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Abstract 

Objective:  Aberrant expression in skeletal muscle of DUX4, a double homeobox transcription factor, underlies 
pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Although previous studies of FSHD muscle biopsies 
detected mRNAs encoding DUX4 and its target genes, no studies had reported detection of DUX4 protein. Our objec-
tive was to develop a proximity ligation assay (PLA) for DUX4 and to determine if this assay could detect DUX4 protein 
in FSHD muscle sections.

Results:  We developed a PLA protocol using two DUX4 antibodies previously reported by Stephen Tapscott’s group: 
P2G4, a mouse mAb specific for an epitope in the N-terminal region, and E5-5, a rabbit mAb specific for an epitope in 
the C-terminal region, in combination with commercial PLA secondary reagents. We validated the DUX4 PLA using 
cultured human myogenic cells in which DUX4 was ectopically expressed in a small fraction of nuclei. Using this two 
primary mAb PLA on an FSHD1 biceps biopsy, we observed nuclei with apparent DUX4 PLA signals associated with a 
small subset of myofibers (~ 0.05–0.1%). Though a limited pilot study, these results suggest that the two primary mAb 
PLA protocol could be useful for detecting DUX4 protein in FSHD muscle biopsies.
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Introduction
Aberrant expression in skeletal muscle of DUX4, a dou-
ble homeobox transcription factor, underlies pathogen-
esis in facioscapulohumeral muscular dystrophy (FSHD) 
[1–5]. In the two forms of the disease—FSHD1 (~ 95% of 
cases) and FSHD2 (~ 5% of cases)—DUX4 is expressed 
from an open reading frame in the most telomeric 3.3 kb 
D4Z4 repeat on chromosome 4q [6–8], with rare cases 
transcribed from chromosome 10q [9]. In differenti-
ated cultures of myogenic cells obtained from FSHD1 
patients, DUX4 protein can be detected by immunostain-
ing in only a small fraction of myotube nuclei, typically 
0.01–0.1% [7, 10–15]. In FSHD muscle biopsies, low lev-
els of DUX4 mRNA, as well as mRNAs encoding DUX4 
target genes, have been detected [16]. However, no 

previous studies had reported detection of DUX4 pro-
tein in FSHD muscle biopsies. The objectives of this pilot 
study, therefore, were to (i) develop and validate in cells a 
proximity ligation assay (PLA) [17–19] for DUX4 and (ii) 
determine if this assay could detect DUX4 protein in an 
FSHD1 muscle biopsy. We used PLA because of the high 
specificity and low background that can be achieved with 
this technique [17–19]. The results, though limited and 
requiring replication and expansion, suggest that PLA 
could be of interest as a useful technique to detect DUX4 
protein in sections of biopsied FSHD muscle.

Main text
Methods and materials
Cells
Human primary myogenic cells (21Ubic) were from 
an unaffected donor, and previous publications have 
described institutional approvals, isolation, culture 
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conditions, and authentication protocols for these cells 
[11–13, 15, 20]. Also see Declarations.

Biopsies
The FSHD1 biceps biopsy (#6524) was from a 17 year-old 
male donor with a very short 16 kb (~ 5 repeats), D4Z4 
length. The unaffected biceps biopsy (#9557) was from 
a 33  year-old female donor. Biopsies were provided by 
Dr. Marina Mora and Dr. Maurizio Moggio (Fondazione 
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, 
Italy) through the Telethon Network of Genetic Biobanks 
and were maintained frozen at − 80  °C until sectioned. 
As noted further under Declarations, biopsies were col-
lected under approved institutional protocols.

BacMam vectors
Two mammalian baculovirus (BacMam) vectors were 
used. To express full-length DUX4 tagged with a C-ter-
minal V5 epitope in myoblasts, we used a modified 
mammalian baculovirus, termed BacMam-DUX4-V5, 
as described [13, 15, 21, 22]. As a negative control, we 
infected parallel cultures with a separate mammalian 
baculovirus, termed BacMam-GFP [13, 15], which leads 
to ectopic expressed of GFP. For both baculovirus vec-
tors expression of the ectopic protein was under control 
of the human CMV-IE1 promoter. The amount of Bac-
Mam-DUX4-V5 or BacMam-GFP added to cultures was 
adjusted so that expression of DUX4 or GFP occurred 
in ~ 1–2% of the cells in cultures of human primary 
myoblasts.

