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Therapeutic resistance is a central problem in clinical oncology. We have developed a systematic genome-wide
computational methodology to allow prioritization of patients with favorable and poor therapeutic response.
Ourmethod, which integrates DNAmethylation andmRNA expression data, uncovered a panel of 5 differentially
methylated sites, which explain expression changes in their site-harboring genes, and demonstrated their ability
to predict primary resistance to androgen-deprivation therapy (ADT) in the TCGA prostate cancer patient cohort
(hazard ratio=4.37). Furthermore, this panelwas able to accurately predict response toADT across independent
prostate cancer cohorts and demonstrated that it was not affected by Gleason, age, or therapy subtypes.We pro-
pose that this panel could be utilized to prioritize patients who would benefit from ADT and patients at risk of
resistance that should be offered an alternative regimen. Such approach holds a long-term objective to build
an adaptable accurate platform for precision therapeutics.
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1. Introduction

Prostate cancer is themost commonmalignancy andone of the lead-
ing causes of death in American men [1–3]. Since prostate cancer initia-
tion and progression dependon androgens [4–6], androgen-deprivation
has been the mainstay of treatment for patients with advanced disease.
Even though majority of patients initially respond to androgen-
deprivation therapy (ADT), remission lasts 2–3 years on average, with
eventual relapse and progression to castration-resistant disease, which
is nearly always metastatic and lethal [7,8]. Resistance to ADT and the
paucity of the therapeutic options for patients with castration-
resistant disease are amongmajor clinical challenges in prostate cancer
management [9–11].

Whilemultifaceted and heterogeneous, prostate cancer is character-
ized by the scarcity of genomic mutations [12] and absence of well-
defined subtypes [13–15], thus making therapeutic management
challenging and suggesting that more complex mechanisms
(e.g., interplay of epigenomic and genomic mechanisms) might play a
role in treatment response. In the last decade, epigenomics has been
at the center of scientific interest, including recognition of its role in can-
cer initiation and progression [16–20]. In recent years, one of the most
commonly observed epigenomic means, chromatin accessibility
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(i.e., DNA methylation), has received significant attention due to its
role in cell development [21], genomic imprinting (i.e., biological pro-
cess through which a gene carries information about its ancestor)
[22], aging [23] and carcinogenesis [24,25]. DNA methylation (Fig. 1)
is defined by an addition ofmethyl group to the fifth position of cytosine
(converting it to 5-methylcytosine). In mammals, methylation of cyto-
sine often occurs in regionswhere cytosine is followed by guanine (con-
nected through phosphate molecule), named a CpG site [26,27]. A DNA
region with frequent occurrences of CpG sites is commonly known as a
CpG island or CGI [27,28]. Interestingly, 70% of gene promoter regions
are associated with the CGIs, which can alter gene regulation [26]. In
fact, if CGI within the promoter region is methylated, it becomes occu-
pied by the Methylated DNA Binding Protein (MDBP) [29], which com-
petes with transcription factor binding. MDBP can act as a transcription
repressor or enhancer [30,31], depending on the transcription process it
interferes with. In cancer, importance of the CGIs was initially observed
among retinoblastoma patients, where CGI hyper-methylation led to si-
lencing of Rb gene [32]; since then numerous groups have demon-
strated the significant role of DNA methylation in oncogenesis
[25,33–35].

In recent years, studies started to link aberrant level of DNAmethyl-
ation to cellular transformation and clonal expansion [36,37], often im-
plicated in therapeutic response and resistance. For instance, hyper-
methylation of MLH1 has been shown to be associated with increased
resistance to cisplatin in ovarian cancer [38]; hyper-methylation of
HOXC10 has been found to influence resistance to anti-estrogen therapy
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Schematic representation of the systematic integrative approach. (Top) Non-
responder and responder groups are compared for differentially methylated events/
sites. (Middle) Differential methylation is integrated with expression of site-harboring
genes. (Bottom) Candidate site-gene panel is evaluated for clinical significance.
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in ER+breast cancer [39]; hypo-methylation of ABCB1 had been associ-
ated to paclitaxel-resistant ovarian cancer [40], etc. Further, recent stud-
ies have demonstrated that integrative analysis is crucial for in-depth
understanding of molecular mechanisms involved in therapeutic re-
sponse, for example (i) correlation between DNA methylation and
mRNA expression of FHIT has been suggested as a marker for risk man-
agement in non-small cell lung and breast cancer [41]; (ii) aberrant fre-
quencies of genes correlated betweenDNAmethylation (aswell as copy
number variation) and expression levels could identify molecular sub-
types in hepatocellular carcinoma patients [42]; (iii) correlation be-
tween DNA methylation and gene expression defined transcriptional
patterns inmolecular subtypes of breast cancer [43], etc. Thus, a system-
atic investigation of the effect of DNA methylation on therapeutic re-
sponse and analysis of its functional effect on the expression of the
harboring genes might enhance our understanding of the mechanisms
implicated in resistance and provide valuable predictivemarkers of pre-
disposition to therapeutic failure.

In this study,we have developed a systematic genome-wide integra-
tive approach to analyze DNA methylation and its causal effect on
mRNA gene expression to predict response to therapeutic intervention
in cancer patients (see schematics in Fig. 1). We have named this ap-
proach Epi2GenR - Epigenomic and Genomic mechanisms of treatment
Resistance. We have compared (epi) genomic profiles from primary tu-
mors of prostate cancer patientswithpoor (i.e., non-responders) and fa-
vorable (i.e., responders) response to androgen-deprivation therapy
and identified a panel of 5 differentially methylated sites, whose meth-
ylation changes explain expression variation in their site-harboring
genes. We further tested the ability of this panel to predict therapeutic
response in non-overlapping independent patient cohorts. In fact, the
5 site-gene panel was able to differentiate patients with predisposition
to ADT failure from patients with favorable treatment response in
TCGA-PRAD [13] (log-rank p = 0.0191, hazard ratio = 4.37) and other
[44–48]patient cohorts (sensitivity = 100%, AUROC = 0.83, AUROC =
0.98). We have confirmed significant non-random predictive ability of
the identified 5 site-gene panel and its robustness to increased false
positive (FP) and false negative (FN) rates through random modeling
and robustness analysis, respectively. Furthermore, we have demon-
strated that the ability of this panel to predict therapeutic response
does not depend on commonly used prognostic variables, such as path-
ological and clinical T-stage, Gleason score (i.e., pathology-based grad-
ing system of prostate tissues), age, and therapy subtype. We propose
that this panel can potentially be used to pre-screen patients to priori-
tize those who would benefit from ADT and patients at risk of develop-
ing resistance. Our method holds a long-term potential to improve
therapeutic management of cancer patients and builds a foundation
for personalized therapeutic advice for patients with advanced
malignancies.
2. Materials and Methods

