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Abstract: Isopsoralen (IPRN), one of the main effective ingredients in Psoralea corylifolia Linn, has
a variety of biological effects, including antiosteoporotic effects. In vivo studies show that IPRN
can increase bone strength and trabecular bone microstructure in a sex hormone deficiency-induced
osteoporosis model. However, the mechanism underlying this osteogenic potential has not
been investigated in detail. In the present study, we investigated the molecular mechanism of
IPRN-induced osteogenesis in MC3T3-E1 cells. Isopsoralen promoted osteoblast differentiation
and mineralization, increased calcium nodule levels and alkaline phosphatase (ALP) activity and
upregulated osteoblast markers, including ALP, runt-related transcription factor 2 (RUNX2), and
collagen type I alpha 1 chain (COL1A1). Furthermore, IPRN limited the nucleocytoplasmic shuttling
of aryl hydrocarbon receptor (AhR) by directly binding to AhR. The AhR target gene cytochrome P450
family 1 subfamily A member 1 (CYP1A1) was also inhibited in vitro and in vivo. This effect was
inhibited by the AhR agonists indole-3-carbinol (I3C) and 3-methylcholanthrene (3MC). Moreover,
IPRN also increased estrogen receptor alpha (ERα) expression in an AhR-dependent manner.
Taken together, these results suggest that IPRN acts as an AhR antagonist and promotes osteoblast
differentiation via the AhR/ERα axis.
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1. Introduction

Osteoporosis is a global health problem that seriously affects the quality of patients’ lives.
As aging-associated problems have increased, at least one-quarter of people older than 60 years have
different levels of osteoporosis [1]. Osteoporosis is a systemic skeletal disease mainly characterized by
bone loss, bone microstructure degradation, reduced bone strength, and increased fracture risk [2].
Bone metabolism includes both bone formation and resorption.

A large number of clinical and experimental studies have confirmed the positive effect of estrogen
replacement therapy on the prevention and treatment of postmenopausal osteoporosis, but this
treatment also increases the relative risk of cardiovascular diseases, and long-term application can
cause breast cancer and endometrial cancer [3]. Therefore, finding an ideal drug to prevent and treat
postmenopausal osteoporosis with few side effects is currently an active and difficult research topic.
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As a kind of coumarin compound, isopsoralen (IPRN) (Figure 1) is the main active component
of Psoralea corylifolia Linn and has antibacterial, anti-inflammatory, and antitumor activities [4,5].
A previous experiment indicated that IPRN could act against hormone deficiency osteoporosis [6].
Isopsoralen exhibits estrogen-like activities and performs estrogen-like neuroprotection against spinal
cord injury-induced apoptosis by activating estrogen receptor alpha (ERα) [7]. ERα promotes
osteoblasts differentiation and the lack of ERα reduces longitudinal bone growth during sexual
maturation both in male and female mice [8,9]. Previous studies have also shown that IPRN inhibits
the activity of cytochrome P450 family 1 subfamily A member 2 (CYP1A2), which is one of the target
genes of aryl hydrocarbon receptor (AhR). The AhR acts as a negative regulator of bone mass by
suppressing osteoblasts proliferation and differentiation [10,11]. Therefore, we hypothesized that
IPRN promoted osteoblasts differentiation and mineralization through AhR and ERα. In this study,
MC3T3-E1 cells were used as a model to determine the mechanism of IPRN acting on osteoblast
differentiation. In the current study, we found that IPRN could promote osteogenic differentiation
and mineralization in a dose-dependent manner by limiting the nucleocytoplasmic shuttling of AhR.
Isopsoralen could directly bind to AhR and inhibit the expression of ERα.
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Figure 1. The structure of isopsoralen (IPRN).

