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Abstract

Versican is a proteoglycan that hasmany different roles in tissue homeostasis and inflammation. The

biochemical structure comprises four different types of the core protein with attached glycosamino-

glycans (GAGs) that can be sulfated to various extents and has the capacity to regulate differentiation

of different cell types, migration, cell adhesion, proliferation, tissue stabilization and inflammation.

Versican’s regulatory properties are of importance during both homeostasis and changes that lead to

disease progression. The GAGs that are attached to the core protein are of the chondroitin sulfate/

dermatan sulfate type and are known to be important in inflammation through interactions with

cytokines and growth factors. For a more complex understanding of versican, it is of importance

to study the tissue niche, where the wound healing process in both healthy and diseased conditions

take place. In previous studies, our group has identified changes in the amount of the multifaceted

versican in chronic lung disorders such as asthma, chronic obstructive pulmonary disease, and bron-

chiolitis obliterans syndrome, which could be a result of pathologic, transforming growth factor β
driven, on-going remodeling processes. Reversely, the context of versican in its niche is of great

importance since versican has been reported to have a beneficial role in other contexts, e.g. emphy-

sema. Here we explore the vast mechanisms of versican in healthy lung and in lung disorders.
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Introduction

Versican is, as the name implies, a versatile molecule that plays important
roles in cell–matrix interactions during adhesion,migration and inflamma-
tory responses. It is readily expressed by fibroblasts and we have observed
that versican is involved in remodeling in inflammatory lung disorders
such as asthma, chronic obstructive pulmonary disease (COPD) and
bronchiolitis obliterans syndrome (BOS). In this review, we therefore
aim to explore the molecular role of versican in lung disorders.

Remodeling of the extracellular matrix (ECM) is constantly occur-
ring in the body to meet ever-changing demands on stability and

flexibility of the matrix. Tissue repair and remodeling are processes
in wound healing, but these mechanisms also contribute to the aber-
rant ECM disposition in several lung disorders such as COPD and
Asthma (Shimizu et al. 2011; Dournes and Laurent 2012) diseases
that affect a large population and range from mild to life-threatening.
Remodeling and deposition of ECM molecules are also important
events in the development of chronic rejection of transplanted lung
(Andersson-Sjoland, Thiman, et al. 2011). The altered matrix along
with inflammatory processes contributes to the diminished lung
capacity characteristic of these lung disorders.
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The tissue-remodeling processes are orchestrated by recruited
inflammatory cells, resident cells, cytokines and chemokines (see Fi-
gure 1). One central player during remodeling in lung disorders is
transforming growth factor (TGF)-β (Yang et al. 2012), which has
been reviewed for COPD (Konigshoff et al. 2009), asthma (Duvernelle
et al. 2003), pulmonary fibrosis (Khalil and Greenberg 1991) and BOS
(Andersson-Sjoland, Thiman, et al. 2011). Alveolar epithelial cells
have the capacity to release a host of cytokines and chemokines, and
the derangement of epithelial–macrophage interactions induced by in-
jury may result in persistent inflammation and remodeling (Alber et al.
2012). The inflammatory site in the lung triggers homing and activa-
tion of both local and bone marrow-derived progenitor cells that are
important in the healing process (Krause 2008).

Remodeling occurs as a result of persistent mechanical stress or
hypoxia, but may also be a response to prolonged inflammation
since inflammatory processes may affect the tissue. Scar-forming in-
flammation is thus an important feature of several lung disorders
where versican plays an important role. Interestingly, remodeling
has also been shown to occur in parallel with inflammation (Rydell-
Tormanen et al. 2012), often in both airways and pulmonary vessels
(Zanini et al. 2010). During disease progression, the altered blood ves-
sels affect lung structure, and decrease lung function and oxygen sat-
uration (Colombat et al. 2007). The epithelium is also affected and

subjected to increased oxidative stress and other triggers, such as pol-
len, that cause the epithelium to lose its function and differentiate into
mesenchymal cells, with increased deposition of ECM and thickening
of the gas exchange layer (Gorowiec et al. 2012). Indeed, stiffening of
the ECM during remodeling and development of fibrosis affects cell
adhesion and migration so that cells migrate towards stiffer ECM
(Plotnikov and Waterman 2013).

