
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 803097, 10 pages
doi:10.1155/2012/803097

Research Article

Exploring Short-Term Responses to Changes in
the Control Strategy for Chlamydia trachomatis

James Clarke,1 K. A. Jane White,1 and Katy Turner2

1 Centre for Mathematical Biology, University of Bath, Bath BA2 7AY, UK
2 School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK

Correspondence should be addressed to James Clarke, j.p.clarke@bath.ac.uk

Received 2 September 2011; Accepted 6 April 2012

Academic Editor: Yoram Louzoun

Copyright © 2012 James Clarke et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Chlamydia has a significant impact on public health provision in the developed world. Using pair approximation equations we
investigate the efficacy of control programmes for chlamydia on short time scales that are relevant to policy makers. We use output
from the model to estimate critical measures, namely, prevalence, incidence, and positivity in those screened and their partners.
We combine these measures with a costing tool to estimate the economic impact of different public health strategies. Increasing
screening coverage significantly increases the annual programme costs whereas an increase in tracing efficiency initially increases
annual costs but over time reduces costs below baseline, with tracing accounting for around 10% of intervention costs. We found
that partner positivity is insensitive to changes in prevalence due to screening, remaining at around 33%. Whether increases occur
in screening or tracing levels, the cost per treated infection increases from the baseline because of reduced prevalence.

1. Introduction

Infection with Chlamydia trachomatis is a problem for
infected individuals and health services. Chlamydia is the
most prevalent sexually transmitted infection (STI) in the
UK [1], with a large proportion of cases asymptomatic,
and untreated infection can lead to serious complications
for men and women. Men can develop epididymitis as a
result of infection, while untreated chlamydia in women can
cause pelvic inflammatory disease (PID), ectopic pregnancy,
and tubal factor infertility [1]. A randomised control trial
in the USA found that screening for chlamydia reduced
the incidence of PID by 56% [2]. Treatment of chlamydia
is straightforward, and front-line therapy is a single dose
of azithromycin which is effective at clearing chlamydia
and has recently been approved by the Medicines and
Healthcare products Regulatory Agency (MHRA) for use
without prescription [3]. The problems caused by chlamydia
are estimated to cost the National Health Service (NHS) in
England over £100 m every year [3] and cause morbidity in
some individuals.

In England in 2003 the National Chlamydia Screening
Programme (NCSP) was set up; central to its mission was
reducing the onward transmission of genital chlamydia infec-
tion and preventing sequelae through early detection [1].
The NCSP targets young persons under 25 years outside of
sexual health clinics, screening individuals opportunistically
when they visit other health services [4]. Prevalence of
chlamydia is highest among young people, with those under
25 most likely to be infected [5]. Screening an individual is
a quick, easy, noninvasive process, and if someone is found
to be infected, an effort is made to offer a screen to their
previous sexual partners [4]. Thus contact tracing forms an
integral part of the NCSP, working alongside opportunistic
screening. In 2009 the NCSP tested 16% of young people
aged 15–24 years [4] compared to a target of 17% for that
period. Longer-term goals are to achieve a screening coverage
of 35%–50% [3], although it is uncertain how long it will
take to achieve these goals since increasing national screening
coverage is complex. However, there are uncertainties about
the effects and the cost effectiveness of the programme [6].
The question that we wish to address is the following: how
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will achieving these targets impact on prevalence, incidence,
and positivity within the time scales used to determine policy
decisions (taken to be up to five years)?

Different modelling approaches have been used for
chlamydia and other similar infections such as gonorrhea.
Two aspects stand out as important in STI modelling:
heterogeneity in the sexual activity of the population [7] and
the strong influence of social structure on epidemic dynamics
[8]. Unlike airborne diseases, STIs can only be spread as
a result of clearly defined sexual interaction, and hence
random mixing assumptions used in more basic models fail
to capture an important aspect of STI transmission. Previous
work by Anderson and May [9], Hethcote and Yorke [10],
and others [11, 12] has used mean-field ordinary differential
equations (ODEs) to look at the spread of HIV/AIDS,
gonorrhea, and chlamydia. In these models heterogeneity
between individuals has been incorporated through the use
of a “core” group which is small in size but high in sexual
activity, sustaining disease in a population where it would
otherwise be eradicated. Although easier to analyse, these
models are too simple to model contact tracing effectively.