2. Results

2.1. IPRN Promoted the Osteogenic Differentiation and Mineralization of MC3T3-E1 Cells

Previous studies showed that IPRN could promote osteogenesis in vivo. To investigate the
molecular mechanism, we evaluated the osteogenic differentiation and mineralization induced by IPRN
in MC3T3-E1 subclone 14 cells. Cells were cultured in osteogenic medium with different concentrations
of IPRN (0, 2, 10, or 50 µM). The Alizarin red staining results indicated that IPRN increased the
production of calcium nodules in a concentration-dependent manner after 14 days of treatment
(Figure 2A). The formation of calcium nodules is one of the indicators of osteoblastic maturation.
The effect of IPRN on osteogenic differentiation was evaluated via alkaline phosphatase (ALP) activity,
ALP staining, and osteoblast differentiation markers. As shown in Figure 2B, IPRN promoted ALP
activity in a dose-dependent manner, as indicated by ALP staining, and the effect was also confirmed
by an ALP activity assay (Figure 2C). Alkaline phosphatase (ALP) helps to produce a mineralized
matrix in osteoblasts. Furthermore, the expression of osteoblastic genes was assessed by RT-qPCR.
Compared with the control group, the groups treated with IPRN had significantly higher expression
of ALP, runt-related transcription factor 2 (RUNX2), and collagen type I alpha 1 chain (COL1A1)
(Figure 2D–G).
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were then solubilized with 10% cetylpyridinium chloride and quantified at 562 nm. Differentiation 
was assessed by alkaline phosphatase (ALP) staining (B), ALP activity (C) and the mRNA expression 
of the osteogenic markers ALP (D), collagen type I alpha 1 chain (COL1A1) (E), and runt-related 
transcription factor 2 (RUNX2) (F). Data are presented as the mean ± standard deviation (SD) (n = 3). 
Experiments in this figure were repeated three times, and similar results were obtained. * p < 0.05 vs. 
control. 
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series of physiological processes, including bone development [14]. Therefore, we hypothesized that 
IPRN may increase the expression of osteogenic proteins by targeting AhR. First, 
immunofluorescence staining was performed to determine the expression change in AhR after IPRN 
treatment. As shown in Figure 3A, compared to the control, IPRN decreased the nucleocytoplasmic 
shuttling of AhR. Then, the protein levels of AhR in the cytoplasm and nucleus were assessed. 
Consistent with the immunofluorescence staining results, AhR was retained in the cytoplasm, and 
AhR in the nucleus was decreased after IPRN treatment (Figure 3B,C). The mRNA expression and 
activity of CYP1A1, which is the main target gene of AhR, was also detected in vitro and in vivo. 
Isopsoralen inhibited the mRNA expression of CYP1A1 in a dose-dependent manner after treatment for 
24 h and 72 h (Figure 3D). To confirm the effect in vivo, C57BL/c mice were injected with IPRN at a 
dose of 10 mg/kg to evaluate CYP1A1 activity in serum. Compared to the control group, IPRN 
significantly downregulated CYP1A1 activity (Figure 3E). 

Figure 2. Effects of IPRN on osteoblastic differentiation of MC3T3-E1 cells. Cells were cultured in
osteogenic medium with the indicated concentration of IPRN (2–50 µM) for 14 days (A), 9 days (B,C) or
24 and 72 h (D–F). (A) Alizarin red staining was performed to assess mineralization, and the cells were
then solubilized with 10% cetylpyridinium chloride and quantified at 562 nm. Differentiation was
assessed by alkaline phosphatase (ALP) staining (B), ALP activity (C) and the mRNA expression of the
osteogenic markers ALP (D), collagen type I alpha 1 chain (COL1A1) (E), and runt-related transcription
factor 2 (RUNX2) (F). Data are presented as the mean ± standard deviation (SD) (n = 3). Experiments
in this figure were repeated three times, and similar results were obtained. * p < 0.05 vs. control.

