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von Willebrand factor (VWF) and platelets are key mediators of normal hemostasis.

At sites of vascular injury, VWF recruits platelets via binding to the platelet receptor

glycoprotein Ibα (GPIbα). Over the past decades, it has become clear that many

hemostatic factors, including VWF and platelets, are also involved in inflammatory

processes, forming intriguing links between hemostasis, thrombosis, and inflammation.

The so-called “thrombo-inflammatory” nature of the VWF-platelet axis becomes

increasingly recognized in different cardiovascular pathologies, making it a potential

therapeutic target to interfere with both thrombosis and inflammation. In this review, we

discuss the current evidence for the thrombo-inflammatory activity of VWF with a focus

on the VWF-GPIbα axis and discuss its implications in the setting of ischemic stroke.
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VON WILLEBRAND FACTOR IN HEMOSTASIS: RECRUITMENT OF
PLATELETS

In this section, we briefly summarize the synthesis, structure, and role of VWF in hemostasis and
refer to more extensive reviews for further reading.

VWF is a large multimeric plasma protein that plays a major role in hemostasis (1–4). First,
VWF recruits platelets to sites of vascular injury by forming a bridge between the damaged
vessel wall and platelets. Second, VWF also serves as a carrier protein for coagulation factor VIII
(FVIII) and hence protects FVIII from degradation, cellular uptake or binding to the surface of
activated platelets and endothelial cells (5). VWF is produced exclusively by endothelial cells and
megakaryocytes. VWF is synthesized as a pre-pro-VWF that consists of a 22 amino acid signal
peptide, a 741 amino acid propeptide (D1-D2) and a mature subunit of 2,050 amino acids (6).
The mature subunit is composed of different types of domains arranged in the following order:
D′-D3-A1-A2-A3-D4-C1-C2-C3-C4-C5-C6-CK (Figure 1) (1, 7).

After removal of the signal peptide, pro-VWF monomers dimerize in the endoplasmic
reticulum through disulfide linkage of the C-terminal CK domains. In the Golgi complex,
complete multimerization of the dimers occurs via disulfide linkage of the N-terminal D3
domains, together with additional modifications such as removal of the propeptide, glycosylation,
and sulfation. After synthesis, VWF is either constitutively secreted into the blood or is
stored in endothelial Weibel-Palade bodies (WPB) and platelet α-granules, from which VWF
is locally released via regulated secretion (8). Basolateral release of endothelial VWF leads to
accumulation of VWF in the subendothelial matrix, which becomes exposed following damage
to the vessel wall. Ultra Large-VWF (UL-VWF) that is released at the apical surface can
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FIGURE 1 | Domain structure of VWF and the main interaction sites. The domain structure of VWF is given and the most important interactions for inflammation and

hemostasis are indicated.

remain anchored on the surface of endothelial cells and form
platelet-decorated strings (9). The structure of VWF is important
for its function since several domains are essential for the
hemostatic activity of VWF, such as the A1, A3, and C4
domains that mediate binding to GPIbα, collagen, and αIIbβ3,
respectively (Figure 1).

The interaction of VWF with platelet GPIbα is crucial
for initial platelet adhesion, especially in environments with
high hemodynamic shear forces. GPIbα is a subunit of the
platelet GPIb-IX-V complex that also contains the GPIbβ, GPIX,
and GPV subunits, all of which are type I transmembrane
proteins containing leucine-rich repeat domains. Under normal
conditions, VWF circulates as a globular protein in which the
binding site for GPIbα in the A1 domain is not accessible.
However, upon blood vessel damage, VWF binds via its collagen
binding sites (mainly in the A1 and A3 domains) to the exposed
subendothelial matrix. Immobilization and flow shear forces then
result in a conformational activation of the VWF A1 domain,
enabling binding of the N-terminal domain of GPIbα (4). This
force-induced regulation of the VWF-GPIbα interaction occurs
via changes in intramolecular shielding of the VWF A1 domain
by neighboring VWF sequences, possibly together with intrinsic
changes in the affinity state of the VWF A1 domain itself (10).

The reversible nature of the VWF A1-GPIbα interaction
permits platelets to roll and thus decelerate on immobilized
VWF, ultimately allowing firm adhesion of platelets to the
exposed subendothelial matrix via the platelet collagen receptors
GPVI and integrin α2β1. The GPIbα-VWF and GPVI/α2β1-
collagen interactions induce downstream intracellular platelet
signaling leading to activation of platelet αIIbβ3, which mediates
further stable adhesion and aggregation via binding to fibrinogen
and VWF.

