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ABSTRACT: Surface-enhanced Raman scattering (SERS) technique based on
surface plasmon resonance has been considerably investigated in recent years
due to its superior sensitivity in the detection of organic or biological molecules
at trace levels. However, most research usually focuses on artificial architectures
as SERS substrates that always have a complex and expensive micro-
nanofabrication process. The high cost of masks for SERS substrates becomes
a key obstacle for the widespread commercialization of SERS technology. In this
paper, a biomimetic SERS substrate composed of silver-coated nanopillar arrays
on the top of a cicada wing was advanced to overcome these challenges as both
substrates and masks. Benefiting from the high near-field plasmon resonance
coupling at the limited space among neighboring nanopillars, a dramatically
increased SERS signal can be achieved using rhodamine 6G (R6G) as a model
molecule. Encouragingly, the analytical enhancement factor of the order of more
than 108 has been conveniently realized with a reliable detection concentration
of R6G of about 100 pM or less. This work provides a promising route for designing cost-effective and highly sensitive SERS
substrates and the related mask fabrication using our previously proposed template transfer nanoimprint.

■ INTRODUCTION
Thanks to the real-time and ultrasensitive detection of
molecules in trace amounts,1,2 surface-enhanced Raman
scattering (SERS) as an up-and-coming technique has been
commonly used in various applications, including biosen-
sors,3−5 medicine technology,6,7 plasmon-driven catalytic
reactions,8−16 etc. To realize these applications, as a suitable
SERS substrate, there should be high-density hotspots that
result from strongly enhanced electromagnetic fields caused by
the localized surface plasmon resonance (LSPR).17−22 Various
types of SERS substrates have been fabricated by controllable
fabrication methods to form effective hotspots, such as arrayed
nanopore silver (Ag) thin films,23 Ag-coated polymeric
nanopillar arrays,24 Ag nanoparticles assembled on a multilayer
gold film by employing alumina as a spacer,21 RGO@MoS2@
Ag ternary nanocomposites for recyclable SERS detection,25

hydrophilic−hydrophobic Ag-modified PMMA substrates,26 a
sandwiched Ag cap nanoparticles/SiO2/silver film system that
can significantly enhance local electric-field intensity and
increase the density of electromagnetic hot spots, leading to a
SERS enhancement factor of 2.38 × 109,27 and nanosculptured
thin films of silver that perform a fast, accurate, and stable
detection performance.28 Additionally, the continuous metal
films can also act as good electrodes for (Spectro)-electro-
chemistry.29−31 However, the complex fabrication process and
the cost of SERS substrates are considered as the main
obstacles to the widespread commercialization of SERS

spectroscopy technology.24 In nature, many well-adapted
organisms have unique and brilliant microstructures that
provide a good template for research. These nanostructures
can not only overcome these challenges to some extent but
also exhibit substantial functionality such as droplet jumping,
self-cleaning, antifogging, antimicrobial activity, and significant
templates for light control.32−37

In this paper, a flexible and cost-effective method was
proposed for the fabrication of SERS substrates. The Ag layer
was directly deposited on a cicada wing using the magnetron
sputtering method to form Ag-coated nanopillar SERS
substrates. Benefiting from the high coupling of the electro-
magnetic field in the space between two adjacent nanopillars,
the analytical enhancement factor (AEF) of the Ag-coated
nanopillar SERS substrate for rhodamine 6G (R6G) detection
can reach more than 108 as compared to that of the bare SERS
substrate. This established relationship between the nature
nanostructure and the corresponding SERS behavior provides
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an alternative for designing controllable platforms for
biodetection applications at ultralow concentration.

■ RESULTS AND DISCUSSION
As shown in Figure 1a,b, biologic nanopillar cells with almost
the same diameter of 50 nm at the bottom were observed on
the pristine wings. The mean heights of the nanopillars on A5
and U3 samples calibrated from the three-dimensional scans
were 200 and 150 nm, respectively. Here, the profiles were
rezeroed based on the lowest z-coordinate when calculating
the profile heights. After the magnetron sputtering process, the
SEM image of the Ag-coated SERS substrate based on the A5
(Figure 1c) wing still displays a nanopillar pattern with a mean
diameter of 130 nm shown in the inserted statistical image. For
the U3 part, after the magnetron sputtering process, as shown
in Figure 1d, it also exhibits a nanopillar pattern with a mean
diameter of 123 nm, and the cross-section image inserted on
the lower left corner shows that the sputtering process can
form a continuous metal film on the sidewalls of the cicada
wing. The optical reflectance of nanopillar substrates in A5 and

U3 areas and the smooth film as reference was measured using
UV−vis−NIR spectroscopy. As shown in Figure 1e, samples of
A5 and U3 give a similar reflectance resonance with a dipping
reflectance at 312 and 725 nm. Their reflectance increases
from 350 to 700 nm. This result suggests that this kind of
nanopillar thin films have higher reflectance and near-field
enhancement in the optical range, which favors concentration
of the energy and the surface-enhanced signals related to the
reflectance and surface plasmon resonance, leading to surface-
enhanced Raman scattering.38,39