Because all these changes contribute to disease progression, it is ne-
cessary to study the molecular composition of the ECM niche to
understand cell behavior. Fibroblasts are central during remodeling
and major contributors to the increased deposition of proteoglycans
(PGs). Versican is one of the deposited PGs and is an important player
in COPD (Hallgren et al. 2010), asthma (Westergren-Thorsson et al.
2002) and BOS (Andersson-Sjoland et al. 2009).

PGs consist of a core protein with covalently bound glycosamino-
glycans (GAGs), which can be sulfated to varying extent. These mole-
cules play crucial roles in lung infection, inflammation and tissue
repair as major regulators of cell behavior in the ECM (Gill et al.
2010). The reactive GAG chains result in the ability of certain PGs,
such as versican, to control the viscoelastic behavior and stability of
the ECM. Different families of PGs contain different GAG side chains;
chondroitin sulfate/dermatan sulfate (CS/DS) PGs (lecticans), small
leucine-rich repeat PGs (SLRP), and heparan sulfate PGs (HSPGs).

Fig. 1. Events involving versican in the development of lung disease (e.g. COPD). (A) As a response to tissue damage and the cytokine/chemokine milieu (dots),

mesenchymal (fibroblasts) and inflammatory (monocytes) cells migrate towards injury, and progenitor cells (MSC and fibrocytes) are recruited locally or from the

circulation. (B) As a result, among other ECMmolecules, versican is deposited in the lung tissue, increasing the reserve of cytokines/chemokines that perpetuate the

recruitment of inflammatory cells. (C) Versican is involved in the differentiation of cells as depicted color coded (monocyte to macrophage, MSC to fibroblast and

fibrocyte to myofibroblast. (D) Immunohistochemistry visualizes the deposition of versican (brown colors, arrow heads) in lung parenchyma from COPD patients.
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Versican belongs to the CS/DS PG gene family along with aggrecan,
neurocan, and brevican, each differently distributed: versican in vari-
ous soft tissues; aggrecan prominent in cartilage; and neurocan and
brevican in the central nervous system (Margolis and Margolis
1994). These PGs are involved in infection and inflammation by inter-
acting with, e.g. cytokines and growth factors. There are other CS/DS
PGs important in remodeling and inflammation events such as the
SLRPs biglycan, fibromodulin and decorin. These PGs are crucial
for matrix assembly and regulation of collagen fibrillation. HSPGs
are mainly expressed in the alveolar basement membranes and on
cell surfaces. The cell surface bound HSPGs are either attached by a
glycosylphosphatidylinositol (GPI) anchor (the glypicans) or by a
transmembrane part (the syndecans). Also the HSPGs are highly bio-
active and implicated in development and disease, including lung em-
physema seen in, e.g. COPD (Smits et al. 2010).

Alterations in the expression of PGs directly influences matrix
compliance and permeability of vessels, airways and the surrounding
tissues. Importantly, the integrity of tissues and stability of the ECM
network is supported by interactions between ECMmolecules such as
versican, and its intimate binding partner hyaluronan. The latter is
mainly produced by fibroblasts and binds several proteins. In this re-
spect, hyaluronan, versican and CD44 contribute to the stability of
the ECM. In this review, we will explore the current knowledge
about the molecular role of versican in the lung niche and how it
may be involved in disease.