2.1. DNA Methylation and mRNA Expression Resources

Prostate cancer patient cohorts utilized in this study come from the
publicly available data sources, including The Cancer Genome Atlas -
Prostate Adenocarcinoma (TCGA-PRAD), Stand up to Cancer (SU2C),
Grasso et al. (GSE35988), Cai et al. (GSE32269), Sboner et al.
(GSE16560), Beltran et al., and Prostate Cancer Medically Optimized
Genome-Enhanced Therapy (PROMOTE) datasets (Table 1): (i) TCGA-
PRAD [13] cohort was downloaded from Genomics Data Commons
(GDC, https://gdc.nci.nih.gov/) on November 15, 2016. Information
about type and time of treatment was obtained and synthesized from
the clinical, follow-up, and the treatment data files, obtained from the
TCGA GDC legacy archive (https://portal.gdc.cancer.gov/legacy-
archive). For the purpose of this study we selected patients with pri-
mary tumors (obtained after radical prostatectomy), which were
treated with adjuvant androgen deprivation therapy (ADT) and further
monitored for disease progression (n=66),whichwere suited to study
primary ADT resistance. TCGA-PRAD DNA methylation was profiled on
Illumina Infinium Human Methylation (HM450) array and RNA-seq
was profiled on Illumina HiSeq 2000; (ii) Stand up to Cancer (SU2C)
[48] contained tumors from metastatic castration-resistant prostate
cancer (CRPC, n = 51, raw sequencing data for 51 patients were avail-
able for download from dbGaP phs000915.v1.p1) obtained from bone
or soft tissue biopsies, profiled on Illumina HiSeq 2500 platform; (iii)
Grasso et al. [46] dataset was obtained from Gene Expression Omnibus
(GEO) GSE35988 and contained prostatectomy samples of primary tu-
mors from patients with hormone-naïve prostate cancer (n = 58) and
metastatic CRPC samples at rapid autopsy (n = 33), profiled on
Agilent-014850 Whole Human Genome Microarray 4x44K G4112F;
(iv) Cai et al. [45] dataset was obtained from GEO GSE32269 and
contained primary tumors from patients with hormone-naïve prostate
cancer isolated by laser capture microdissection (LCM) from frozen bi-
opsies (n= 21) and CRPC bonemetastasis obtained through CT guided
bonemarrowbiopsies (n=19), profiled onAffymetrix HumanGenome
U133A array; (v) Beltran et al. [44]: data were downloaded from
dbGaP (phs000909.v1.p1) and contained tumors from metastatic
castration-resistant prostate cancer (CRPC, neuroendocrine samples
excluded, n = 34) obtained from lung, soft tissue and spinal cord biop-
sies, profiled on IlluminaGenome Analyzer II; (vi) Prostate CancerMed-
ically Optimized Genome-Enhanced Therapy (PROMOTE) [47]: data
were downloaded from dbGaP (phs001141.v1.p1) and contained tu-
mors from metastatic CRPC that received 12 weeks of Abiraterone ace-
tate and failed this treatment (n = 29), obtained from tissue biopsies
and profiled on Illumina HiSeq 2500 platform; and as a negative control,
we utilized (vii) Sboner et al. [49] dataset obtained fromGEOGSE16560,
which consisted of not treated primary tumors obtained from transure-
thral resection of the prostate (TURP) (n = 281) and profiled on 6 k
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Table 1
Prostate cancer cohorts utilized for discovery and validation.

Dataset Description N Platform Source

TCGA-PRAD,
The Cancer Genome Atlas –
Prostate Adenocarcinoma
[13]

Primary tumors obtained after radical prostatectomy and treated
with adjuvant androgen deprivation therapy (ADT).

66 Illumina Infinium Human
Methylation (HM450) array
Illumina HiSeq 2000

Genomics Data Commons
(GDC) (https://gdc.nci.nih.
gov/)

SU2C,
Stand Up To Cancer [48]

Metastatic CRPC samples obtained from bone or soft tissue biopsies. 51 Illumina HiSeq 2500 phs000915.v1.p1

Grasso et al. [46] Androgen-sensitive: localized androgen-naïve primary tumors after
prostatectomy.
CRPC: CRPC metastatic samples obtained at rapid autopsy.

58
33

Agilent-014850 Whole Human
Genome Microarray 4x44K
G4112F

GSE35988

Cai et al. [45] Androgen-sensitive: androgen-naïve primary tumors isolated by
laser capture microdissection (LCM) from frozen biopsies.
CRPC: CRPC bone metastasis obtained from CT guided bone marrow
biopsies.

21
19

Affymetrix Human Genome
U133A array

GSE32269

Sboner et al. [49] Primary tumors not subjected to treatments and obtained from
transurethral resection of the prostate (TURP).

281 Human 6 k Transcriptionally
Informative Gene Panel for DASL

GSE16560

Beltran et al. [44] Metastatic CRPC samples obtained from lung, soft tissue and spinal
cord biopsies.

34 Illumina Genome Analyzer II phs000909.v1.p1

PROMOTE,
Prostate Cancer Medically
Optimized Genome-Enhanced
Therapy
[47]

Metastatic CRPC samples, obtained from tissue biopsies, treated with
Abiraterone acetate for 12 weeks (with subsequent treatment
failure).

29 Illumina HiSeq 2500 phs001141.v1.p1

N = number of patients.
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cDNA-mediated annealing, selection, ligation, and extension (DASL)mi-
croarray platform.
2.2. DNA Methylation and mRNA Expression Data Analysis and Integration

Our study introduces a framework (Fig. 1) to effectively integrate
DNA methylation with mRNA expression patient profiles to identify
markers of primary treatment resistance. DNA methylation profiles on
Illumina Infinium Human Methylation depict methylation levels of
CpG sites, located across TSS 200/1500 (TSS 1500 and TSS 200), 5′
UTR, 1st exon, gene body, and 3′ UTR regions and are reported as β
(Beta) values. We adopted suggestion in Du et al. to convert β to M-
values, better suited for statistical analysis [50], where M ¼ log2 Beta

1−Beta

. All statistical computing in thismanuscriptwas performed using R stu-
dio version 1.0.143 (R version 3.4.3). Differential methylation signature
was defined as a list of methylation sites ranked by their differential
methylation between patients with poor and favorable ADT response,
using two-tail two-sample Student t-test (t.test function in R). We uti-
lized DESeq2 R package [51] for RNAseq data normalization and
processing.

Initial essential step in our analysis was to evaluate if sites from a
particular region (i.e., TSS 200/1500, 5′ UTR, 1st exon, gene body, 3′
UTR) were enriched in the differential methylation signature. For this
purpose, we used Fisher Exact Test (FET) [52] and Gene Set Enrichment
Analysis (GSEA) [53]. For FET, 500 top most differentially methylated
sites were used to evaluate if a specific region is over-represented in
the top 500 sites compared to the rest of the signature and was con-
ducted using fisher.test function in R. In GSEA, differential methylation
signaturewas used as a reference and sites associated to specific regions
were utilized as query sets. Normalized Enrichment Score (NES) and p-
value for significance were estimated using 1000 site permutations.
GSEA was implemented in R studio, v 3.3.2.