2.2. IPRN Limited the Nucleocytoplasmic Shuttling of AhR

Previous studies have shown that IPRN can inhibit the activity of CYP1A2, which is one of the
target genes of AhR [12,13]. The AhR acts as a transcription factor and plays an important role in a
series of physiological processes, including bone development [14]. Therefore, we hypothesized that
IPRN may increase the expression of osteogenic proteins by targeting AhR. First, immunofluorescence
staining was performed to determine the expression change in AhR after IPRN treatment. As shown
in Figure 3A, compared to the control, IPRN decreased the nucleocytoplasmic shuttling of AhR.
Then, the protein levels of AhR in the cytoplasm and nucleus were assessed. Consistent with the
immunofluorescence staining results, AhR was retained in the cytoplasm, and AhR in the nucleus was
decreased after IPRN treatment (Figure 3B,C). The mRNA expression and activity of CYP1A1, which is
the main target gene of AhR, was also detected in vitro and in vivo. Isopsoralen inhibited the mRNA
expression of CYP1A1 in a dose-dependent manner after treatment for 24 h and 72 h (Figure 3D).
To confirm the effect in vivo, C57BL/c mice were injected with IPRN at a dose of 10 mg/kg to evaluate
CYP1A1 activity in serum. Compared to the control group, IPRN significantly downregulated CYP1A1
activity (Figure 3E).
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Because IPRN suppressed the nuclear translocation of AhR and the transcription of CYP1A1, we 
hypothesized that IPRN may improve osteogenic differentiation via direct binding to AhR. To 
determine whether IPRN could directly bind to AhR, drug affinity responsive target stability 
(DARTS) was performed. Drug affinity responsive target stability is a useful method for the initial 
identification of the protein targets of small molecules [15,16]. Drug affinity responsive target stability 
analysis revealed that IPRN could directly bind to AhR and inhibit its proteolysis (Figure 4). 

Figure 3. IPRN acted as an AhR antagonist in MC3T3-E1 cells. Immunofluorescence staining (A) for
AhR was performed after treatment with IPRN for 24 h. The protein levels of AhR in the cytoplasm
(B) and nucleus (C) were assessed by Western blotting. CYP1A1 mRNA expression (D) was determined
by RT-qPCR (n = 3). (E) CYP1A1 levels were also measured in vivo in the serum of mice after IPRN
(10 mg/kg) treatment (n = 6). Data are presented as the mean ± SD. * p < 0.05 vs. control.
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2.3. AhR Could Directly Bind to IPRN

Because IPRN suppressed the nuclear translocation of AhR and the transcription of CYP1A1,
we hypothesized that IPRN may improve osteogenic differentiation via direct binding to AhR.
To determine whether IPRN could directly bind to AhR, drug affinity responsive target stability
(DARTS) was performed. Drug affinity responsive target stability is a useful method for the initial
identification of the protein targets of small molecules [15,16]. Drug affinity responsive target stability
analysis revealed that IPRN could directly bind to AhR and inhibit its proteolysis (Figure 4).Molecules 2018, 23, x FOR PEER REVIEW  5 of 11 
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using Western blotting. Data are presented as the mean ± SD (n = 3). * p < 0.05. 

2.4. AhR Agonists Inhibited IPRN-Induced Osteogenic Activity 

To further confirm the role of AhR in IPRN-induced stimulation of osteoblast differentiation, 
AhR agonists were used for cotreatment with IPRN. The IPRN-induced inhibition of 
nucleocytoplasmic shuttling of AhR was suppressed by I3C and 3MC (Figure 5A). The mRNA 
expression of CYP1A1 was also increased after the cotreatment of I3C and 3MC (Figure 5B). 
Furthermore, the mineralization and osteogenic differentiation induced by IPRN were all suppressed 
after treatment with AhR agonists (Figure 5C–F). 

Figure 4. IPRN directly binds to AhR. For the DARTS assay, MC3T3-E1 cell lysates (5 mg/mL) were
incubated with IPRN (10 µM) or an equal volume of DMSO for 1 h at room temperature, followed by
digestion with pronase to protein ratios of 1:1000 or 1:2000 for 30 min. The samples were analyzed
using Western blotting. Data are presented as the mean ± SD (n = 3). * p < 0.05.

2.4. AhR Agonists Inhibited IPRN-Induced Osteogenic Activity

To further confirm the role of AhR in IPRN-induced stimulation of osteoblast differentiation,
AhR agonists were used for cotreatment with IPRN. The IPRN-induced inhibition of nucleocytoplasmic
shuttling of AhR was suppressed by I3C and 3MC (Figure 5A). The mRNA expression of CYP1A1 was
also increased after the cotreatment of I3C and 3MC (Figure 5B). Furthermore, the mineralization and
osteogenic differentiation induced by IPRN were all suppressed after treatment with AhR agonists
(Figure 5C–F).
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2.5. IPRN Promoted the Expression of ERα in An AhR-Dependent Manner 

Apart from acting as a transcription factor, AhR also acts as an E3 ubiquitin ligase to modulate 
levels of steroid receptor proteins, such as ERα [17,18]. ERα acts as a nuclear receptor that can be 
activated by the sex hormone estrogen. During bone development, the knockout of AhR induces 
decreased bone length and size [19]. Therefore, whether IPRN stimulated the expression of ERα was 
determined. As shown in Figure 6A, IPRN increased the protein level of ERα in a dose-dependent 
manner. The effect was inhibited by the AhR agonists I3C and 3MC (Figure 6B). 