Structure and function of versican

Versican encoded on human chromosome 5 and spanning over 90 kb,
shares similar globular (G) structures at the N terminal (G1 domain)
and C terminal (G3 domain) of the protein core along with the other
members of the lectican family. The G1 domain contains an immuno-
globulin (Ig)-like domain and a hyaluronan-binding region (HABR),
whereas the G3 domain consists of two epidermal growth factor
(EGF) repeats, a C-type lectin motif (LC) and a complement-binding
protein (CRP)-like motif. Between G1 and G3 versican has CS/DS-
binding domains where GAG side chains attach (see Figure 2;
Zimmermann and Ruoslahti 1989).

The CS/DS GAG chains are linear anionic polysaccharides consist-
ing of up to∼40 repeating disaccharide units of glucuronic acid (GlcA)
and N-acetyl-galactosamine (GalNAc). Some of the GlcA can be epi-
merized into iduronic acid (IdoA) and the polysaccharide may then be
referred to as DS or rather CS/DS, due to the mixed content of GlcA
and IdoA. The presence of IdoA confers amore flexible structure of the
GAGs and allows for binding of growth factors and cytokines. We
have demonstrated that IdoA is of importance during directed migra-
tion, and the ablation of dermatan epimerase 1 that is responsible for

generation of IdoA led to delayed ability to re-populatewounded areas
(Bartolini et al. 2013). Importantly, versican contains only ∼10% or
less IdoA, and it is not clear whether this content affects cell behavior
such as migration.

Yet another modification affecting cell behavior is the sulfation of
the GAGs to various extents with preference to 4-sulfated GalNAc re-
sidues. A substantial amount of 6-sulfated GalNAc is also found.
Finally, small amounts of non-sulfated, 2,4-sulfated, 2,6-sulfated
and 4,6-sulfated disaccharides have been described (Hitchcock et al.
2006). Importantly, the sulfation pattern is of great importance for
cellular events and is crucial for chemokine- and selectin-binding to
versican (Kawashima et al. 2002).

Adding complexity, versican can be differentially spliced. Alterna-
tive splicing of versican mRNA encoding the CS/DS-binding domain
generates four isoforms of versican, namely V0, V1, V2 andV3, which
differ in molecular weight. The splice variants are outlined in Figure 2.
Recently, an additional isoform, V4, was identified as up-regulated in
breast cancer along with the other splice variants (Kischel et al. 2010).
The versican isoforms differ in length in their CS/DS-binding domain
and therefore also in the number of GAG side chain attachment sites.
The V0 is the largest isoform and contains two GAG-binding domains
named α-GAG-binding domain and β-GAG-binding domain. The
V1 contains only the β-GAG-binding domain, whereas the V2 only
has the α-GAG-binding domain. The V3 splice form completely lacks
GAG attachment sites, and is the smallest of the isoforms (see Figure 2).

TGF-β has been shown to induce the expression of proteins that are
involved in mRNA splicing and RNA processing in human lung fibro-
blasts (Hallgren et al. 2012). Importantly, TGF-β2 and TGF-β3 in-
crease the expression of splicing variants V0 and V1 (Berdiaki et al.
2008; Norian et al. 2009). The production of these alternative iso-
forms of versican by fibroblasts primarily may trigger and perpetuate
tissue remodeling and disease progression (Hallgren et al. 2012). Inter-
estingly, different isoforms of versican affect cell behavior differently
and could be of importance during pathological progression. Alterna-
tive splicing leading to increased levels of V1 thus increased prolifer-
ation and also resulted in a resistance to apoptosis in fibroblasts. The
V2 isoform on the other hand decreased the proliferation and had no
effect on apoptosis (Sheng et al. 2005). Interestingly, the V1 variant
had the ability to induce mesenchymal–epithelial transition in fibro-
blasts, resulting in an expression-shift from N-cadherin to epithelial
specific E-cadherin (Sheng et al. 2006).