Studies informing public health policy have often used
large individual-based stochastic simulations [7, 13–15]. In
these simulations it is possible to track the behaviour of
each individual and hence implement control policies exactly
as conceived. However, these models also require a large
number of parameters to be estimated, and in the case
of chlamydia these are not always known accurately. For
example, transmission probabilities and natural clearance
rates are subject to some uncertainty since they cannot be
studied easily. The three models compared by Kretzschmar
et al. all assume a transmission probability per sex act, even
though previous work [16] has shown that the number of
sexual exposures to an infected partner does not correlate
with infection status. The relative effectiveness of screening
and contact tracing has been examined for a general disease
on random networks [17], and it has also been shown that in
a general SIS model there is a critical prevalence below which
contact tracing becomes cost effective [18].

Pair approximation equations have been successful in
bridging the gap between stochastic network simulations
and mean-field ODE models [8, 19–22]. They model how
the number of pairs of a certain type varies with time,
as well as the number in each class of individuals. The
equations for the number of pairs involve the number of
triples, but instead of forming the triple equations the system
is usually closed at the level of pairs using a moment
closure approximation [23, 24]. These models aim to capture
the influence that network structure has on the spread of
disease but without actually modelling specific individuals.
Pair models are appropriate here because they have a lot
fewer parameters than individual-based models but can
still capture the network behaviour necessary for disease
transmission and contact tracing.

Of particular relevance, Eames and Keeling [8] and
House and Keeling [25] modelled the spread of STIs in a
closed population to explore the efficacy of contact tracing.
They investigated the relationship between critical tracing
efficiency (efficiency needed to prevent invasion of the

disease) and the basic reproductive number R0, finding that
R0 can be used to estimate critical tracing efficiency and that
clustering in the network improves the efficacy of contact
tracing.

The aim of this study is to use pair approximation
equations to capture the essence of network dynamics in a
set of ODEs and use these to measure the impact of different
control strategies for chlamydia on realistic, short time scales.
We investigate outcomes linked to positivity, prevalence,
incidence, and cost, showing how control programmes may
affect directly observable quantities.

2. Methodology

Our model is developed from previous work [8, 25]
restricted to a target population in the 16–25-year age
bracket. The population is assumed to be of constant
size N following [26]; this is a reasonable assumption
since recovered individuals return to the susceptible pool
(possibly following a period of immunity) and since we
are only concerned with a five-year time frame. Susceptible
individuals become infected either if they are in a partnership
with an infected individual or if they are in a partnership
with a susceptible individual but have contact external to that
partnership with an infected individual. The rate at which
infection happens is β. Once infected, an individual may
move into the treatment class either because they develop
symptoms naturally at rate d or as a result of being screened
at rate g. Infected individuals may clear infection without
treatment and return to the susceptible class which they do at
rate r < d. Partner notification (PN) also means that infected
individuals may move into the treated class if they are in
a partnership with an individual in the treatment class and
they do so at a rate c. Assuming that treatment is successful,
individuals return to the susceptible class at rate a. This gives
rise to the model system:

[
Ṡ
] = −β[SI] + a[T] + r[I],

[
İ
] = β[SI]− (g + d + r

)
[I]− c[IT],

[
Ṫ
] = (g + d

)
[I] + c[IT]− a[T],

(1)

where [S], [I], and [T] denote the number of individuals
in each of the classes susceptible, infected, and treated,
respectively, and where [SI] denotes the number of partner-
ships in which one individual is susceptible and the other
infected, and so forth. A flowchart of the system is shown
in Figure 1. To fully specify the model, we need to write
down the time evolution equations for each pair; these are
given in Appendix A where it can be seen that they involve
the parameter k which measures the average number of
partnerships per individual. Baseline parameter estimates are
derived from published data and are given in Table 1. The
infection rate across an S-I link (β) is estimated by keeping
all other parameters constant and then setting β to achieve a
steady-state prevalence of 8%.

We investigate how changes in the control parameters (c
and g), assumed to be independent of each other, impact
on prevalence, incidence, and positivity. Each measure is
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Figure 1: Flowchart of the model system.

calculated for the first, third, and fifth year after a step change
in the control parameters. In the definitions below ti is the
day at which the ith year begins: for example, if a step change
in c is at t = 0, then t3 = 2∗ 365 = 730.

Prevalence. This is given by the proportion of individuals
infected and is calculated using the value at the end of the
year in question by

[I] + [T]
N

(ti). (2)

Positivity. We consider two measures of positivity.