Figure 5. Effect of AhR agonists on IPRN-induced osteogenesis. The cells were cultured with I3C
(50 µM) or 3MC (1 µM) in the presence of IPRN (20 µM). (A) Immunofluorescence analysis of AhR
was performed at 24 h. CYP1A1 (B) and RUNX2 (F) mRNA expression was assessed at 24 h and 72 h,
respectively. Alizarin red (C) and ALP (D) staining was performed and ALP activity (E) was assessed
on days 14 and 9, respectively. Data are presented as the mean ± SD (n = 3). * p < 0.05.

2.5. IPRN Promoted the Expression of ERα in An AhR-Dependent Manner

Apart from acting as a transcription factor, AhR also acts as an E3 ubiquitin ligase to modulate
levels of steroid receptor proteins, such as ERα [17,18]. ERα acts as a nuclear receptor that can be
activated by the sex hormone estrogen. During bone development, the knockout of AhR induces
decreased bone length and size [19]. Therefore, whether IPRN stimulated the expression of ERα was
determined. As shown in Figure 6A, IPRN increased the protein level of ERα in a dose-dependent
manner. The effect was inhibited by the AhR agonists I3C and 3MC (Figure 6B).
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Figure 6. Effects of IPRN and AhR agonists on ERα expression. The cells were cultured with IPRN
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* p < 0.05.

3. Discussion

The AhR is a ligand-activated transcription factor that belongs to the bHLH-PAS family [20].
Upon binding to agonists, AhR undergoes a structural change and translocates to the nucleus.
Then, AhR dimerizes with aryl hydrocarbon receptor nuclear translocator (ARNT) and binds to
the xenobiotic responsive element (XRE) sequence, inducing the expression of its target genes, such as
CYP1A1 and CYP1A2 [21].

Previous studies have shown that IPRN is a potent time-dependent inhibitor of CYP1A2 in vitro
and in vivo. Therefore, we speculated that IPRN acts as an AhR antagonist. Immunochemical staining
was performed in MC3T3-E1 cells after treatment with IPRN for 24 h. Compared to that in the control
group, the nuclear-cytoplasmic trafficking of AhR in osteoblasts was restrained by IPRN (Figure 3A).
After IPRN treatment, AhR levels significantly decreased in the nucleus but increased in the cytoplasm
(Figure 3B,C). To further confirm this result, the expression of CYP1A1, which is the main target gene of
AhR, was determined in vitro and in vivo. CYP1A1 mRNA was significantly decreased in MC3T3-E1
cells after treatment with IPRN for 24 h and 72 h (Figure 3D). The same results were also observed
in C57BL/c mice (Figure 3E). These results suggest that IPRN acts as an AhR antagonist. To confirm
whether IPRN could directly bind to AhR, a DARTS assay was performed. As shown in Figure 4, IPRN
could directly bind to AhR and inhibit its proteolysis. To our knowledge, this study is the first to show
that IPRN can directly bind to AhR and inhibit its nuclear translocation.

Previous studies on AhR have largely focused on mediating xenobiotic toxicities induced by toxic
environmental contaminants, such as tetrachlorodibenzo-p-dioxin (TCDD). However, recent studies
have shown that AhR participates in a wide variety of important physiological and pathological
processes. In skeletal development and homeostasis, AhR exerts a negative regulatory effect [10,22].
The activation of AhR induced by TCDD prevents the proliferation and osteogenic differentiation of
MC3T3-E1 cells [11]. In the current study, the stimulation of osteogenic differentiation induced by
IPRN could be prevented by I3C and 3MC, which act as AhR agonists.