A central aspect of VWF activity is that larger VWFmultimers
are more active due to the presence of more monomeric
subunits and the higher sensitivity for shear forces. UL-VWF
multimers have a molecular weight of >10,000 kD and are
highly reactive because the GPIbα binding sites in the VWF
A1 domains are continuously exposed. As a result, spontaneous
binding of platelets to VWF can occur. UL-VWF is stored
in the endothelial WPBs from which it is released via both
basal and regulated secretion pathways but also in platelet α-
granules from which it is released only after agonist-induced

stimulation (6). The local, regulated release of UL-VWF allows
fast and confined hemostasis when needed at sites of injury. To
prevent accumulation of prothrombotic UL-VWF, however, UL-
VWF is cleaved by the VWF cleaving protease ADAMTS13 (A
Disintegrin and Metalloprotease with ThromboSpondin type 1
repeats, number 13). Proteolysis of VWF by ADAMTS13 occurs
in the VWF A2 domain and is dependent on conformational
activation of the A2 domain to expose the cleavage site (11).
Digestion of UL-VWF by ADAMTS13 results in smaller, less
active VWF multimers (≤10,000 kDa) that adopt a folded
conformation in which the platelet binding site in the A1 domain
and the ADAMTS13 cleavage site in the A2 domain are cryptic.
In the absence of ADAMTS13, spontaneous formation of VWF-
platelet complexes leads to thrombotic complications as seen in
patients with thrombotic thrombocytopenic purpura (12).

VON WILLEBRAND FACTOR IN
INFLAMMATION: RECRUITMENT OF
LEUKOCYTES

Besides its well-established role in hemostasis, VWF is
recognized as an effective mediator of inflammatory responses
as well. VWF can actively participate in the development of
inflammatory processes by recruiting leukocytes at sites of
vascular inflammation. Indeed, VWF deficiency or blockade
has been shown to reduce leukocyte recruitment in various
murine models of inflammation, including cytokine-induced
meningitis (13), wound healing (13), atherosclerosis (14),
cutaneous inflammation (15, 16), vasculitis (17), and peritonitis
(18). When studying the inflammatory effects of VWF, it is
important to keep in mind that VWF itself is essential for the
formation of WPBs in endothelial cells (19). Alongside VWF,
WPBs store also other molecules involved in inflammation and
even angiogenesis (e.g., P-selectin, interleukin-6, interleukin-8,
Eotaxin-3, Factor H, and angiopoietin-2). Failure of co-storage
of inflammatory proteins in the endothelium of VWF-deficient
mice can thus also cause defects in inflammation (20). However,
recent research provided ample evidence for a direct role of VWF
in inflammation, which might potentially be more important
than co-storage of inflammatory proteins in the acute-phase
response of the vessel wall.
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When endothelial cells are activated by inflammatory
mediators, UL-VWF is rapidly released from endothelial
WPBs. As a consequence, increased levels of circulating VWF
antigen has become a well-known marker of inflammation and
endothelial activation. When secreted into the blood stream,
released VWF can also remain anchored on the surface of
endothelial cells through binding with P-selectin (21), integrin
αVß3 (22), or the glycocalyx (23) and locally form platelet-
decorated strings. VWF facilitates inflammatory processes by
promoting leukocyte recruitment to inflamed tissues, either
directly or indirectly after binding platelets.

An elegant study by Pendu et al. demonstrated that VWF can
act as an adhesive surface for neutrophils and monocytes and
that the adhesion process of these inflammatory cells involves
various interactions that act in a concerted way (24). Direct
adhesion of leukocytes occurs via multiple regions within the
VWF molecule that interact with PSGL-1 and ß2 integrins on
leukocytes (Figure 1). Whereas, PSGL-1 would be involved in
initial rolling on VWF, ß2 integrins would be responsible for
stable adhesion on VWF. ß2 integrins can interact with two
distinct binding sites on VWF that are located in the D′D3 and
A1-A2-A3 regions of VWF as well as to the Leu-Leu-Gly motifs
found in the VWF D3 and the connecting region between the A1
and A2 domains (24, 25). The binding site for PSGL-1 is located
in the VWF A1 domain (24). Similar for binding to GPIbα, the
A1 domain needs to be in its active conformation to bind PSGL-1,
which shares structural similarities with GPIbα (24).