(i) Individual positivity. Here we assume that peo-
ple undergoing treatment in the T class will not
be screened, so this is different from population
prevalence. Positivity is perhaps the most important
quoted statistic for a screening programme such as
the NCSP. It is calculated as

1
365

∫ ti+1

ti

[I]
[S] + [I]

dt. (3)

(ii) Partner positivity. The equivalent “positivity” mea-
sure for contact tracing is defined as an average over
a year (as above) of the proportion of contacts of T
individuals who are infected, given by

1
365

∫ ti+1

ti

[IT]
[ST] + [IT]

dt. (4)

Once again the assumption is that if the partner of
a T individual is also a T , then no effort will be
expended in tracing them. This measure is important
for analysing how correlated infectious individuals
are with other infected people and how much more
likely you are to find an infected individual through
contact tracing instead of screening.

Incidence. This is defined as the number of new cases in a
given year and is given as cases per 10000 person-years. It is
important to ensure a good match between model and real
incidence, as well as estimated prevalence, as incidence gives

an indication of disease turnover which will impact on the
efficacy of control measures [13]. It is calculated as

∫ ti+1

ti
β[SI]dt. (5)

The number of partners per individual, k, was set using
figures calculated in [27], which is based on estimates
from NATSAL 2000. This is the National Survey of Sexual
Attitudes and Lifestyles, a survey carried out in Great
Britain between 1999 and 2001, which looked at the sexual
behaviour of people aged between 16 and 44 [30]. The
screening parameter g is calculated from the percentage of
the population who is screened over a period of one year.
This allows the parameter to be compared directly with
figures published by the NCSP. If a proportion s of the
population is screened per year, g can be calculated using

s = 1− e−365g . (6)

Tracing success is measured as c/a, the proportion of partners
traced.

The rate of naturally developing symptoms (d) is given
by assuming that some small fractions of those becoming
infected go on to be symptomatic (20% in this case) and that
if they do, then they do so quickly with an average time spent
infected of 30 days [12, 14].

We obtain values for the measures listed above from
numerical simulations of the model system. We run the
system to equilibrium and then make a step change in either
c or g and record the new values for each measure one,
three and five years following that change. More realistically
there would be a gradual change over a period of time,
which means that our results provide an upper bound on the
possible impact.

In addition, we use a published costing tool [31] to
explore the economic impact of changing levels of screening
or partner notification. Since resources are limited, decisions
must be made on how to share these between activities linked
to screening individuals and activities focussed on contact
tracing. We explore this interdependence by numerically
solving the system to find the tracing efficiency that gives
the specified target prevalence after 3 years, for different
screening coverages. For a specified screening coverage,
we calculate the level of tracing needed to reach target
prevalence. All numerical results in this work were obtained
using MATLAB.

3. Results

In each of the following figures we show the baseline case
(where the system is at steady state with annual screening
coverage of 16% and tracing efficiency of 30%) along with
the results from changing the control parameters.

In Figure 2 changes in prevalence (Figures 2(a) and
2(b)) and incidence (Figures 2(c) and 2(d)) are shown,
where screening coverage is increased to 20%, 25%, 35%, or
50% and tracing efficiency is increased to 35%, 40%, 50%,
or 60%. Assuming that screening and partner notification
rates can be varied independently, our results are consistent
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Figure 2: Prevalence (top) and incidence (bottom) after specified changes to tracing efficiency (left) and annual screening coverage (right)
in parameters where baseline prevalence is 8%. Prevalence figures are broken down into those in the I and T classes.

with previous work, but the novelty here lies in our focus
on short-term behaviours. In every situation the size of
the treatment class remains essentially unchanged for at
least three years, after which it decreases in size. Screening
and partner notification both have similar impacts, causing
reductions in overall prevalence and incidence.

Baseline incidence levels in Figure 2 compare favourably
with those in large individual-based models. Kretzschmar
found that incidences in the models being compared were
between 500 and 4000 cases per 10000 person-years [13],
while Batteiger recently found that incidence in a real world
study was around 3400 cases [32]. The figure here of 2500
cases is most similar to that given by the HPA model [13, 14],
which has figures between 1000 and 2000 depending on age
range. As expected, the incidence follows a similar pattern
to that for prevalence, with screening levels at 50% per year
or tracing efficiency at 60% able to significantly reduce the
number of new cases in the population after five years. An
increase in contact tracing has more of an effect over the long

term compared to screening, although over a shorter period,
the effects are similar (Figure 2).