The complex structure of the core protein invites many binding
partners. For example, integrinβ1, EGF-R, tenascin, fibulin-1 and -2
as well as fibrillin-1 bind to the G3 domain of versican (Wu et al.
2005). In addition, the negatively charged GAGs create a brush-like
structure around the core of versican, and these properties contribute
to the long extended shapes of the versican molecules opening up for
binding of positively charged molecules such as cytokines, chemo-
kines, growth factors and also selectins and CD44 (Wu et al. 2005).
Interestingly, versican can bind specific chemokines such as liver-
and activation-regulated chemokine, and secondary lymphoid-tissue
chemokine, but not others (e.g. IL-8 and macrophage inflammatory
protein-1α. The binding occurs through the CS/DS chains of versican,
and the binding tends to down-regulate the function of these chemo-
kines (Hirose et al. 2001). It is however important to note that versican
only displays a few IdoA residues. The DS part of PGs is of great
importance during coagulation and also affects wound healing and
inflammation (Malmstrom et al. 2012).

Taken together, the vast biological diversity of versican highly
contributes to its important roles in physiological and pathological
events.

Fig. 2. Structure of versican and its splice variants. Versican has globular

domains at the N- (G1) and C-terminal (G3). The G1 contains an Ig-like

domain, and an HABR; the G3 contains two EGF repeats; a LC; and a

CRP-like motif. Between G1 and G3, CS/DS-binding sites attach GAG side

chains to a various extent depending on splice variant (V0, V1, V2 and V3).
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Regulation of versican expression

The biodiversity of versican lies in the different domains of the mol-
ecule, and in particular the CS/DS-binding domain contributes highly
to the various activities of versican. The specific GAG constitution dis-
played on the versican molecules is influenced by extracellular signals
such as TGF-β-, EGF- and platelet-derived growth factor (PDGF)-BB
affecting specific GAG synthetic enzymes involved in the process
(Tiedemann et al. 1997). TGF-β1 is a key player in regulating ECM
production and up-regulates the synthesis of versican in many cells,
among those, lung fibroblasts (Westergren-Thorsson et al. 1991).
The TGF-β signaling pathway is strongly associated with fibrotic
and inflammatory lung disorders, and indeed, the binding of TGF-β
to its type II receptor in concert with the type I receptor leads to for-
mation of a receptor complex and phosphorylation of the type I recep-
tor. Subsequently, the type I receptor phosphorylates Smad2 or 3,
which associates with Smad4 and the whole complex translocates
into the nucleus. In the nucleus, the Smad complex associates with
transcription factors and the complexes bind to specific binding sites
within the promoter of versican, biglycan and many other target genes
(Kamato et al. 2013). The versican promoter contains a typical TATA
box around 16 bp upstream of the transcription-starting site. The 5′
flanking sequence contains promoter, enhancer and repressor ele-
ments allowing for specific regulation of versican in different situa-
tions. Several transcription factor binding sites have also been
revealed, including cAMP response element-binding protein, T-cell
factor/lymphoid enhancer-binding factor (TCF/LEF), and activator
protein 1 (Sotoodehnejadnematalahi and Burke 2013).

Yet another way to transcribe versican is through the canonical
wnt pathway, one of the fundamental pathways involved in activities
of development and tissue homeostasis (Logan and Nusse 2004), con-
trolling proliferation, differentiation, cell polarity and motility events
of relevance in tissue remodeling. Apart from TGF-β, signaling
through the Smads also mediates fibrosis through the wnt signaling
pathway (Akhmetshina et al. 2012). The key event in the wnt pathway
is regulation of the production and stability of β-catenin in the cytosol.
In the absence of wnt, β-catenin is phosphorylated by the β-catenin de-
struction complex and targeted for proteasomal degradation. Wnt
proteins stabilize the β-catenins and upon cytosolic 9 β-catenin accu-
mulation, the complex is translocated into the nucleus where it inter-
acts with TCF/LEF (Korinek et al. 1997; Rahmani et al. 2012). This
leads to transcription of versican among other wnt target genes
(Rahmani et al. 2005; van Amerongen andNusse 2009). Interestingly,
the wnt pathway may be regulated by integrins, and β1-integrin can
activate the wnt pathway via integrin-linked kinase (Maydan et al.
2010). Upon interaction between β4-integrin and collagen in the
ECM, the growth factor bound 2 is recruited; inducing growth factor
induced β-catenin accumulation. Recently, aberrant wnt signaling has
been proposed as a key pathway in systemic sclerosis pulmonary fibro-
sis (Lam et al. 2011; Beyer et al. 2012) and studies to inhibit the wnt
pathway have unraveled the potential in targeting the tankyrases. The
inhibition of tankyrases resulted in reduced nuclear accumulation of
β-catenin (Distler et al. 2012) and inhibited wnt signaling along
with reduced bleomycin-induced fibrosis.