Apart from binding directly to leukocytes, VWF can also
indirectly promote leukocyte recruitment by forming VWF-
platelet-leukocyte complexes, with a crucial role for the VWF-
GPIbα axis. The exact mechanisms by which VWF-platelet
complexes facilitate leukocyte diapedesis are not yet fully
understood and might vary between different inflamed tissues.
First, activated platelets bind to VWF and can then interact via P-
selectin or GPIbα with leukocytes, thus promoting local adhesion
of inflammatory cells (26). As such, immobilized VWF can
function as a local matrix to recruit both platelets and leukocytes.
Whereas, direct interactions between VWF and leukocytes might
be sufficient under venous low-shear conditions, it is conceivable
that platelets are needed for leukocyte recruitment under arterial
high-shear conditions (26). Second, VWF-platelet complexes can
regulate vascular permeability, leading to facilitated leukocyte
extravasation. Indeed, using a model of thioglycollate-induced
peritonitis, Petri et al. showed that leukocyte recruitment to
the inflamed peritoneum was dependent on the presence of
VWF and platelets and more specifically on the functional
availability of GPIbα (18). In this study, the contribution of
VWF-platelet complexes could be explained by destabilization
of the endothelial barrier function rather than by increased
leukocyte rolling and adhesion. The possible mechanisms
through which VWF and platelets induce vascular leakage need
further study. Endothelial permeability might be regulated by
binding of the VWF RGD motif to endothelial αVß3 integrins
(22), and platelets can release various soluble factors that
influence endothelial junctions (27). A recent study also showed
the involvement of microparticles in VWF-mediated vascular
leakage (28).

Overall, the VWF A1 domain seems to be central for the
participation of VWF in inflammatory processes. This was
recently underlined by two studies from the group of Cécile
Denis and Peter Lenting showing that specific inhibition of
the VWF A1 domain leads to reduced vascular permeability
and leukocyte recruitment (17), whereas a gain-of-function
mutation in the VWF A1 domain results in increased leukocyte
recruitment (16). Also clinically, the presence of an active A1
domain was shown to predict mortality in patients with systemic
inflammatory response syndrome (29). Since an active A1
domain is a typical hallmark of UL-VWF in circulation, it might
not be surprising that ADAMTS13 can exert anti-inflammatory
activity by reducing the activity of VWF. By cleaving VWF,
ADAMTS13 can remove VWF strings from the endothelial
surface or reduce the size of reactive VWF to less adhesive
VWF molecules. As a result, ADAMTS13 is able to attenuate
VWF-dependent leukocyte rolling, adhesion, and extravasation
under acute inflammatory conditions. The anti-inflammatory
properties of ADAMTS13 have been demonstrated in various
settings, including peritonitis (30), atherosclerosis (31), colitis
(32), myocardial infarction (33–35), cardiac fibrosis (36), and
ischemic stroke, as discussed further.

VWF-GLYCOPROTEIN IB MEDIATED
THROMBOINFLAMMATION IN ISCHEMIC
STROKE

Ischemic stroke occurs when a blood clot obstructs cerebral blood
flow and causes ischemic brain damage. The primary objective
in acute ischemic stroke care is achieving fast reperfusion of
the occluded blood vessel to limit ischemic brain injury. Yet,
sometimes progressive stroke still develops despite reperfusion
of the affected brain tissue, a phenomenon attributed to
“reperfusion injury” (37, 38). It has become clear that cerebral
ischemia/reperfusion injury is a complex pathology that involves
crosstalk between both thrombotic and inflammatory pathways,
which has lead to the concept of thrombo-inflammation in
stroke (39, 40). Given the dual role of VWF and GPIbα in both
thrombosis and inflammation, the VWF-GPIbα axis has received
quite some attention in the setting of ischemic stroke (41).

Evidence for the involvement of VWF in ischemic brain
injury comes from mouse studies showing that absence of
VWF is associated with a significant reduction in ischemic
stroke brain injury and improved functional outcome (42,
43). The detrimental effects of VWF were later attributed to
the specific involvement of the VWF A1 and A3 (but not
C4) domains, indicating a key role for the VWF-GPIbα and
VWF-collagen interactions (44). Of note, whereas platelet-
derived VWF is largely dispensable for normal hemostasis and
thrombosis in mice, we showed that it can actively contribute
to ischemic brain injury via a mechanism that is GPIbα-
dependent (45). In parallel with these studies on VWF, similar
research demonstrated that also GPIbα is an important mediator
of cerebral ischemia/reperfusion injury. Indeed, mice lacking
functional GPIbα also develop smaller brain infarctions together
with improved stroke outcome (46, 47), an observation that
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was extended in a more translational setting using aged and
comorbid (atherosclerotic, diabetic, and hypertensive) animals
(48). Furthermore, anfibatide, a snake venom-derived GPIbα
antagonist that specifically blocks platelet GPIbα binding to VWF
had a potent protective effect in mouse models of ischemic stroke
(49–52). As mentioned above, UL-VWF can spontaneously bind
platelets and its reactivity can cause thrombotic events without
proper regulation by ADAMTS13. Accordingly, experimental
stroke studies showed that ADAMTS13-deficient mice developed
larger brain infarctions and worse neurologic outcomes, whereas
infusion of recombinant ADAMTS13 was able to attenuate
ischemic brain damage (42, 53–56). Together, these studies
highlight the pathophysiological involvement of VWF and
GPIbα in cerebral ischemia/reperfusion injury, which can be
counterbalanced by blocking the VWF-GPIbα interaction or by
reducing the activity of VWF via ADAMTS13.