Apart from acting as a transcription factor, AhR also acts as a ligand-dependent E3 ubiquitin
ligase that affects many signaling pathways. Activation of AhR induces proteasome-dependent ERα
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degradation in human breast cancer cells [23]. The ERα plays an important role in the process of
skeletal development. Estrogens can regulate the life span of osteoblasts and osteocytes through
ERα. Female mice lacking ERα display compromised bone mass and strength [24]. In recent years,
selective estrogen receptor modulators (SERMs) have been applied in the treatment of postmenopausal
osteoporosis [25,26]. In our study, IPRN significantly increased the expression of ERα, and this effect
was inhibited by AhR agonists. These results showed that IPRN promotes the differentiation and
mineralization of MC3T3-E1 cells through the AhR/ERα pathway.

4. Materials and Methods

4.1. Animals and Chemicals

Eight-week-old C57BL/c mice were purchased from Jinan Pengyue Experimental Animal
Breeding Co. Ltd. (Jinan, China) (license number: SCXK (Lu) 20140007). All experimental
protocols in the current study were approved by the Institutional Animal Care and Use Committee
of Shandong Academy of Medical Sciences. IPRN was obtained from Chengdu Herbpurify Co., Ltd.
(Chengdu, China). I3C was obtained from Medchem Express (Princeton, NJ, USA). All other chemicals
were obtained from Sigma-Aldrich Company (St. Louis, MO, USA). Antibodies against RUNX2 and
AhR were obtained from Cell Signaling Technology (Danvers, MA, USA). All other antibodies were
purchased from Proteintech (Wuhan, China).

4.2. MC3T3-E1 Cell Culture

The MC3T3-E1 subclone 14 cell line was obtained from the Cell Bank of Type Culture
Collection of the Chinese Academy of Sciences (Shanghai, China) and cultured in α-MEM
(HyClone, Logan, UT, USA) supplemented with 10% fetal bovine serum (Gibco, Waltham, MA, USA)
and 1% penicillin-streptomycin in 5% CO2 at 37 ◦C. The osteogenic medium was supplemented with
10 mM β-glycerophosphate and 50 µg/mL ascorbic acid-2-phosphate.

4.3. Alizarin Red and ALP Staining

MC3T3-E1 cells were cultured in 24-well plates and incubated with osteogenic medium
supplemented with various concentrations of IPRN, I3C and 3MC. The cells were fixed with 4%
paraformaldehyde for 30 min at room temperature. Then, the Alizarin red and ALP stains were
prepared with 0.5% Alizarin red S solution (pH 4.2) and a BCIP/NBT alkaline phosphatase color
development kit (Beyotime, Shanghai, China), respectively. Images of the stained cells were captured
with a digital camera.

4.4. ALP Activity Measurement

The cells treated in osteogenic medium for 9 days in 24-well plates were washed twice with PBS
and lysed in 0.1% Triton X-100 buffer on ice for 2 h. Then, the lysates were centrifuged at 12,000 rpm
for 15 min at 4 ◦C. The total protein was measured with a BCA protein assay kit (Beyotime, Shanghai,
China). P-nitrophenyl phosphate (Sigma-Aldrich, St. Louis, MO, USA) was used as the substrate to
evaluate the ALP activity. The absorbance was measured at 405 nm and normalized to the total protein.

4.5. RT-qPCR

Osteoblasts were seeded in 6-well plates and treated with angelicin (0, 0.1, 1 or 10 µM).
Trizol reagent (Invitrogen, Albuquerque, NM, USA) was added to the cells seeded in 6-well plates
to extract the total RNA according to the manual. Then, the RNA samples were reverse transcribed
into cDNAs using the ReverTra Ace® qPCR RT Kit (Toyobo, Shanghai, China) at 37 ◦C for 15 min and
98 ◦C for 5 min. Real-time quantitative polymerase chain reaction (qRT-PCR) was performed on a
LightCycler® 480II real-time PCR system (Roche, Mannheim, Germany) using relative quantitation
gene expression assays (Nova, Lianyungang, China). The thermocycling conditions were as follows:
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94 ◦C for 3 min followed by 40 cycles of 94 ◦C for 15 s and 64 ◦C for 1 min. All reactions were
carried out in triplicate, and the mRNA expression level was calculated using the 2−∆∆Cq method with
normalization to GAPDH. The primer sequences are listed in Table 1.