To identify differentially methylated sites that have functional effect
on the site-harboring genes, we measured their association through
Pearson correlation [54] (also confirmed with Spearman correlation
[54]), estimated between differentially methylated sites (M-values)
and their site-harboring genes (DESeq2 normalized counts), using cor.
test function in R. To further evaluate a potential cause-effect relation-
ship, we employed the linear least squares regression analysis [55]
where each methylation M-value was considered as predictor
(i.e., independent) variable and an mRNA expression value of the site-
harboring gene was considered as response (i.e., dependent) variable,
estimated using lm function in R. Our analysis identified a panel of 5
site-gene pairs, which are differentially methylated between patients
with poor and favorable treatment response and can explain expression
variation in their site-harboring genes, which increases the probability
of identifying (epi) genomic markers with functional role in therapeutic
resistance.

2.3. Evaluation of Clinical Significance of our Findings

To evaluate ability of the identified 5 site-gene panel to predict ther-
apeutic response in independent datasets, we subjected prostate cancer
patient cohorts to t-distributed stochastic neighbor embedding cluster-
ing (t-SNE), a widely-used dimensionality reduction technique, well
suited for visualization of high-dimensional datasets in a two (or
three) dimensional space [56]. In particular, t-SNE considers all pairs
of high-dimensional (i.e., 5-dimentional in our case) points and con-
verts their high-dimensional similarity into conditional probabilities in
such a way that similar points (i.e., patient profiles) are assigned a
high conditional probability, and dissimilar points are assigned a low
conditional probability (i.e., defining Probability Distribution H in a
high-dimensional space). Further, t-SNE defines Probability Distribution
L over the same pairs of points (i.e., patient profiles) in the low-
dimensional (i.e., 2-dimentional) space, and it aims to minimize the
Kullback–Leibler divergence [57] between the Probability Distribution
H and Probability Distribution Lwith respect to the locations of the points
(i.e., patient profiles) in the space. Therefore, patients with similar 5
site-gene patterns will be projected as nearby points and patients
with dissimilar 5-site gene patterns will be projected as distant points
in the two-dimensional space. Differences in therapeutic response in
the identified patient groups were evaluated through Kaplan-Meier
treatment-related survival analysis [58] and Cox proportional hazard
model [59] using survival and survminer packages in R [60,61]. Log-
rank and Wald tests were used to estimate statistical significance of
the Kaplan-Meier survival analysis and Cox proportional hazard
model, respectively, using R coxph function from survival package [62].

To compare the ability of the DNA methylation and mRNA expres-
sion of the 5 site-gene panel to effectively classify patient groups, we
utilized receiver operating characteristics (ROC) analysis [63] on multi-
ple (i.e., multivariable) logistic regression model, where identified
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patient groups were used as a response variable and M-value/RNA-seq
distributions of 5 site-gene panel were used as inputs. ROC curves
were evaluated using area under the curve (AUROC) [64], with AUROC
=0.5 being a random classifier. The logistic regression analysis was im-
plemented using glm [65] function and ROC analysis using roc function
from pROC package in R [66].

To evaluate if expression of the 5 site-gene panel in primary tumors
was comparable to CRPC metastasis and to demonstrate that molecular
profiles of patients that received ADTand developed Biochemical Recur-
rence are similar to patients that failed ADTwithmetastatic disease, we
compared TCGA-PRAD and SU2C datasets, for which we combined their
raw RNA-seq counts with subsequent normalization using DESeq2 R
package [51]. To compare expression levels of the 5 site-gene panel
across these datasets, we first scaled each gene (i.e., each gene was z-
scoredwith respect to themean expression of this gene across the com-
bined TCGA-SU2C datasets) and defined a composite expression z-score
for the 5 site-gene panel for each patient. In particular, to define the
composite expression z-score for each patient, we combined z-scores
of the 5 genes from the 5 site-gene panel using Stouffer integration
[67] (stouffer function from vulcan package in R [68]). Distributions for
such composite z-scores were then compared between TCGA-PRAD
and SU2C patient cohorts using one-tail two-sample Welch t-test.

Finally, to confirm ability of our 5 site-gene panel to identify
and distinguish samples with CRPC ADT failure, we utilized indepen-
dent patient cohorts for (i) t-SNE clustering; and (ii) multiple
(i.e., multivariable) logistic regression followed by ROC analysis. In par-
ticular, to demonstrate that the 5 site-gene panel allows the effective
identification of the CRPC ADT failure samples, we subjected patient co-
horts in Grasso et al. [46] and Cai et al. [45] to t-SNE clustering [56], with
all 5 dimensions considered. Furthermore, to show the ability of the 5-
site-gene panel to effectively distinguish between CRPC ADT failure
samples and TCGA-PRAD samples with favorable response (i.e., group
1), similarly to SU2C cohort, we combined raw counts for patients co-
horts in Beltran et al. [44] and PROMOTE [47]with the TCGA-PRAD cohort
and subjected them tomultiple logistic regression (where sampleswith
CRPC ADT failure and samples with favorable ADT response were used
as a response variable and gene expression distributions of 5 site-gene
panel were used as inputs) followed by ROC analysis.

2.4. Multimodal Performance Evaluation of our Model

For multimodal performance assessment of our model, we have
evaluated (i) advantages of our model over other commonly used
methods, such as expression, methylation, and correlation data alone;
(ii) non-randomness of its predictive ability through comparison to 5
site-gene pairs selected at random; (iii) robustness of our findings
through evaluation of howwell our model can classify patients at vary-
ing levels of noise; and demonstrated that (iv) predictive ability of our
panel is not affected by the commonly used prognostic clinical variables,
such as pathological and clinical T-stage, Gleason score, age, and therapy
subtypes.

Comparative analysis to expression, methylation, and correlation
data alone was done using Kaplan-Meier survival analysis, hazard
ratio, and concordance index (i.e., c-index), which measures how well
our model can predict therapeutic response (with 1.0 being the highest
predictive ability, equivalent to AUROC= 1 or 100%). C-index was esti-
mated using concordance.index function from survcomp package in R
[69].

To evaluate non-randomness of our predictions, we utilized random
model built through selection of 5 site-gene pairs at random 10,000
times. Nominal p-value for the model was estimated as the number of
times Kaplan-Meier log-rank p-values for random 5 site-gene pairs
reached or outperformed log-rank p-value for the original 5 site-gene
panel.