Another level of control is through microRNA, which are small
non-coding RNAmolecules involved in the homeostasis and remodel-
ing events of ECM (Rutnam et al. 2013). Interestingly, the 3′UTR of
versican can also modulate the function of several microRNAs, signi-
fying the multitude of control mechanisms (Lee et al. 2010). In several
lung disorders, we have seen an altered phenotype in the lung smooth
muscle cell mass. The transcription factor myocardin in smooth

muscle cells has been shown to coordinate smooth muscle cell dif-
ferentiation through the induction of microRNA-143. By specifically
binding to the 3′UTRof versican, miRNA-143 attenuates versican ex-
pression and subsequently, smooth muscle cell migration (Wang et al.
2010).

Fine-tuning of versican production is thus possible through many
levels of control in different tissues and during disease. Importantly,
this may lead to therapeutic targeting of versican in a specific way to
counteract aberrant wound repair in the lung.

Cellular origins of versican

Versican is expressed by several cell types, and in the lung it is primar-
ily found in elastic fibers in the lamina propria of the central airway
wall, predominantly close to the smooth muscle bundles. In the alveo-
lar parenchyma, versican expression is found in irregular and patchy
areas in the alveolar septa. Fibroblasts are central producers of the
ECM and key regulators of versican during health and even more so
during diseases such as COPD (Hallgren et al. 2010), asthma
(Westergren-Thorsson et al. 2002) and BOS (Andersson-Sjoland,
Thiman, et al. 2011). Human embryonic lung fibroblasts express high
levels of versican, pointing towards an important role of fibroblasts
and versican during lung development (Tufvesson and Westergren-
Thorsson 2000). Versican plays a role in cell–ECM binding and in a
study on primary lung fibroblasts obtained from lung-transplanted
patients, the migratory properties of these cells had a tendency to de-
crease, whereas the production of versican increased (Andersson-
Sjoland, Thiman, et al. 2011). This could be a result of fibroblasts
binding to a versican-rich environment. Versican also has a regulatory
effect on cell proliferation, being highly expressed in proliferating der-
mal fibroblasts (Zimmermann et al. 1994), as well as muscle cell pro-
liferation during development (Velleman et al. 2012). This could be
due to the fact that versican is highly regulated by the cytokine/growth
factor milieu and, apart from TGF-β, PDGF-AB, has been shown to
stimulate the expression of versican core protein in arterial smooth
muscle cells (Schonherr et al. 1997). On the other hand, proinflamma-
tory cytokines such as IL-1β and IFN-γ reduced the expression of ver-
sican in arterial smooth muscle cells (Lemire et al. 2007), pointing
towards the complex regulation of versican during inflammation.

The multipotent mesenchymal stromal/stem cells (MSCs) exhibit
an increase in versican production during differentiation (Foster
et al. 2005) and Murphy et al. showed that versican mRNA levels
were present already in undifferentiated MSCs, which were main-
tained during differentiation. Further exploration is required to eluci-
date the potential role that versican may play in the differentiation of
resident lung-derived MSC into cell types that may hamper disease
progression, or perhaps the opposite.