The SERS spectra shown in Figure 2a present a comparison
of SERS performances of 10−6 mol/L of R6G molecules
adsorbed on Ag-coated nanopillars on A5 and U3 wings, Ag/
glass, and pure glass substrate. There are no apparent R6G
Raman peaks for the glass and Ag/glass substrates, and the
standard Raman signals are negligible. However, the well-
defined peaks at 610, 774, 1127, 1183, 1305, and 1361 cm−1

can be observed for the two types of Ag nanopillar substrates.
Such peaks are attributed to C−C−C ring in-plane bending
(610 cm−1), C−H out-of-plane bending in the xanthene

Figure 1. (a) Atomic force microscopy (AFM) scans of A5 and U3 wings. (b) Averaged AFM line scan height profiles of two adjacent nanopillars
of A5 and U3 and top-viewed scanning electron microscopy images after the metal deposition for (c) A5 (the inset is the histogram of the diameter
distribution of nanopillars) and (d) U3 (the insets are the high-resolution image and the histogram of the diameter distribution of nanopillars). (e)
Optical reflectance spectrum of fabricated nanopillar substrates in A5 and U3 areas (the inset is the reflectance spectrum of a flat silver film as the
reference).
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skeleton (774 cm−1), C−H in-plane bending (1127 and 1183
cm−1), C−O−C stretching (1305 cm−1), and aromatic C−C
stretching vibrations (1361 cm−1), respectively.40−44 The
SERS spectra of 10−6 mol/L of R6G molecules adsorbed on
Ag-coated nanopillars on U3 wings with 50 different positions
at a scale of 30 μm × 30 μm are shown in Figure 2b, and the
calculated relative standard deviation of the intensity based on
the 610 cm−1 is 1192, proving that the substrate exhibits good
signal reproducibility and stability.
To investigate the detection limit of the Ag-coated

nanopillar substrate, taking U3-based substrate as an example,
the concentrations of R6G aqueous solutions varied from 10−2

to 10−10 mol/L. As shown in Figure 3, the characteristic peaks
are identified in all scopes, and the peak intensity decreases
distinctly with the decrease of the R6G concentration.
However, even at the lowest concentration of 10−10 mol/L,
it still demonstrates a distinguishable SERS signal.
On the basis of the adsorbed 10−2 mol/L of R6G aqueous

solution adsorbed on the Ag/glass substrate and 10−10 mol/L
of R6G aqueous solution adsorbed on the Ag-coated nanopillar
substrate, AEF�an essential indicator of the SERS activity of a
substrate�shown in eq 1 was calculated to quantify the SERS
enhancement level of the fabricated Ag-coated nanopillar SERS

substrate at the most intense wavenumbers 610 cm−1, 774
cm−1, 1183 cm−1, 1313 cm−1, and 1361 cm−1

I C I CAEF ( / )/( / )SERS SERS NRS NRS= (1)

where CNAS and CSERS are the concentrations of the R6G
adsorbed on the Ag/glass substrate and Ag-coated nanopillar
substrate, respectively, and INAS and ISERS denote the SERS
intensities of R6G adsorbed on Ag/glass substrate and Ag-
coated nanopillar substrate, respectively.
Two essential metrics are widely employed to quantify the

overall SERS enhancement, namely, the enhancement factor
(EF) and the analytical enhancement factor (AEF). EF
quantifies signal enhancement by comparing SERS and the
average Raman scattering signal intensity, which is a useful
parameter to benchmark SERS and the moderate field
enhancement experienced by each molecule across different
platforms.45,46 However, an accurate determination of the
number of molecules measured within the laser excitation
volume is required for this metric. Compared to the
conventional enhancement factor (EF), AEF approaches signal
enhancement from an analytical point of view, relating the
signal intensity to the analyte concentration rather than the
number of molecules. In this study, we use the AEF to describe
the performance. AEF is an essential indicator of the SERS
activity of a substrate and approaches signal enhancement from
an analytical point-of-view, relating signal intensity to the
analyte concentration rather than the number of molecules.
This metric is beneficial when it is difficult to estimate the
number of analyte molecules present, especially for analytes
with no specific affinity for plasmonic surfaces. As summarized
in Table 1, the average AEF was 8.46 × 107, and the AEF was
up to more than 108 at 610 cm−1 and 774 cm−1 modes.

To interpret the mechanism of SERS enhancement
theoretically, the electric field distribution was calculated. As
shown in Figure 4a, the SEM image at a scale of 1 μm × 1 μm
from the SEM image in Figure 1d was imported to COMSOL
Multiphysics software to calculate the electric field distribution
at a wavelength of 532 nm. In particular, consider this unit cell

Figure 2. (a) Surface-enhanced Raman scattering spectra of 10−6

mol/L of R6G molecules adsorbed on Ag-coated nanopillars on A5
and U3 wings, Ag/glass, and pure glass substrates. (b) Surface-
enhanced Raman scattering spectra of 10−6 mol/L of R6G molecules
adsorbed on Ag-coated nanopillars on the U3 wing with 50 different
positions.