Antibodies
Two DUX4 antibodies, both previously generated by 
Geng et al. [23], were used in this study: (i) P2G4 (a gift 
of Dr. Stephen Tapscott) which is a mouse mAb specific 
for an epitope in the N-terminal region; and (ii) E5-5 (cat. 
ab124699, Abcam, Boston MA), which is a rabbit mAb 
specific for an epitope in the C-terminal region. Immu-
nostaining for the V5 epitope or GFP were as described 
[13, 15, 22, 24].

Preparation of cells for proximity ligation assay
Undifferentiated 21Ubic myoblasts were grown on por-
cine gelatin-coated, 4-well permanox chamber slides 
(cat.177437, Thermo Fisher, Waltham MA) and incu-
bated for 48 h with BacMam-DUX4-V5 or BacMam-GFP, 
after which the cultures were fixed in 2% paraformalde-
hyde in PBS for 10  min at room temperature [13, 15]. 
After three 5  min washes with PBS, PBS plus 10  mM 
glycine, and PBS, the cultures were quickly rinsed with 
deionized water. The fixed cultures were permeabilized 
in 0.5% Triton X-100 in PBS and then incubated for 
30 min at 37 °C in blocking solution, which consisted of 

4% normal goat serum (Vector Labs, Burlingame CA), 
4% normal horse serum (Vector Labs), 4% bovine serum 
albumin (Sigma-Aldrich, St. Louis MO), and 0.1% Triton 
X-100 (Sigma-Aldrich) in PBS. The fixed and blocked 
cells were incubated overnight at 4  °C with both the 
N-terminal P2G4 mouse mAb and the C-terminal E5-5 
rabbit mAb, each diluted 1:250 and mixed together in 
blocking solution.

Preparation of muscle sections for proximity ligation assay
Frozen biopsies were embedded in Sakura Tissue-Tek 
O.C.T. (cat. 27050, Ted Pella Inc. Redding CA), and, 
using a cryostat, 10  µm serial sections were made from 
each biopsy and collected on ten glass slides at three 
sections per slide. Slides were air-dried for 30  min and 
each section was encircled with a Pap Pen (cat. H4000, 
Vector Labs) to make a well for reagents. Encircled sec-
tions were rehydrated in PBS for 10 min, fixed in ice-cold 
100% methanol for 10  min, washed for three times at 
5  min each with PBS, washed once quickly with deion-
ized water, and then incubated in blocking solution for 
30 min at 37  °C. The fixed and blocked muscle sections 
were incubated overnight at 4  °C with both the N-ter-
minal P2G4 mouse mAb and the C-terminal E5-5 rabbit 
mAb, each diluted 1:250 and mixed together in blocking 
solution.

Proximity ligation assay
After overnight incubation at 4  °C with the mixture of 
mouse P2G4 and rabbit E5-5 mAbs, cells or sections 
were washed and processed for PLA exactly according to 
the manufacturer’s published protocols [25, 26]. PLA rea-
gents, all from Sigma-Aldrich (St. Louis MO), included 
the following:

1)	  DUO92004. Duolink In Situ PLA Probe Anti-Mouse 
MINUS,  Affinity purified Donkey anti-Mouse IgG 
(H + L) (lot A40108).

2)	 DUO92002. Duolink  In Situ PLA  Probe Anti-Rab-
bit PLUS,  Affinity purified Donkey anti-Rabbit IgG 
(H + L) (lot A40406).

3)	 DUO92008. Duolink In Situ Detection Reagents Red. 
This reagent kit included (i) 5× Ligation, which con-
tained oligonucleotides that hybridized to the PLA 
probes and components needed for ligation; (ii) 1× 
Ligase (1 unit/μL); (iii) 1× Polymerase (10 units/μL); 
(iv) 5× Amplification Red, which contained com-
ponents needed for rolling circle amplification and 
oligonucleotide probes labeled with red fluorophore 
that hybridized to the amplification product.

4)	 DUO82049. Duolink in situ wash buffers A and B.
5)	 DUO82040. Duolink in situ mounting medium with 

DAPI.
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Images of cells and sections were acquired using a 20× 
or 40× objective on a Nikon E800 microscope equipped 
with a Spot camera and software version 5.1 (Diagnostic 
Instruments Inc., Sterling Heights, Michigan).