Fibrocytes are another type of mesenchymal progenitor cells that
derive from bone marrow and home to human lung tissue upon tissue
damage (Andersson-Sjoland et al. 2009). When fibrocytes are re-
cruited from the bone marrow to the tissue they can, in conformity
with MSC, differentiate into different cell types plausibly including fi-
broblasts (Andersson-Sjoland, Nihlberg, et al. 2011). Previous studies
have reported that the collagen and proteoglycan gene expression pro-
files of fibrocytes and fibroblasts differ, and that fibrocytes express
higher mRNA levels of versican than fibroblasts. Also, the production
of high levels of versican together with perlecan, hyaluronan and col-
lagen VI support the hypothesis that fibrocytes are involved in tissue
stabilization and modulation of inflammatory responses (Bianchetti
et al. 2012; see Figure 1).
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Versican during inflammation

The molecular composition of the niche predisposed by the produc-
tion of specific ECM molecules such as versican is crucial for a prop-
erly mounted inflammatory response. However, in lung disorders, the
excessive remodeling processes result in perpetuated inflammation.
New insights into how innate immunity influences pathological re-
modeling are beginning to emerge, revealing interactions between
Toll-like receptors (TLRs) and the ECM including damage-associated
molecular patterns (DAMPs). A number of endogenous molecules
specifically generated upon tissue injury have been identified to acti-
vate TLRs, such as versican, biglycan and fragments of hyaluronan
and HS (Piccinini and Midwood 2010). Fibroblasts of a different ori-
gin and endothelial cells express TLR2 and its co-receptors, thus ver-
sican could be a potent trigger for activation of fibroblasts and
endothelial cells during inflammation (Wang et al. 2009). Binding of
DAMPs to TLRs induces the production of proinflammatory cyto-
kines and upregulates co-stimulatory molecules linking matrix remod-
eling and innate immune responses to the adaptive immunity
(Tufvesson and Westergren-Thorsson 2003; Schaefer et al. 2005;
Phipps et al. 2007; Kim et al. 2009; Piccinini and Midwood 2010).
Thrombospondin-1, which is up-regulated during wound repair and
remodeling, binds to the G1 domain of versican resulting in colocali-
zation into microfibrils containing elastin on vascular smooth muscle
cells to further the inflammatory niche (Kuznetsova et al. 2006; see
Figure 2). Hyaluronan is enhanced at sites of inflammation, tumor
growth and tissue remodeling, and is thought to modulate cell behav-
ior through interaction with several receptors among them being
CD44. The hyaluronan–versican interaction is important for T-cell re-
cruitment into inflamed areas and virus infection-induced hyaluronan
synthesis induced the concomitant synthesis of versican. Moreover,
CD4+ T-cells cultured on versican-rich ECMwere retained in culture,
although their migration was inhibited (Evanko et al. 2012). Studies of
lung fibroblasts treated with polyinosinic:polycytidylic acid (poly I:C),
which mimics a viral infection, showed an increase in hyaluronan and
versican and a related increase in monocyte adhesion to these matrix
structures (Evanko et al. 2009). Versican is thus also important for re-
cruitment of monocytes, which has been demonstrated in a model of
myocardial infarction. Here, infiltrating monocytes after stimulation
with GM-CSF-induced versican expression (Toeda et al. 2005) and
monocytes have been shown to be dependent on versican during ad-
hesion (Potter-Perigo et al. 2010). Indeed, monocytes bind to the ECM
during differentiation and have been shown to produce versican along
with hyaluronan synthases 2 in this process. In addition, TNF-
stimulated gene-6 (TSG-6), encoding for the TSG-6 protein that con-
tributes to matrix stability, was also expressed frommonocytes during
differentiation into macrophages (Chang et al. 2012). A recent study
showed that versican was up-regulated in monocytes in patients with
systemic sclerosis and it is possible that versican contributes to the fi-
brotic processes through a feedback loop involving versican and che-
mokines, resulting in influx of monocytes (Masuda et al. 2013).