Table 1. Primer sequences used in the study.

Name Sequence

ALP 3′→5′: ACGAGGTCACGRCCATCCT
5′→3′: CCGAGTGGTGGTCACGAT

RUNX2 3′→5′: CCACAGAGCTATTAAAGTGACAGTG
5′→3′: ACAAACTAGGTTTAGAGTCATCAAGC

COL1A1 3′→5′: GCATGGCCAAGAAGACATCC
5′→3′: CCTCGGGTTTCCACGTCTC

CYP1A1 3′→5′: GGCCACTTTGACCCTTACAA
5′→3′: CAGGTAACGGAGGACAGGAA TCACGAT

GAPDH 3′→5′: TGGGAAGCTGGTCATCAAC
5′→3′: GCATCACCCCATTTGATGTT

4.6. Western Blotting

Cells seeded in 75 cm2 culture bottles were lysed with cell lysis buffer for Western blotting or
for the nuclear and cytoplasmic protein extraction kit according to the manufacturer’s instructions.
A BCA assay kit was used to measure the protein concentrations. Proteins (40 µg) were separated by
10% SDS-PAGE and transferred to 0.45 µm PVDF membranes. Membranes were blocked with 5% skim
milk for 1 h at room temperature and incubated with the appropriate primary antibodies (Runx2, AhR,
ERα, histone H3, and GAPDH) at 4 ◦C overnight. The membranes were subsequently washed three
times with TBST and incubated with HRP-labeled goat anti-rabbit IgG for 1 h at room temperature.
Blots were washed again with TBST and visualized using an enhanced ECL substrate kit. The densities
of the product bands were quantified using Image J software and standardized against GAPDH or
histone H3.

4.7. Immunochemical Staining

Immunochemical staining was performed as described previously [27]. Cells seeded in 48-well
plates were fixed with 4% paraformaldehyde for 15 min and washed three times with PBS. Then, the
cells were permeabilized with 0.3% Triton X-100 for 30 min followed by blocking with Immunol
Staining Blocking Buffer (Beyotime, Shanghai, China) for 1 h at room temperature. The cells were
incubated with anti-AhR antibody (1:100, Proteintech) overnight at 4 ◦C and rewarmed at 37 ◦C for
1 h the next day. The cells were incubated with Alexa-488-conjugated secondary antibody (1:500,
Proteintech) for 50 min at 37 ◦C, stained with DAPI (Beyotime, Shanghai, China), washed three times,
and viewed by a laser scanning confocal microscope (Olympus, Tokyo, Janpan).

4.8. DARTS Analysis

Cells seeded in 75 cm2 culture bottles were lysed with M-PER lysis buffer (Thermo Scientific
Pierce, Waltham, MA, USA) supplemented with phosphatase and protease inhibitors. The cell lysates
were centrifuged at 16,000 g for 20 min at 4 ◦C. A total of 600 µL of supernatant was transferred
into a new 1.5 mL tube, and 66.7 µL of 10 × TNC buffer was added. The lysates were split into
two samples after the protein concentration measurement. The two samples were incubated with
DMSO or IPRN (100 µM) at room temperature for 1 h. Two aliquots from both protein samples were
incubated with 1:1000 and 1:2000 pronase solution at room temperature for 30 min. Sodium dodecyl
sulfate (SDS) loading buffer was added to stop the proteolysis. Finally, all the samples were analyzed
by immunoblotting.
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4.9. Statistical Analysis

All data are expressed as the mean ± standard deviation (SD). One-way ANOVA statistical
analysis was conducted followed by Tukey’s test for multiple comparisons if necessary. In all cases,
p < 0.05 was considered significant.

5. Conclusions

The present study was conducted to investigate the osteogenesis induced by IPRN. The results
showed that IPRN could directly bind to AhR and act as an AhR antagonist. Moreover, IPRN increased
the expression of ERα, and this effect depended on AhR. Our studies shed light on the osteogenic
effect of IPRN that occurs through the AhR/ERα pathway. This study provides a novel mechanism of
IPRN-induced osteogenesis and provides a theoretical basis for clinical application.
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