably, emerging evidence suggested elevated lactylation level
in tumor tissues can lead to poor prognosis of ocular melanoma
[9]. In this regard, the identification of new lactylated substrates
with exact sites is the foundation of understanding the molecular
mechanisms and regulatory roles of lactylation.

In contrast with time-consuming experimental assays, compu-
tational prediction of lactylation sites in proteins can greatly nar-
row down potential candidates for further experimental
consideration. Recently, there were some researchers trying to
combine the advantages of both few-shot learning and deep learn-
ing in biological context such as drug response [13]. The few-shot
deep learning models can not only bridge the application of deep
neural networks from large samples to small samples, but also suc-
cessfully avoid the overfitting of deep learning models in small
samples.

In this work, we conducted a comprehensive survey of the per-
formance by combining sequence-based features, physicochemical
properties and structure-based features, in which deep neural net-
work was adopted as component learners, FSL-1 and FSL-2 as the
few-shot strategies, EDL-1 or EDL-2 as the ensemble method for
based learners and mFHS as the multi-feature hybrid approach
for synergistic prediction. Results showed that our newly designed
predictor, FSL-Kla, achieved at least 16.2% improvement of the AUC
value (0.889 versus 0.765) for the ensemble prediction of Kla sites.

Usually, the success of DNNs relies on a great number of sam-
ples, which is expensive to collect or the collection is still in pro-
cess. To tackle this issue, much effort has been taken by training
the sophisticated model. However, this approach might lead to
overfit because of the extremely limited data but high dimensional
parameter space. The ideal way required an adequate number of
novel examples which can be sampled and evaluated based on real
samples. Establishing a comprehensive and well-annotated Kla
database required much continuous effort with high-throughput
approaches and careful reviews. Currently, we believed that few-
shot learning could best leverage the tiny but useful dataset of
Kla sites although some issues remain to be addressed. For exam-
ple, it was always important to consider the prospect of valuable
information being deleted when we randomly removed them from
our data set in FSL-2, but we had no way to detect or preserve
information-rich examples in the non-Kla samples [43,44,46].

http://kla.zbiolab.cn/
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In the future, we will continuously maintain FSL-Kla by curating
more experimentally identified Kla sites if new datasets are avail-
able. The computational models in FSL-Kla will be updated by inte-
grating other sequence-based features. Besides DNN, other
algorithms for base learners will be tested and integrated into
FSL-Kla if the accuracy can be improved. We anticipate that FSL-
Kla can be a useful tool for further exploration of Kla sites.
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