In addition, versican accumulates in tumor stroma and plays an im-
portant role in proliferation and metastasis of tumor cells (Du et al.
2013). Relevant in inflammatory states, including cancer and the lung dis-
orders discussed here, versican and especially its C terminus, promotes
cell survival and protects cells from H2O2-induced apoptotic cell death
by enhancing cellmatrix interactions (Du et al. 2013).

Versican in lung disease

Versican is expressed in COPD, asthma and lung-transplanted pa-
tients (see Figure 3; Hallgren et al. 2010; Nihlberg et al. 2010;

Andersson-Sjoland, Thiman et al. 2011), which indicates that it
could be a target for future interventions. Late stage COPD is untreat-
able and lung transplantation is the only option for these patients and
also for other diseases such as cystic fibrosis and IPF. However, lung
transplantation is associated with a risk of developing chronic rejec-
tion (BOS)—a process involving aberrant wound healing and develop-
ment of fibrotic plugs in the airways, which leads to insufficient air
supply. In a study on lung-transplanted patients, lung fibroblasts pro-
duced 16 times more versican half a year after transplantation com-
pared with healthy volunteers. Histology showed that versican was
mainly localized in the alveolar walls and thus may contribute to
the plug formation (Andersson-Sjoland, Thiman et al. 2011).

Chronic obstructive pulmonary disorder

COPD is characterized by loss of elastic fibers from small airways and
alveolar walls and the decrease in elastin is associated with increased
disease severity. Versican is increased in fibroblasts from distal airways
from COPD patients (see Figure 3) and indicates that the production is
larger than the degradation of versican as seen by immunohistochem-
istry (Hallgren et al. 2010). Versican in the alveolar wall is also nega-
tively correlated to elastin and elastin-binding protein (EBP; Merrilees
et al. 2008), a molecular chaperone important in the fibrillization-
process of elastin. These molecular parameters are also correlated to
lung function (FEV1; Black et al. 2008). Efficient repair by re-synthesis
of elastic fibers in alveoli of COPD patients may be hampered by
the inhibition of EBP by versican, particularly by its CS/DS chains
(Tiedemann et al. 2005). The EBP chaperone escorts tropoelastin
from Golgi and endosomal compartments to the cell surface. During
states of increased versican in the pericellular compartment, the lectin-
domain of EBP interacts with galactosamine in CS/DS of versican, and
causes a conformational change in the EBP releasing tropoelastin pre-
maturely. However, since CS/DS GAG-side chains are very variable in
the amount and spatial distribution of IdoA it cannot be excluded that
it is not the actual amount of versican per se but rather the amount
of specific CS/DS motifs that regulates the interaction. Normally,
following the release of EBP, tropoelastin finds its acceptors, the
newly forming microfibrils of elastin. However, during high-versican

Fig. 3. Graph shows that versican production is increased in lung-transplanted

patients, asthma (controlled) and COPD compared with healthy controls.

**P < 0.01, ***P < 0.005 compared with controls.
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microenvironment, new formation of elastic fibers is hampered. The
relationship between elasic fiber loss and accumulation of versican
has been confirmed in studies showing that modulation of versican in-
fluences elastic fiber deposition (Merrilees et al. 2002; Huang et al.
2006, 2008). In these settings, versican was harmful through inhib-
ition of elastic fiber formation, but in an animal model of emphysema
increased proteoglycan and in particular versican was associated with
protection of the alveolar walls from rupture (Takahashi et al. 2014).
In line, in a randomized controlled trial, it was shown that inhaled
corticosteroids increased the bronchial expression of versican together
with collagen III in COPD patients. This increase in versican was
associated with improved lung function. Surprisingly, the smoking
status of the patients did not influence versican levels (Kunz et al.
2013), although it may affect tissue remodeling as such through the
activation of molecules involved in ECM turnover, such as matrix
metalloprotease-9 and tissue inhibitor of metalloproteinase-1 (Boue
et al. 2013). However, the up-regulation of versican in COPD lungs
is not consistent. Indeed, Annoni et al. (2012) even showed a decrease
in versican expression in alveolar parenchyma in COPD patients com-
pared with healthy non-smokers and may point towards the import-
ance of fine-mapping COPD into subtypes of the disease.