Figure 3. Surface-enhanced Raman scattering spectra (SERS) of the
Ag-coated nanopillar substrate with various R6G concentrations from
10−2 to 10−10 mol/L and SERS spectrum of the Ag/glass surface with
an R6G concentration of 10−2 mol/L.

Table 1. Surface-Enhanced Raman Scattering Analytical
Enhancement Factor (AEF) for Fabricated Ag Nanopillars

wavenumber (cm−1)

substrate 610 774 1183 1313 1361 avg AEF

Ag/U3 (108) 1.06 1.17 0.97 0.46 0.57 0.846
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with periodic boundary conditions in the x and y directions
and a perfectly matched layer in the z direction. The maximum
mesh in air space is 10 nm, and mesh of the metal in the paper
is 2 nm. Parts b and c, respectively, of Figure 4 show the
electric field distributions on the top surface and the simulated
reflectance which is basically consistent with the experimental
results shown in Figure 1e. It is noticed that the intensity of the
electric field tends to be stronger between two nanopillars.
This indicated that the high SERS AEF observed arose
predominantly from the electromagnetic enhancement induced
by the plasmonic resonance coupling between adjacent Ag
nanopillars.

■ CONCLUSION
In summary, using biomimetic nanostructures to fabricate an
available SERS substrate could be considered as a flexible and
cost-effective method. The Ag-coated nanopillar SERS
substrate was established by directly depositing silver films
on the cicada wing, giving rise to an AEF of the order of more
than 108 in R6G detection based on the 610 cm−1 and 774
cm−1 modes due to the high near field resonance coupling of
surface plasmon at the limited space among neighboring
nanopillars (the mean interpillar spacing of ∼20 nm). The
reliable detection concentration using rhodamine 6G as a
model molecule can be 100 pM or less. These experimental
results provide an alternative path to design sensitive and cost-
effective SERS plasmonic sensors for the rapid and reliable
detection of trace organics in biological and environmental
applications.

■ EXPERIMENTAL METHODS
In this experiment, a cicada was first brought indoors from its
habitat to complete its molt. After its natural sacrifice, without
loss of generality, a central part U3, and an edge part A5,
labeled according to Molds,47 illustrated in Figure 5 were
cleaned and dried for future use. Then, atomic force
microscopy (AFM) was used to characterize the micro-
structure of the two pristine wings to determine the actual
width and height using a Nanoscope V Multimode 8 scanning
probe microscope (Bruker Corp.). All experiments were
conducted with the same AFM probe under ambient
conditions (temperature of 25 °C, the relative humidity of
25%). After the AFM imaging, a 100 nm thick Ag film was
deposited on the two wings using the magnetron sputtering
method at room temperature with a base pressure of 4.7 ×
10−4 Pa.48,49 During the deposition process, the metallic Ag
target (purity >99.99%) was sputtered in a 15 mTorr argon gas
atmosphere using a direct current sputtering apparatus with a
power density of 2.5 W/cm2.50 Subsequently, the surface

morphologies were characterized using field emission scanning
electron microscopy (SEM).23

The optical reflectance of the fabricated nanopillar substrates
in A5 and U3 areas was measured by a UV−vis−NIR
spectroscope (PE Lamda 750, IET Ltd.: UV−vis resolution
≤0.17 nm; NIR ≤ 0.20 nm) from 190 to 800 nm. An R6G
aqueous solution was first prepared using distilled deionized
water, and then the Ag-coated nanopillar SERS substrates were
immersed in the R6G (BR 99.5%) solutions at concentrations
of 10−2 mol/L, 10−6 mol/L, and 10−10 mol/L for 3 h to make
R6G molecules adsorbed on the prepared substrates. To
evaluate the SERS performance of the Ag-coated wing
substrates, an R6G solution at a concentration of 10−2 mol/
L adsorbed on an Ag/glass substrate was prepared as a
reference. Subsequently, all of the samples were dried at room
temperature. Finally, the SERS measurements were performed
using an Edinburgh Raman spectrometer (RM5) under 532
nm laser irradiation with 3.4 mW of the excitation laser power,
and the wavenumber was scanned from 500 cm−1 to 1700
cm−1 with a 37 s integration time.
Generally, a silver-arrayed model was used to investigate the

interaction between the light and the nanostructures using the
finite element method package (COMSOL Multiphysics, RF
module, version 5.6) by importing the SEM image at a scale of
1 μm × 1 μm to the software. The model was illuminated by
linearly polarized light along the x-axis at normal incidence,
and the electric field distribution was evaluated under 532 nm
laser irradiation. During the calculation, the optical constants
for the silver film at the wavelength range were selected from
the literature.51 The refractive index of the environment used
in the simulation was 1, since all nanostructures were
immersed in the air atmosphere.

Figure 4. (a) Partial SEM image from Figure 1d with (b) its corresponding modeled electric field enhancement distributions on the top interface
between the air and the sample at the excitation wavelength of 532 nm and (c) the simulated spectrum of reflectance with wavelength.

Figure 5. Photograph of the top view of the detached forewing of the
cicada with two types of wing cells labeled U3 and A5 and the sliver
nanorods after the deposition process.
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