Figure 3 shows the values of individual positivity and
partner positivity in a similar way, except that values are
shown as points instead of bars instead of bars. Posi-
tivity (both individual and partner) provides the clearest
indication of where screening and contact tracing will be
most effective. Figure 3 shows individual (Figures 3(a) and
3(b)) and partner positivity (Figures 3(c) and 3(d)), and
as expected individual positivity is similar to prevalence
since only a relatively small proportion of people are
in the treatment class at any one time, and it is only
these people who will not be available for a random
screening programme. Partner positivity is a different story;
screening and contact tracing do not massively affect the
chance of finding an infected individual in a partnership
with somebody receiving treatment (partner positivity),
with values starting at 36% and remaining close to 30%
even after five years of increased control efforts. This
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Figure 3: Individual (top) and partner (bottom) positivity after changes to tracing efficiency (left) and annual screening coverage (right) for
a baseline prevalence of 8%.

contrasts with individual positivity that starts at a baseline
value of just over 6% and then falls away with amounts
depending on how much control is being implemented.
This is important for comparing the effectiveness of the
two measures, since the lower the prevalence, the greater
the relative chance of finding another infected individual
through contact tracing instead of screening. As prevalence
increases, the effectiveness of screening will be increased
while that of contact tracing will remain roughly simi-
lar.

3.1. Financial Costs. Using the tool developed by Turner et al.
[31], preliminary cost analysis is presented in Table 2. This
highlights the dependency between screening and partner
notification, showing that as prevalence decreases, cost per
infection will increase. This would be expected for a situation
where there is a large control effort (with large cost)
that continues regardless of prevalence. We focus soley on
the output generated by the tool in question in order to

demonstrate that dynamic models can be combined with
existing tools to improve their accuracy.

Increasing tracing efficiency to 40% incurs a cost increase
of around £1 m in the first year, with a cost per treated
infection of £660.92 compared to the baseline case of £633.26
per infection. After three years, costs have been reduced
to below the baseline value, but now the cost per treated
infection is £847.77 because prevalence has been reduced
from the baseline value of 8% to 5.3%. Increasing screening
coverage to 25% represents a large increase in total annual
costs of about £25 m, with a cost per infection treated in the
first year of £665.89. This is larger than the cost per infection
in the first year when tracing efficiency is increased, and
prevalence is higher in the screening case (7.3% compared to
7% for tracing). After three years with increased screening,
coverage total costs are still about £25 m above the baseline
case, with a cost per infection of £775.29. This is less than
the cost per infection after three years of improved tracing,
but prevalence is 6.3% compared to 5.3% with tracing.
Overall, the cost effectiveness of increasing contact tracing
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Figure 4: Tracing efficiency required for specified screening
coverage in order to achieve target prevalence of 2%, 4%, and 6%
after three years.

efficiency compared to screening coverage is clear, with
greater reductions in prevalence for less cost.

3.2. Interdependence. In reality, the amount of screening
and/or partner notification that one is able to carry out
will depend on how limited resources are allocated between
the two. In Figure 4 we show how different combinations
of screening and partner notification will achieve the same
target prevalence after three years. Each line shows combi-
nations of tracing efficiency and screening coverage that will
achieve a prevalence of 2%, 4%, or 6% after three years, from
a baseline of 8% prevalence.

3.3. Robustness of Results. A sensitivity analysis was per-
formed on the model, with outputs given by varying model
parameters a, d, r, and k by ± 10%. For figures and more
details, see Appendix B. Our results prove robust to these
changes in parameters, with the most significant effect seen
in the impact on contact tracing when k, the average number
of connections per individual, is varied. This is as one would
expect, since tracing is heavily dependent on the network
structure, but even so the variation is small and does not
affect the conclusions of this work.

4. Discussion

Using a deterministic set of pair approximation equations we
have explored the effect of increasing screening or contact
tracing levels over time scales relevant to policy makers.
This relatively simple model has been applied to chlamydia
infection and treatment, with the model parameters largely
taken from the literature. Although theoretical work has been
done on a similar model [25], we have studied the short-
term impact of changes in control strategy and looked at how
the system behaves dynamically. Partner positivity has been
defined in terms of this model, and we have demonstrated

that this measure stays relatively unchanged even when
prevalence and individual positivity are decreasing. Partner
positivity is insensitive to changes in screening coverage
or tracing efficiency, remaining at around 33%. This is
important when considering how best to target a control
programme, since our results, along with previous work [18],
suggest that there is a critical prevalence below which contact
tracing is advisable.