To evaluate the robustness of our model, we tested its predictive
ability with the increase of False Negative (FN) and False Positive (FP)
rates. Let us define an iteration i=1… 58. For FalseNegative estimation,
at each iteration i, exactly i patients were selected at random and re-
moved from the validation cohort using sample function from R. Each it-
eration iwas repeated 10,000 times except when i=1 and 2: for i=1,
it was run 58 times as total number of ways 1 patient can be chosen
from 58 patients is 58; for i=2, it was run 1000 times as the total num-
ber of ways 2 patients can be chosen from 58 patients is ((58 choose 2)
= 1653). For False Positive estimation, at each iteration i, exactly i pa-
tients were added to the validation cohort: random patients were gen-
erated as follows: (1) probability of an event was generated at random
based on the actual data from the original un-altered validation set;
(2) patient group was chosen at random, based on the probability of
choosing a patient from the original un-altered validation set; (3) time
to event or follow-up were chosen through random number generator
using sample function in R. As FN and FP rates were increased, we clus-
tered the newly formed noise-enriched patient set and subjected it to
Kaplan-Meier survival analysis, reporting the median log-rank p-
values for each i, sampled from 10,000 iterations.

To confirm that fluctuations in the signature threshold levels do not
affect predictive power of our model, we evaluated performance of our
model while varying (i)methylation signature threshold (originally p b

0.001) between 0.0001 and 0.005; and (ii) correlation threshold (origi-
nally p b 0.05) between 0.02 and 0.05. For each threshold point, we used
multiple logistic regression,where TCGA-PRAD patient groupswith poor
and favorable treatment response were used as a response variable and
M-values of site harboring genes below the corresponding threshold
were used as inputs, followed by ROC analysis.

Finally, to assess if the predictive ability of the 5 site-gene panel is in-
dependent of commonly used prognostic variables such as pathological
and clinical T-stage, Gleason score, patient age and therapy subtypes,
we performed univariable and multivariable Cox proportional hazard
model analysis using coxph function from survival package in R [62].

3. Results

3.1. Overview

To identify molecular mechanisms that differentiate favorable and
poor treatment response, we have compared DNAmethylation profiles
of patients that failed ADT (i.e., non-responders) with profiles of pa-
tients with favorable response to ADT (i.e., responders) (see schematics
Fig. 1), which defined a therapeutic failure signature. Region-based
analysis of methylation sites identified TSS 1500, TSS 200, 5′ UTR, and
1st exon regions with significant contribution (i.e., enrichment) in the
therapeutic failure signature. We followed this discovery with the inte-
grative analysis of DNA methylation and gene expression profiles,
which identified methylation sites that are significantly associated
(i.e., through Pearson correlation) and can explain expression variation
(i.e., through linear regression analysis) of their site-harboring genes.
Identified candidateswere then subjected to validation (i.e., their ability
to predict treatment response) in independent non-overlapping clinical
patient cohorts, usingKaplan-Meier survival analysis [58] (log-rank p=
0.0191, hazard ratio = 4.37), t-distributed stochastic neighbor embed-
ding clustering [56] (sensitivity =100%), and ROC analysis [63]
(AUROC = 0.83, AUROC = 0.98). We have compared performance of
our model to methylation, expression, and correlation alone and dem-
onstrated that ourmodel outperforms these data types in correctly clas-
sifying patients at risk of ADT resistance. Furthermore, we evaluated
statistical significance of these predictions through random modeling
(randommodel 1 p= 0.010, randommodel 2 p= 0.011) and robustness
analysis (FN threshold= 31%, 18/58; FP threshold= 9%, 5/58) to dem-
onstrate non-random robust classification of patients into ADT response
groups. Finally, to demonstrate that our model is not affected by com-
monly used prognostic clinical variables, such as pathological and clini-
cal T-stage, Gleason score, age, and therapy subtypes, we utilized
multivariable Cox proportional hazard model [59], demonstrating that
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none of these variables were predictive of ADT response and they did
not affect predictive ability of the 5 site-gene panel.

3.2. Time-Course Analysis of Treatment Response Identifies Signature of
Therapeutic Failure

To evaluate treatment response to ADT in prostate cancer patients,
we analyzed HumanMethylation450 [70] DNA methylation profiles of
primary prostate tumors from The Cancer Genome Atlas (TCGA-PRAD)
[13] patient cohort (Table 1).While relatively recent, TCGA-PRAD repre-
sents the most comprehensive cohort of ADT treatment administration
with clinical follow-up to date. Samples in TCGA-PRAD study represent
localized prostate cancer samples that had been obtained through radi-
cal prostatectomy from patients that did not receive any neoadjuvant
(i.e., prior to prostatectomy) treatment. Following prostatectomy, pa-
tients were monitored for adjuvant (i.e., post-operative) ADT adminis-
tration and disease progression, such as Biochemical Recurrence (BCR,
defined by a rapid rise of prostate-specific antigen, PSA, in patient
blood), local or distantmetastases, and prostate cancer-related lethality
(i.e., death due to prostate cancer). For this study, we focused on pa-
tients that received adjuvant ADT and had available follow-up clinical
data (n = 66), suited to study primary ADT resistance.

Each patientwas evaluatedwith respect to the start of his androgen-
deprivation regimen and time to disease progression (BCR, local or dis-
tant metastasis, or lethality) or time to follow-up (if no event occurred,
such patients were considered censored). If a patient had an event dur-
ing the course of the treatment or within 1.5 years after the end of the
treatment (Fig. 2a, Scenario 1), time to treatment failure was defined
as time between the treatment start and such an event (Fig. 2b, red
bars). At the same time, if a patient did not experience a treatment-
related event, time for his treatment-related disease-free survival was
estimated as time between the treatment start and time to his latest
follow-up (Fig. 2a, Scenario 2, Fig. 2b, blue circles).

To define epigenomic changes that differentiate therapeutic failure
and success, we compared DNA methylation profiles of patients with
most rapid treatment failure to patients with longest treatment-
related disease-free survival. For this, we ranked patients based on
their treatment-related disease-free survival time (Fig. 2b) and com-
pared those that fall into the most left and right distribution tails
(roughly, patients outside of a 90% confidence interval), which defined
(i) non-responders as patients that experienced treatment failure within
Fig. 2. Analysis of therapeutic response defines signature of ADT resistance. (a) Schematic repr
occurred during the course of the treatment orwithin 1.5 years after the treatment end. Time be
up: time between treatment-start and latest follow-up indicated. (b) ADT response in the TCGA-
circles define censored patients (without events), indicating time between treatment start and
indicated. (c) Schematic depiction of the differential methylation signature between non-resp
tail) to sites with significant differential methylation (right tail). Signature was defined as a
non-responder and responder patient groups.
1 year of treatment (n = 4) and (ii) responders as patients with
treatment-related disease-free survival over 5.5 years (n= 4) (Fig. 2b).