Asthma

Versican is also involved in asthma and in our studies we have shown a
heterogeneous pattern of versican distributed throughout the airway
tree. Most studies have so far concentrated on central airways, but
intriguingly, we have seen a difference in PG production between cen-
trally and distally isolated fibroblasts. Thus distally derived fibroblasts
from patients with mild untreated asthma had increased production of
versican (see Figure 3; Nihlberg et al. 2010). Similar results have been
obtained from fibroblasts isolated from the distal airways in patients
with COPD (Hallgren et al. 2010) and in fibroblast cultures obtained
early after lung transplantation (see Figure 3; Andersson-Sjoland,
Thiman, et al. 2011), emphasizing the importance of studying the dis-
tal airways in all lung disorders. Histological analyses of versican in
uncontrolled and controlled mild asthmatics and healthy controls
showed increased percentage areas of versican in the group of uncon-
trolled asthmatics in central airways (Weitoft, Andersson et al. 2014).

Remodeling of the airways contributes to the persistent airway
obstruction and decline in lung function in asthmatic patients
(Chiappara et al. 2001; Lange 2013). Additionally there is a correl-
ation between PGs deposition in the airway wall and reactivity of
provocation by inhaled methacholine (provocative concentration
required to decrease FEV1 by 20% of its baseline value [PC20]
<4 mg/mL) in patients with mild atopic asthma (Huang et al. 1999).
Altered deposition of PGs in the asthmatic lung appears to vary be-
tween different asthma phenotypes and severities (Roberts 1995;
de Medeiros Matsushita et al. 2005; Pini et al. 2007; Nihlberg et al.
2011). Indeed, we have shown that fibroblasts isolated from bronchial
biopsies from asthmatic patients with the greatest degree of hyper-
responsiveness produced larger amounts of versican (Westergren-
Thorsson et al. 2002). In line, several studies of mild, moderate and
fatal asthma have reported increased densities of versican in the tissue
(Ludwig et al. 2004; Araujo et al. 2008). Patients with fatal asthma
had increased versican content in the internal area of large and
small airways compared with controls (de Medeiros Matsushita
et al. 2005). However, it has not been evaluated if the increased
amount of versican and other matrix molecules may have an effect
in opposing the contractive properties of increasing smooth muscle
layers (Roberts 1995). Respiratory viral infections are known to be

a trigger of exacerbation in both asthma and COPD and could be
the catalyst that starts an increased deposition of versican and hyalur-
onan. Furthermore, the versican-rich environment is known to have an
increased capacity for monocyte infiltration and increased immune re-
sponse (Potter-Perigo et al. 2010). It remains to be explored whether
this augmentation in versican in asthma is beneficial or may be a target
for future therapies.

Conclusion

Versican is clearly involved in disease processes in COPD, asthma and
BOS. Taken that the inflammatory response is different in these disor-
ders, it becomes evident that ECM remodeling may be a target for fu-
ture drugs. The role of the ECM niche during inflammation and
remodeling events in lung disorders is to serve as an important scaffold
for inflammatory and mesenchymal cells and their fate decision, see
Figure 1. In this review, we have elucidated versican as an important
player in inflammation and remodeling that shows a complex reper-
toire of cellular actions. An up-regulation of versican in these disorders
may perpetuate inflammatory responses and lead to aberrant wound
healing processes. The role of versican in innate and adaptive immun-
ity needs further investigations, as does the differential expression of
the splice forms. Another structural feature of high potential interest
is the function of the CS/DS side chains and its modulation in different
inflammatory conditions. We therefore conclude that versican is an in-
teresting target for future research and the dissection of specific roles
of its splice variants may be fruitful for finding intervening targets to
treat lung disorders such as COPD, asthma and chronic rejection.
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