In addition, we have linked our dynamic results with a
previously published costing tool which is used by health
care providers [31]. This highlights the cost effectiveness of
increasing tracing efficiency instead of screening coverage
when the underlying model is not static. Combining this
analysis with the interdependence results in Figure 4 provides
a means for estimating the most cost-effective strategy
combination for achieving a target prevalence in a certain
time frame. Since the costs of partner notification are an
order of magnitude less than screening, and PN has a
greater chance of success, it is important that any control
programme pursues the partners of any index case. Further
work will explicitly model the resource limitations inherent
in a public health programme and identify how best to
distribute the resources across screening and tracing.

Efforts have been made to use accurate parameters
based on available data, but there is still a great deal of
uncertainty around some critical quantities, for example,
how fast individuals recover without any treatment or how
much immunity someone has after clearing infection nat-
urally. However, our sensitivity analysis has shown that the
conclusions remain valid under a wide range of parameter
values. There is some scope for extending this approach to a
heterogeneous population by having individuals with differ-
ent numbers of partners, either by having them incorporated
into one population and modelling every permutation of
different types of connection or by having several different
homogeneous populations with links between.

In the meantime, by using the approach detailed here,
comparisons can be made that will, at the very least, provide
qualitative and order of magnitude quantitative information
about changes in intervention strategies for chlamydia.

Appendices

A. Model Equations

The full system of model equations is
[
ṠS
] = 2a[ST] + 2r[SI]− 2β[SSI],

[
ṠI
] = β([SSI]− [ISI]− [SI])− c[SIT] + a[IT]

− (g + d + r
)
[SI] + r[II],

[ ˙ST
] = (g + d

)
[SI] + a[TT]− β[TSI] + c[SIT]− a[ST]

+ r[IT],
[ ˙II
] = 2β([SI] + [ISI])− 2c[IIT]− 2

(
g + d + r

)
[II],

[ ˙IT
] = c([IIT]− [IT]− [TIT])− (g + d + r + a

)
[IT]

+ β[TSI] +
(
g + d

)
[II],

[ ˙TT
] = 2

(
c + g + d

)
[IT] + 2c[TIT]− 2a[TT].

(A.1)
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Figure 5: Maximum relative % difference from baseline for each
parameter, when screening coverage is increased to 25% or tracing
efficiency to 40%.

These equations contain terms involving the number
of triples of certain types, where [ABC] represents a C
individual connected to an A-B pair. Equations for pairs
involving two individuals of the same type (e.g., [TT])
contain factors of two because they represent links in both
directions across (T-T) partnerships, whereas other pair
equations (e.g., S-I) only represent one direction (not I-S)
but their counterparts are not modelled explicitly because
they evolve in exactly the same way. To close the system we
must express triples in terms of pairs; to do this we assume
that pairs are independently binomially distributed so that

[ABC] = k − 1
k

[AB][BC]
[B]

, (A.2)

where k is as described in Table 1. Individual class sizes
can be recovered from the pair structure using the following
expressions:

[S] = 1
k

([SS] + [SI] + [ST]),

[I] = 1
k

([SI] + [II] + [IT]),

[T] = 1
k

([ST] + [IT] + [TT]).

(A.3)

We use this to simplify the model to the six-dimensional pair
system (A.1).

B. Sensitivity Analysis

There is some uncertainty in the numerical values of model
parameters; in order to assess the impact of this, we varied

a, d, r, and k by ± 10%, adjusted β to maintain the initial
prevalence, and compared model outcomes to our baseline
case. Varying the parameters in this way gives sufficiently
large coverage of the parameter space, to verify robustness
of model outputs. For each parameter varied, we looked
separately at increasing screening to 25% per year and also
increasing tracing efficiency to 40%.

Figure 5 shows the results for increasing screening
coverage to 25% and also for when tracing efficiency is
increased to 40%. For each parameter (a, d, r, or k), Figure 5
gives the maximum relative percentage difference from the
baseline values of I and T after 0, 1, 3, or 5 years. The case at
0 years is included because although the starting prevalence
is always 8%, the split of infected persons between the I and
T classes changes with different parameter sets.

Overall, we see that the results are very robust to changes
in parameters. The maximum relative difference is around
10%, so if we assume the worst-case scenario, and prevalence
is 8%, then this would result in an absolute change in
prevalence of 0.8% over 5 years. We see that for a, d, and
r, the screening and tracing results are both affected roughly
equally, with r making the least difference. Changes in the
size of k have a much larger effect on the results when tracing
efficiency is changed than screening coverage (although this
is still small). This is as expected because the effectiveness
of tracing depends crucially on how many partners each
individual has.
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