We compared age, Gleason score, and tumor aggressiveness at diag-
nosis (which includes pathological and clinical T- stage) between the
two groups (Table S1) and did not observe significant difference in clin-
ical aggressiveness in non-responder compared to responder groups
(average age in non-responders group = 60.5 and in responders
group = 60.0; average Gleason score in non-responders group was
8.25 and in responders group=9.0).We then comparedM-value trans-
formed DNA methylation profiles of non-responders and responders
using two-sample two-tail t-test (see Materials and Methods, Dataset
S1), followed by ranking of the methylation sites based on the t-test
p-values, from the least differentially methylated (Fig. 2c, left tail) to
the most differentially methylated (Fig. 2c, right tail), which defined a
“differential methylation signature” of ADT resistance (i.e., treatment
failure).We paralleled this analysis with a non-parametric signature re-
construction, where an empirical p-value for each site was estimated
after 10,000 random site permutations (followed by an FDR correction)
and obtained virtually identical results (NES = −2.64, p b 0.001),
confirming robustness of our signature reconstruction (Fig. S1).

3.3. TSS 200/1500, 5′ UTR, and 1st Exon Regions Are Enriched in Treatment
Resistance Signature

Following reconstruction of the differential methylation signature,
we sought to evaluate the contribution of each region (profiled on
HumanMethylation450 array, Fig. 3a) to resistance to ADT. Regions pro-
filed on the HumanMethylation450 include TSS 200 (i.e., −200 base
pairs upstream of the Transcription Start Site, TSS) or TSS 1500
(i.e., between -200 and -1500 base pairs upstream of the TSS), 5′UTR
(5′ untranslated region), 1st exon, gene body, and 3′UTR (3′ untrans-
lated region) (Fig. 3a). Not to overlook proximal anddistal regulatory el-
ements, we considered TSS 200 and TSS 1500 together for subsequent
analysis (i.e., referred to as TSS 200/1500). It is noteworthy to mention
that a single site can be associated to several regions due to possible
multiple splice variants of a site-bearing gene.

To evaluate contribution of each region, we tested its enrichment in
the differential methylation signature. First to visualize enrichment of
each region, we divided the differential methylation signature into
100 site-long steps. Each step was evaluated with respect to the per-
centage (i.e., fraction) of sites that fall into TSS 200/1500, 5′UTR, 1st
esentation of a treatment time-course. Scenario 1: Time to treatment-related event: event
tween treatment start and a treatment-related event indicated. Scenario 2: Time to follow-
PRAD cohort. Red vertical bars correspond to time between treatment start and event. Blue
latest follow-up. Non-responder (n = 4) and responder (n = 4) (Table S1) patients are
onder and responder patients, sorted from sites whose methylation did not change (left
list of sites ordered by –log10 (p-value) from the two-sample two-tail t-test comparing



Fig. 3.Methylation sites from TSS 200/1500, 5′UTR, and 1st exon regions are enriched in methylation signature of ADT resistance. (a) Schematic diagram showing methylation regions
profiled on the HumanMethylation450 array. (b) Scatter plots depicting enrichment of each region (i.e., site location) in the differential methylation signature. A reference methylation
signature (as in Fig. 2c, ranked from the least differentiallymethylated (left) to themost differentiallymethylated (right)) is divided into 100 site-long steps and contribution of each region
is calculated as % region inside each step. (c) Odds, Fisher Exact Test (FET) and Gene Set Enrichment Analysis (GSEA) demonstrate statistical significance of the region enrichment from
Fig. 3b. For odds and FET, 500most differentially methylated siteswere considered for significance testing. For GSEA, differential methylation signature (Fig. 2c)was utilized as a reference
and sites from each region were utilized as query sets. P-value was estimated with 1000 site permutations.
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exon, body, or 3′UTR regions (Fig. 3b). Right-side upward- pointing
“horn” indicates over-representation (i.e., enrichment) of sites from a
specific region in the most differentially methylated part of the
Fig. 4. Integrative (epi) genomic analysis identifies a 5 site-gene panel. (a) Schematic repre
methylated sites; (middle) Pearson correlation analysis (i.e., pre-screening) between methyla
linear regression analysis to identify sites that can explain expression changes of the site-harbo
(blue) and over-methylated (red) sites indicated (at p-value b 0.001, n = 144). (c) Scatter
(i.e., methylation-expression) Pearson correlation (x-axis) for the 144 significantly methylate
mRNA expression of their site-harboring genes (linear regression at p b 0.05 shown), with non-
z-scored methylation M-values and DESeq2 normalized expression values.
signature (i.e., right tail), as is evident from analysis for TSS 200/1500,
5′ UTR, and 1st exon regions (Fig. 3b). We evaluated statistical signifi-
cance of such enrichments using Fisher Exact Test (FET) [52] and Gene
sentation of the integrative (epi) genomic analysis: (top) identification of differentially
tion levels of the sites and mRNA expression levels of the site-harboring genes; (bottom)
ring genes. (b) Volcano plot of the differentially methylated sites, with under-methylated
plot depicting the relationship between differential methylation (y-axis) and site-gene
d sites from Fig. 4b. (d) Linear regression analysis between site methylation values and
responder (coral) and responder (aquamarine) samples indicated. The x and y axes depict
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Set Enrichment Analysis (GSEA) [53] (see Materials and Methods),
which confirmed statistical significance of enrichment for TSS 200/
1500 (FET p = 2.5E-13, GSEA p b 0.001), 5′UTR (FET p = 2.3E-09,
GSEAp b 0.001), and 1st exon (FETp=2.5E-19, GSEAp b 0.001) regions
in the differential methylation signature, while body and 3′UTR regions
did not show any enrichment (Fig. 3c). Given these results, we consid-
ered TSS 200/1500, 5′ UTR and 1st exon regions for our subsequent
therapeutic failure analysis.

3.4. Integrative (epi) Genomic Analysis Identifies a 5 Site-Gene Panel of ADT
Resistance

To elucidate markers of ADT resistance, we sought to categorize dif-
ferentiallymethylated sites and identify those that have a significant as-
sociation and can explain variation in the expression of the site-
harboring genes (general strategy in Fig. 4a). For this, we focused on
sites from TSS 200/1500, 5′ UTR, and 1st exon regions with significant
differential methylation (t-test p b 0.001, n= 144, Dataset S1) between
non-responders and responders (Fig. 4b). Our ultimate goal was to
identify a potential “cause-effect” relationship, where differentially
methylated sites (n = 144) would have a potential functional “causal”
effect on the expression changes in the site-harboring genes. As a pre-
screen for such relationship, we utilized Pearson correlation analysis
[54] between methylation M-values (see Materials and Methods) for
each site and mRNA expression levels (i.e., DESeq2 [51] normalized
counts) for each corresponding site-harboring gene. Such analysis was
done for each site-gene pair and identified differentially methylated
sites with significant positive (or negative) association to their corre-
sponding genes (i.e., Pearson correlation p b 0.05, n = 8) (Fig. 4c).