Results and discussion
We first used the two mAb PLA protocol (as described 
in Methods) on primary human myoblasts that had been 
incubated for 48  h with an amount of BacMam-DUX4-
FL-V5 that, based on V5 immunocytochemistry, gener-
ated DUX4 expression in a small percentage (~ 1–2%) 
of the host cells. In such cultures, we found a similarly 
small percentage of myoblast nuclei that showed a posi-
tive PLA signal for DUX4 (Fig.  1 and Additional file  1: 
Fig. S1). These nuclear signals had the characteristic pat-
tern of small fluorescent puncta expected for PLA [17, 
18]. Background staining (i.e., non-nuclear) was almost 
absent (Fig. 1 and Additional file 1: Fig. S1). The PLA sig-
nal was inhomogeneously distributed within most nuclei, 
with different regions showing lower or higher densities 
of PLA puncta. The degree of intra-nuclear signal inho-
mogeneity varied among nuclei (e.g. compare Fig. 1B–F). 
Standard immunofluorescence assays with mAb E5-5 
also show inhomogeneity in DUX4 distribution within 
many individual nuclei [13, 15, 24]. As controls, we noted 
that nuclear PLA signals were not found when (i) mouse 
mAb P2G4 was replaced with an anti-GFP antibody or 
(ii) the myoblasts were incubated with BacMam-GFP 
instead of BacMam-DUX4-FL-V5. Thus, the two primary 
mAb PLA protocol showed low background and high 
specificity for BacMam-mediated DUX4 protein expres-
sion in myoblasts.

Encouraged by these PLA results with myoblasts, we 
next used the two primary mAb PLA protocol on sec-
tions of FSHD1 and unaffected muscle biopsies (see 
Methods). Histological analyses of sections from the 
FSHD1 biopsy (Additional file 1: Fig. S2) showed minimal 
myopathic changes [27], including a small percentage of 
angular (possibly atrophic) myofibers, as well as occa-
sional central nucleate myofibers. There was little or no 
evidence of extensive fiber rounding, perivascular inflam-
mation, or fatty replacement.

When examining PLA signals on sections of this 
FSHD1 biceps muscle, we observed a small number of 
nuclei with PLA signals that were well above background 
and entirely within the nuclear boundary (Figs. 2, 3). In 
some nuclei, the PLA signal was evidently composed of 
multiple puncta (e.g. Figs.  2D, 3C), though, in others, 
puncta in the PLA signal were not well-resolved. When 
compared to PLA of myoblasts (Fig.  1), the individual 
PLA puncta in sections were generally less-well resolved, 
perhaps due to the varied orientations and greater thick-
ness of muscle nuclei vs. the nuclei in cultured myoblasts. 

Also, nuclei with positive PLA signals were located at dif-
ferent depths in the sections, so different image planes 
were needed to visualize puncta when more than one 
PLA-positive nucleus was present within a single 40X 
microscope field (Additional file 1: Fig. S3). The metha-
nol fixation used for the muscle sections also may have 
limited resolution vs. the paraformaldehyde fixation used 
for myoblasts.

On sections analyzed by PLA, the non-nuclear signals 
were generally low, consisting of scattered individual 
puncta, diffuse fluorescence in myofibers damaged dur-
ing sectioning, and, on a minority of myofibers, regions 
of the cell border (Additional file  1: Fig. S4). When we 
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Fig. 1  Validation of proximity ligation assay (PLA) for DUX4. 
Cultures of unaffected, primary human myoblasts were incubated 
with BacMam-DUX4 at a multiplicity of infection that generated 
DUX4 expression in a small proportion of the myoblasts. At 48 h 
after BacMam addition, cultures were processed for two primary 
antibody PLA (red signal) as described in Methods. Row A shows 
a single nucleus with a positive PLA signal (red) amidst eight 
nuclei that were unstained; and Row B shows the same nucleus 
at higher magnification to emphasize the characteristic punctate 
staining pattern expected for a PLA signal. Nuclei were stained with 
bisbenzimide (blue). Row C shows one nucleus with a positive PLA 
signal and a nearby unstained nucleus; and row D shows the positive 
nucleus at higher magnification. Rows E and F show additional 
examples of nuclei with positive PLA signals. Bar in A1 = 30 µm for 
row A. Bar in B 1 = 10 µm for row B. Bar in C1 = 25 µm for row C. Bar 
in D 1 = 10 µm for rows D, E, and F 
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analyzed sections of the unaffected muscle biopsy by 
PLA, we observed similar non-nuclear background, but 
we did not observe any nuclei with PLA signals.