The precise mechanisms underlying the pathophysiological
involvement of the VWF-GPIbα axis in ischemic brain injury
are not yet fully elucidated but available data strongly points
toward an intricate process that includes both thrombotic and
inflammatory pathways. The cerebral microvasculature rapidly
responds to brain ischemia leading to endothelial cell activation
and endothelial denudation exposing subendothelial matrix
components such as collagen. It has been long known that local
platelet and leukocyte recruitment can lead to microvascular
obstruction within the ischemic territory after occlusion and
reperfusion, a process known as the “no-reflow” phenomenon
(57–59). Given the fundamental role of VWF and GPIbα
in thrombus development at sites of vascular damage, it is
not surprising that the VWF-GPIbα axis is responsible for
thrombotic events in stroke. In mouse models of cerebral
ischemia/reperfusion injury, VWF deficient mice indeed showed
less thrombosis in the cerebral microvasculature, as shown by
reduced intracerebral fibrin(ogen) deposition in the affected
brain tissue of these animals compared to wild-type mice (44,
45, 60). Remarkably, fibrin(ogen) deposition was considerably
reduced in the ischemic hemisphere of the VWF deficient mice
that were reconstituted with VWF defective in binding to fibrillar
collagen or GPIbα compared with controls, again emphasizing
the contribution of initial platelet adhesion interactions mediated
by VWF (44). By specifically blocking the VWF-GPIbα axis,
anfibatide reduced the number of fibrin(ogen)-positive blood
vessels and microthrombi in the ischemic hemisphere (49, 51).
In line with these results, anti-GPIbα treatment significantly
reduced thrombus burden in the cerebral microvasculature, as
measured by the number of GPIX-positive platelet aggregates
and occluded brain vessels (61). Correspondingly, ADAMTS13
deficient mice showed an increased number of thrombi
containing fibrin and VWF in the brain lesions after stroke
(53). Recently, analogous observations were made in CD69
deficient mice (62). CD69 was identified as a negative regulator of
endothelial VWF release, and in the setting of stroke, its absence
resulted in a more severe stroke burden due to increased cerebral
thrombosis (62).

Remarkably, whereas thrombus formation requires both
platelet adhesion via GPIbα and GPVI and platelet aggregation
via αIIbβ3, the latter does not seem to play a major role in

acute ischemic stroke injury (44, 46, 48). Hence, platelets and
VWF most likely contribute to stroke progression in a way
that is not strictly related to thrombus formation. The most
plausible explanation is the involvement of a corresponding
inflammatory component mediated by the initial interactions
between the damaged vessel wall, VWF, and platelets. Ample
evidence for such an inflammatory reaction has been gathered
in the last decade. Indeed, in mouse models of ischemic stroke,
VWF deficiency is associated with reduced neutrophil infiltration
in the ischemic hemisphere (55). In addition, expression levels of
the pro-inflammatory cytokines IL-6, IL-1ß, and tumor necrosis
factor-α are also decreased in the absence of VWF (55, 60).
Interestingly, endothelial-derived rather than platelet-derived
VWF seems to be the major determinant of these inflammatory
effects (60). In line with the high activity of UL-VWF,
elevated VWF-mediated inflammation is observed in the injured
brain hemisphere of ADAMTS13-deficient mice. Increased
myeloperoxidase activity, increased extravasation of neutrophils,
and a higher expression of inflammatory cytokines high-mobility
group box1, IL-6, and tumor necrosis factor-α were observed
in ADAMTS13-deficient mice compared with wild-type controls
(53–55). Interestingly, the increased brain damage and worsened
neurological outcome observed in ADAMTS13-deficient animals
were abrogated when neutrophils were depleted, indicating a
causal role of neutrophils in the exacerbation of ischemic brain
injury in the absence of ADAMTS13 (55). Blockade of GPIbα
similarly led to decreased expression of IL-6, IL-1ß, and tumor
necrosis factor-α (50, 61) and was also shown to lower the
numbers of infiltrating T-cells and myeloid leukocytes (51, 61).
The latter is in accordance with recent data from our group
showing that inhibition of the VWF-GPIbα interaction results
in significantly decreased recruitment of monocytes, neutrophils,
and T-cells in the ischemic brain (63).