Our next step was to test these site-gene pairs to determine the ex-
tent towhichmethylation values can explain variation in the expression
changes of their site-harboring genes. For this, we utilized linear least
squares regression analysis [55],where amethylationM-valuewas con-
sidered as

predictor (i.e., independent) variable and anmRNAexpression value
was considered as response (i.e., dependent) variable. Linear regression
analysis identified a panel of 5 site-gene pairs (Fig. 4d), where differen-
tially methylated sites could explain from 51% to 80% variation (i.e., as
defined by the coefficient of determination, R2) of the site-harboring
genes: TTC27 (R2 = 0.80, p = 0.002), STMN1 (R2 = 0.76, p = 0.004),
FOSB (R2 = 0.75, p = 0.005), FKBP6 (R2 = 0.56, p = 0.03), and CSPG5
(R2 = 0.51, p = 0.045). Interestingly, the differentially methylated
site harbored by FOSB showed a positive relationship (i.e., positive
slope) with FOSB mRNA expression while sites harbored by FKBP6,
TTC27, CSPG5 and STMN1 showed a negative relationship (i.e., negative
slope) (Fig. 4d), which indicates that changes in methylation levels
might interfere with transcriptional regulation by a repressor or an acti-
vator, respectively.

3.5. Validation in Independent Patient Cohorts

We next evaluated the ability of the 5 site-gene panel to predict
therapeutic response to ADT in independent non-overlapping patient
cohorts. Our validation sets have been chosen to demonstrate several
points, including that (i) our 5 site-gene panel is capable of
distinguishing between primary tumors with poor and favorable treat-
ment response; (ii) molecular profiles of patients that were adminis-
tered ADT and developed Biochemical Recurrence are similar to
profiles of patients that genuinely failed the ADT with metastases and
developed CRPC; (iii) our 5 site-gene panel can effectively identify
CRPC samples; and (iv) our 5 site-gene panel can accurately distinguish
between the primary prostate cancer samples with favorable treatment
response and CRPC samples that failed ADT treatment. For this, we
started with a TCGA-PRAD cohort (n = 58, TCGA-PRAD validation set)
of ADT treated patients (Table 1), excluding non-responders (n = 4)
and responders (n = 4) to avoid over-fitting. T-distributed stochastic
neighbor embedding clustering (t-SNE), a widely-used dimensionality
reduction technique [56], done on the methylation levels of the identi-
fied 5 site-gene panel, classified patients from the validation set into
two groups (i.e., group 1 and group 2) (see STAR Methods, Fig. 5a).

The next essential step in our predictive analysis was to evaluate if
these patient groups significantly differed in their response to
androgen-deprivation treatment. For this, we compared treatment-
related disease-free survivals (as defined previously, Fig. 2a-b) between
the groups using Kaplan-Meier survival analysis [58], which demon-
strated significant difference in treatment response between the groups
(see STAR Methods, Fig. 5b) (log-rank p = 0.0191). Patients in groups 1
(aquamarine) experienced treatment-related disease progression
events at a slower rate, while events related to androgen-deprivation
therapy in group 2 (coral) occurred at a much faster rate (hazard ratio
= 4.37, p = 0.031). We further evaluated if patient separation was
effected by Gleason score, a commonly used clinical prognostic variable.
For this,we evaluated patientswith Gleason score 7 andGleason score 8
+ 9 separately and demonstrated that they did not affect treatment dif-
ferences between the group 1 and group 2 (Fig. S2a, Gleason score 7 log-
rank p = 0.048; Gleason score 8 + 9 log-rank p = 0.017) patient
classification.

Given potential cause-effect relationship in the 5 site-gene panel, we
further confirmed the effect of the expression of site-harboring genes on
the separation between the two groups through Receiver Operating
Characteristic (ROC) analysis [63], whose performance was evaluated
using area under the ROC, AUROC [64] (see STAR Methods, Fig. 5c),
where AUROC= 0.5 indicates a random classifier and AUROC= 1 indi-
cates a complete separation of the patient groups. ROC analysis demon-
strated that bothmethylation levels of 5 sites (AUROC=0.98) aswell as
expression levels of site-harboring genes (AUROC= 0.74) significantly
contributed to the group separation and thus can be utilized for patient
classification.

In addition to validation in the TCGA-PRAD cohort, we further evalu-
ated if the identified 5 site-gene panel can determine failed ADT re-
sponse in (i) Stand Up To Cancer (SU2C) [48] patient cohort with
castration-resistant prostate cancer (CRPC) metastatic samples (n =
51); (ii) Grasso et al. [46] patient cohort with androgen-naive primary
tumors (n = 58) and CRPC metastatic samples (n = 33); (iii) Cai et al.
[45] patient cohort with androgen-naïve primary tumors (n = 21)
and CRPC bone metastasis (n = 19) (Fig. 5d-f, Table 1); (iv) Beltran
et al. [44] patient cohort with CRPC metastatic samples (n = 34); and
(v) Prostate Cancer Medically Optimized Genome-Enhanced Therapy
(PROMOTE) [47] patient cohort with CRPC metastatic samples that
were treated with Abiraterone acetate for 12 weeks with subsequent
treatment failure (n=29) (Fig. S2b, Table 1). First, to evaluate if expres-
sion levels of the 5 site-gene panel in primary tumors with poor ADT re-
sponse (i.e. group 2) are comparable to metastatic CRPC samples
(i.e., metastatic sampleswith ADT failure) anddemonstrate that profiles
of patients that received ADT after surgery with subsequent BCR are
similar to the profiles of patients who have failed ADT with metastatic
disease, we compared expression levels from the 5 site-gene panel in
the TCGA-PRAD patient cohort (group 1 and group 2, primary tumors)
and SU2C (CRPC metastatic samples) (see Materials and Methods,
Fig. 5d), which demonstrated that genes from the 5 site-gene panel (i)
substantially differ between patient with favorable ADT response
(i.e., group 1) and poor ADT response (i.e., group 2) (p = 0.01) as well
as between patients with favorable ADT response (i.e., group 1) and
CRPC metastasis (p = 0.00006); and (ii) have similar expression pat-
terns in patients with poor ADT response (i.e., group 2) and CRPC met-
astatic samples (p = 0.26) (Fig. 5d), demonstrating that 5-site gene
panel has comparable expression levels in primary tumors with poor
ADT response and metastatic CRPC samples. Subsequently, to further
confirm ability of our 5 site-gene panel to identify samples with CRPC
ADT failure, we subjected expression profiles from patient cohorts in
Grasso et al. [46] and Cai et al. [45] to t-SNE clustering (see Materials
and Methods), which demonstrated the ability of our panel to separate