We enumerated myofibers and DUX4-positive nuclei 
on four sections and found that ~ 0.05–0.1% of the 
FSHD1 myofibers were associated with DUX4-positive 
nuclei (~ 8000 myofibers had 6 DUX4-positive nuclei).

The two primary mAb protocol we developed appears 
to have good specificity for DUX4 protein in nuclei cou-
pled with a low background on both cultured myoblasts 
and muscle sections. In earlier preliminary work, we 
also attempted to analyze muscle sections with stand-
ard single (mAb E5-5) and double (mAbs E5-5 and 
P2G4) immunofluorescence, as well as with a variation 
of the PLA protocol that used only single primary mAb 
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Fig. 2  Nuclear DUX4 PLA signals in an FSHD1 biopsy (microscope 
fields 1–3). Sections of biceps muscle obtained from a FSHD1 donor 
were processed for two primary antibody PLA and nuclei were 
stained with bisbenzimide. As indicated, each row includes images 
of a single field showing the DUX4 PLA signal (red), nuclei (blue), 
and merged PLA and nuclei signals. For field 1, row A shows a single 
nucleus with a positive PLA signal (red), as well as one nearby nucleus 
that was unstained; and Row B shows the positive nucleus at higher 
magnification. For field 2, row C shows one nucleus with a positive 
PLA signal amid several nearby unstained nuclei; and row D shows 
the positive nucleus at higher magnification. For field 3, row E shows 
an additional example of a nucleus with a positive PLA signal with 
three nearby unstained nuclei; and row F shows the positive signal at 
higher magnification. Bar in A 1 = 10 µm for row A. Bar in B1 = 4 µm 
for row B. Bar in C1 = 10 µm for row C. Bar in D 1 = 4 µm for row D. 
Bar in E 1 = 10 µm for row E. Bar in F.1 = 3.3 µm for row F
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Fig. 3  Nuclear DUX4 PLA signals in an FSHD1 biopsy (microscope 
field 4). As in Fig. 2, each row includes images from a single 
microscope field showing the DUX4 PLA signal (red), nuclei (blue), 
and merged PLA and nuclei signals. Images in row A include a 
nucleus-associated PLA signal (red); and this same region is also seen 
at lower magnification in the upper right corner of the images in row 
B. Images in row B show a lower magnification view of a field with 
two regions containing nucleus-associated PLA signals. Images in row 
C show at higher magnification the nucleus-associated PLA signal 
seen in the lower left corner of the row B images. Bar in A 1 = 5 µm 
for row A. Bar in B 1 = 15 µm for row B. Bar in C 1 = 5 µm for row C 
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(E5-5) with two secondary mAbs. Despite rare detec-
tion of DUX4-positive nuclei, each of these alternatives 
was limited by much higher background, particularly at 
myofiber surfaces and along connective tissue, than was 
seen with the two primary mAb PLA protocol reported 
here. As described in the Limitations section, we recog-
nize that this study needs to be extended and replicated. 
Although we are not able to continue these studies (due 
to P.I. retirement), we have presented our initial work 
both because detection of DUX4 protein in FSHD muscle 
samples has not previously been reported and because 
our PLA protocol could prove useful to other investiga-
tors in further studies of FSHD pathogenesis.

Limitations
Additional experiments are needed to overcome the limi-
tations of this n = 1 pilot study. In particular, to replicate 
and extend confidence in these initial results, the two pri-
mary mAb PLA should be carried out on biopsies from 
many additional FSHD and unaffected donors. Coupling 
DUX4 PLA and mRNA analyses of each biopsy could 
determine how closely correlated the number of DUX4-
positive nuclei is to the level of DUX4 mRNA. In addi-
tion, positive results from PLA analyses of one or more 
of the mouse models in which human DUX4 is expressed 
[28–32] could increase confidence in specificity of the 
protocol. Co-staining the PLA sections for dystrophin 
by immunofluorescence could be used to determine if 
the DUX4-positive nuclei are located within myofib-
ers. Future studies would also be strengthened by using 
confocal microscopy to increase resolution and to allow 
three-dimensional reconstruction of PLA signals within 
myonuclei.
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