In summary, current evidence shows the involvement of the
VWF-GPIbα interaction in a vicious circle of thrombotic and
inflammatory responses in the ischemic stroke brain. Ischemia
leads to endothelial damage, exposure of subendothelial
matrix, upregulation of adhesion molecules, and release
of UL-VWF. Local accumulation of VWF contributes to
intravascular recruitment platelet and leukocytes, which can
secrete proinflammatory cytokines that further stimulate
inflammation. Aggregates of VWF, platelets, and leukocytes
most probably plug brain capillaries, preventing efficient
microcirculatory reperfusion. However, many aspects of the
spatiotemporal involvement and molecular interactions between
VWF and leukocytes in stroke remain to be elucidated. For,
example, whether direct interactions between VWF and PSGL-1
and ß2 integrins are involved remains unanswered. Also, the
potential effect of VWF and platelets on vascular permeability
in the stroke brain needs further study. Initial results indeed
indicate that interfering with VWF or GPIb can modulate the
cerebrovascular integrity after stroke (51, 64). When blocking
the function of GPIbα, it is important to realize that this
platelet receptor contributes to arterial thrombosis via additional
mechanisms that are independent of its binding to VWF
(65). GPIbα also interacts with various other ligands such as
thrombin, coagulation factors XI and XII, high molecular weight
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kininogen, and thrombospondin-1. Hence, further studies are
needed to generate a more complete picture of the involvement
of GPIbα in ischemic stroke, besides binding to VWF.

New insights show that already very early during ischemia,
neutrophils, and platelets are recruited to the ischemic brain
and contribute to microvascular dysfunction (66, 67). Otxoa-
de-Amezaga and colleagues recently visualized an early influx
of neutrophils to the brain after stroke, predominantly located
within the intravascular space already early after reperfusion
(68). It would be interesting to further untangle the specific
role of VWF during these very early responses in the ischemic
tissue to better understand the involvement of VWF in the
neurovascular unit.

TRANSLATIONAL ASPECTS

The clinical significance of the VWF-GPIbα interaction in
stroke is suggested by an increasing number of human stroke
studies showing the pathophysiological involvement of VWF in
ischemic stroke (69–74). Furthermore, polymorphisms in the
GPIBA gene that lead to enhanced VWF-GPIbα interactions
are associated with an increased risk of ischemic stroke in
humans (75). Intriguingly, increased VWF activity and/or
reduced ADAMTS13 activity are associated not only with
higher stroke occurrence, but also with worse long-term
stroke outcomes (71, 76–78). Nonetheless, more clinical studies
are needed to specifically address the contribution of VWF-
mediated thromboinflammatory brain damage during ischemia
and reperfusion in ischemic stroke patients. From a clinical
perspective, it is promising that the first-generation of VWF-
inhibitors is currently enrolled in clinical studies for thrombotic
thrombocytopenic purpura, such as a specific inhibitor of the
VWF-GPIbα interaction (79) and recombinant ADAMTS13
(80). Notably, we and others have demonstrated that targeting

VWF can also promote blood clot dissolution in the setting of
ischemic stroke (81–85), which could be of particular relevance
to overcome thrombolysis resistance of platelet-rich blood clots
in patients (86). Hence, compounds that target VWF could
have the attractive potential to promote acute thrombolysis in
the occluded blood vessel and attenuate ischemia/reperfusion
injury in the microvasculature of the affected brain territory.
The safety, especially in terms of bleedings, remains to be
further investigated before clinical use. At least in preclinical
animal research, targeting VWF via anti-VWF-GPIbα strategies
or recombinant ADAMTS13 did not increase the risk of
intracranial hemorrhaging in murine stroke models (42, 43, 49),
even when combined with tissue-plasminogen activator (87, 88)
or when treatment was delayed (56). Of note, ADAMTS13
therapy improved outcomes in murine models of intracerebral
hemorrhage in a VWF-dependent way (89–92). More research,
preferably also in larger animal models, is needed to bring the
concept of blocking VWF-mediated thromboinflammation in
stroke closer to the clinic.
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