Fig. 5. Five site-gene (epi) genomic panel predicts ADT failure in independent patient cohorts. (a) t-SNE clustering identifies two groups of patients: group 1 and group 2 (a full set of 5
dimensions considered). (b) Kaplan-Meier survival analysis identifies the significant difference in treatment-related survival (i.e., treatment response) between groups 1 and 2 from
Fig. 5a. Log-rank p-value and hazard ratio are indicated. (c) ROC analysis: AUROC indicates the ability of methylated sites and expression of site harboring genes can classify patients
into group 1 and group 2. (d) Violin plot for composite Stouffer integrated z-scores (see Materials and Methods) in group 1 (n = 44), group 2 (n = 14) and SU2C (n = 51) cohorts.
One-tail two-sample Welch t-test p-values are indicated. (e) t-SNE clustering (all 5 dimensions considered) based on 5 site-gene panel in Grasso et al. cohort (n = 91) [46]; and (f) Cai
et al. (n = 40) [45] cohort; is able to separates androgen sensitive (AS, light blue) from castration-resistant prostate cancer (failed ADT, grey) samples (sensitivity = 100% for failed
ADT CRPC selection: 33/33 for Grasso et al., and 19/19 for Cai et al.).
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CRPC (grey) fromandrogen sensitive (AS) (light blue) samples (sensitiv-
ity to cluster CRPC into one groupwas 100% in both datasets) (Fig. 5e-f).
Finally, to confirm the ability of the 5-site-gene panel to effectively dis-
tinguish between CRPC ADT failure samples and TCGA-PRAD samples
with favorable ADT response, we compared patient profiles in Beltran
et al. [44] and PROMOTE [47] to the patients from the TCGA-PRAD with
favorable treatment response (i.e., group 1) throughmultiple logistic re-
gression followed by ROC analysis (see Materials and Methods), which
demonstrated that our 5 site-gene panel can effectively distinguish be-
tween TCGA-PRAD with favorable ADT response and Beltran et al. [44]
(AUROC = 0.83) and PROMOTE [47] (AUROC = 0.98) (Fig. S2b).
Taken together our findings indicate a significant ability of our 5-site
gene panel to predict ADT failure in diverse prostate cancer cohorts.

3.6. Multimodal Comparative Analysis Demonstrates Statistical Signifi-
cance of the Predictive Model

For multimodal performance assessment of our model, we have
evaluated (i) advantages of our model over methylation, expression,
and correlation data alone; (ii) non-randomness of its predictive ability
through comparison to 5 site-gene pairs selected at random; (iii) ro-
bustness of our findings through evaluation of how well our model
can classify patients at varying levels of noise; and demonstrated that
(iv) predictive ability of our panel is not affected by the commonly
used prognostic clinical variables, such as pathological and clinical T-
stage, Gleason score, age, and therapy subtypes.
To assess advantages of our model over other commonly used
methods, we have compared the ability of the 5 site-gene panel to pre-
dict ADT failure to (i) differentially methylated sites alone (two-tail
two-sample Student t-test p b 0.001); (ii) differentially expressed
genes alone (two-tail two-sample Student t-test p b 0.001); and (iii)
site-gene pairs identified from the correlation analysis (Pearson correla-
tion p b 0.05); (iv) top 5 differentially expressed genes; and (v) top 5
differentially methylated genes which have also been utilized by
[71–85] and achieved significant results in predicting disease progres-
sion. We have compared the ability of our model to predict ADT re-
sponse to the therapeutic predictive ability of methylation, expression
and correlation alone through Kaplan-Meier survival analysis (results
reported through log-rank p-value and hazard ratio) and concordance
index (i.e., c-index) (seeMaterials and Methods) in the TCGA-PRAD vali-
dation set and demonstrated that our 5 site-gene panel outperforms
these data types in correctly classifying patients at risk of ADT resistance
(Fig. 6a).

Furthermore,we evaluated non-randomness of the predictive ability
of our 5 site-gene panel through comparison to 5 site-gene pairs se-
lected at random (see Materials and Methods). For this, we defined
two random models, where 5 site-gene pairs were selected at random
from the pool of (i) all sites from the HumanMethylation450 platform
(Fig. 6b, random model 1, dark grey); and (ii) sites from TSS 200/1500,
5′ UTR, and 1st exon regions (Fig. 6b, random model 2, light green).
Five random sites were sampled 10,000 times in the TCGA-PRAD valida-
tion set and then evaluated for their ability to predict therapeutic



Fig. 6.Multimodal comparative analysis demonstrates significance of the 5 site-gene panel. (a) Comparing 5 site-gene panel (grey bars) to commonly usedmethods, including differential
methylation (black bars), differential expression (red bars),Pearson correlation betweenmethylation and expression (pink bars), top 5 differentially methylated sites (dark red), and top 5
differentially expressed genes (brown) through log-rank p-value, hazard ratio and concordance index. * indicates statistically significant changes (log-rank p = 0.019; HR p = 0.03; c-
index p = 0.0001) (b) Random models to evaluate the ability of the 5 site-gene pairs chosen at random to separate patients into groups with different treatment response.
Distributions of log-rank p-values from the random models indicate the significance of the predictive ability of our identified 5 site-gene panel. (c) Robustness analysis measuring
predictive ability of the identified 5 site-gene panel across increasing FP and FN rates. (d) Multivariable Cox proportional hazard model demonstrates that commonly used prognostic
clinical variables do not predict ADT response and do not affect predictive ability of the identified panel (Wald test Cox p-values indicated).
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response through Kaplan-Meier survival analysis. Empirical p-value for
each random model was estimated as a number of times log-rank p-
values for the randomly selected sites reached or outperformed the
log-rank p-value for our original 5 site-gene panel, which demonstrated
non-randomness of the 5 site-gene panel predictive ability (random
model 1 p = 0.010; random model 2 p = 0.011) (Fig. 6b).

To test robustness of the predictive ability for the 5 site-gene panel,
we introduced noise into our TCGA-PRAD validation set (excluding sam-
ples used for signature reconstruction to avoid overfitting, n = 58) and
measured how much noise can be “tolerated” so that our 5 site-gene
panel can still accurately predict treatment response. For this, we either
randomly removed ADT treated patients (i.e., introduced False Nega-
tives, FN) or randomly added ADT treated patients (i.e., introduced
False Positives, FP) from or to the validation set (see Materials and
Methods, Fig. 6c). Let us denote the number of patients removed or
added at each iteration as i (i=1… 58). At each iteration,we evaluated
ability of the 5 site-gene panel to classify patients and predict therapeu-
tic response using Kaplan-Meier survival analysis. Each ith iteration was
run10,000 times andmedian log-rank p-values across 10,000 runswere
reported (Fig. 6c). Our analysis demonstrated that the 5 site-gene panel
could successfully predict therapeutic response even at 31% FN (18/58)
and at 9% FP (5/58) rates (Fig. 6c), which demonstrates the robustness
of its predictive ability even at high noise levels.

To confirm that fluctuations in the signature threshold levels do not
affect power of our model to identify distinct treatment response
groups, we evaluated predictive ability of our model while varying (i)
methylation signature threshold (p b 0.001); and (ii) correlation thresh-
old (p b 0.05) through multiple logistic regression at each threshold
level followed by ROC analysis (seeMaterials andMethods), which dem-
onstrated that our model kept its predictive power at varying methyla-
tion signature (AUROC between 0.85 and 0.99) and correlation (AUROC
between 0.85 and 0.98) thresholds (Fig. S3a-b).

Finally, to confirm that the 5 site-gene panel is an indicator of pri-
mary resistance and not overall disease aggressiveness, as a negative
control, we tested if the 5 site-gene panel can classify patients based
on disease aggressiveness in Sboner et al. dataset [49], also known as a
SwedishWatchfulWaiting cohortwith patients up to 30 years of clinical
follow-up not subjected to treatments (n = 281, localized prostate tu-
mors) (Table 1). The Kaplan-Meier survival analysis confirmed that pre-
dictive ability of our panel is independent of disease aggressiveness
(log-rank p = 0.78, hazard ratio = 0.94, prostate cancer-related death
was used as a clinical end-point) (Fig. S3c). Furthermore, to confirm
this finding, we evaluated if the predictive ability of the 5 site-gene
panel is independent of commonly used prognostic clinical variables
[86,87], such as pathological and clinical T-stage, Gleason score, patient
age and therapy subtypes, which include luteinizing hormone releasing
hormone (LHRH) agonists (i.e., bind to pituitary LHRH receptor to stim-
ulate the production of luteinizing hormone thus interfering with the
yield of testosterone), LHRH antagonists (i.e., block the pituitary LHRH
receptor thus completely shutting down the production of testoster-
one), CYP17 inhibitors (i.e., block CYP17 enzyme essential for androgen
synthesis) and anti-androgens (i.e., bind to androgen receptor blocking
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androgen binding). For this, we performed multivariable Cox propor-
tional hazard model analysis [59] in the TCGA-PRAD validation set,
which confirmed that (i) none of these variables were predictive of
ADT response and (ii) they did not affect predictive ability of the 5
site-gene panel (Fig. 6d). Given that our model has a highly accurate in-
dependent ability to predict ADT response, we anticipate that this panel
can be ultimately utilized to classify patients at risk of developing resis-
tance to ADT, prioritize patients for ADT intervention, and be incorpo-
rated into personalized and precision therapeutic platforms.

4. Discussion

In this work, we have developed a systematic genome-widemethod
that integrates DNAmethylation andmRNA gene expression profiles to
extrapolate therapeutic resistance in cancer patients. Several features of
our method distinguish it from previously utilized methods used for
data analysis in oncology. Firstly, it introduces a systematic (epi) geno-
mic data drivenmethod for predictive analysis of therapeutic resistance
and is an original method of its kind to the best of our knowledge. Sec-
ond distinguishing feature of our approach is in its ability to identify po-
tential functional “cause-effect” relationships between DNA
methylation sites and mRNA expression of the site-harboring genes,
which outperformed genomic approaches that rely on single data type
(e.g., expression or methylation data alone) or their correlation alone,
and significantly increases the probability of identifying (epi) genomic
markers with functional role in therapeutic resistance. Thirdly, our ap-
proach introduces a highly non-random robust technique to classify pa-
tients at risk of resistance and thosewhowould benefit from the specific
therapeutic intervention. Finally, while motivated by the emerging
cases of resistance to androgen-deprivation in prostate cancer, our ap-
proach can be potentially applicable to other treatment regimens and
diseases.

Our systematic integrative analysis of the ADT resistance in prostate
cancer has identified a panel of 5 differentially methylated sites har-
bored by FKBP6, TTC27, CSPG5, FOSB, and STMN1 genes. Several of
these genes have been known to play a role in carcinogenesis and treat-
ment response in other cancer types. For instance, (i) hyper-
methylation of FKBP6 has been shown to decrease cell viability and en-
hance progression in cervical cancer [88]; (ii) FOSB is a known regulator
of differentiation during tumorigenesis in breast cancer [89]; (iii) FOSB
increases tumor growth and metastases in ovarian cancer [90]; (iv)
FOSB is implicated in TP4 response in triple negative breast cancer
[91] (v) STMN1 affects cell-cycle progression and cell mobility in non-
small cell lung cancer [92]; (vi) STMN1 has been shown to have prog-
nostic significance in breast cancer [93]; and (vii) STMN1 enhances sen-
sitivity to treatment with paclitaxel in esophageal cancer [94]. The
identified 5 site-gene panel thus constitutes valuable candidates for fur-
ther therapeutic studies.

Interestingly, FOSB is a member of FOS gene family AP1 complexes,
which bind to the promoter or enhancer regions of target genes
[90,95] and regulate cell survival, proliferation, angiogenesis, invasion,
and metastasis [90,96–99]. Several studies have indicated that FOSB
contributes towards increased concentration of IL-8 (interleukin-8)
which influence angiogenesis, affecting cellular proliferation andmetas-
tases in ovarian cancer [90]. Recently, it has also been observed that IL-8
is associated with transcriptional activity of androgen receptor (AR),
which indicates that FOSB might play an important role in ADT resis-
tance and thus constitutes a valuable candidate for further functional
validation.

In recent years, clinical oncology has witnessed the emergence of a
so-called neuroendocrine prostate cancer phenotype, with strong ties
to failed response to androgen-deprivation treatment [100–102]. In
fact, several studies have shown that a substantial number of patients
treatedwith enzalutamide or abiraterone relapse and develop neuroen-
docrine features [44,103]. Interestingly, one of the genes we identified,
FOSB, has been shown to contribute to disease progression in small
bowel neuroendocrine tumors [104]. Thus, it would be a crucial subse-
quent step to evaluate the clinical relevance of our gene panel in neuro-
endocrine phenotype.

In summary, we have introduced a systematic genome-wide inte-
grative approach that identified an (epi) genomic panel of 5 site-genes
which are predictive of response to ADT. We propose that this panel
can be utilized to pre-screen patients and identify those (i) who are at
higher risk of developing resistance to ADT and who should potentially
be advised an alternative therapeutic regimen (such as chemotherapy,
radiation therapy etc.), thereby avoidingADT side effects and improving
disease-course; and (ii) who would benefit from ADT, making it their
priority therapy choice. Furthermore, this panel could be utilized to pri-
oritize patients for prospective clinical trials with a long-term objective
to extend this effort to build an adaptable accurate platform for preci-
sion therapeutics.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.04.007.
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