Association of *KRAS* and *NRAS* gene polymorphisms with Wilms tumor risk: a four-center case-control study

Wen Fu^{1,*}, Zhenjian Zhuo^{1,2,*}, Rui-Xi Hua^{3,*}, Kai Fu¹, Wei Jia¹, Jinhong Zhu⁴, Jiao Zhang⁵, Jiwen Cheng⁶, Haixia Zhou⁷, Huimin Xia¹, Jing He¹, Guochang Liu¹

¹Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China

²School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China ³Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China

⁴Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China

⁵Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China

⁶Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China

⁷Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China

*Equal contribution

Correspondence to: Jing He, Guochang Liu; email: hejing198374@gmail.com, starbless2003@126.comKeywords: Wilms tumor, KRAS, NRAS, polymorphism, susceptibilityReceived: November 28, 2018Accepted: March 6, 2019Published: March 12, 2019

Copyright: Fu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Wilms tumor is a type of pediatric solid tumor that arises partly due to somatic and germline mutations. Singlenucleotide polymorphisms (SNPs) in the *RAS* gene reportedly modify the risk for several types of human malignancies. We conducted a multicenter study to investigate whether *RAS* gene variants predispose individuals to Wilms tumor. Four SNPs in *RAS* were genotyped in 355 Wilms tumor cases and 1070 controls. The SNPs included rs12587 G>T, rs7973450 A>G and rs7312175 G>A in *KRAS*, and rs2273267 A>T in *NRAS*. Individuals harboring the rs12587 GT genotype were more likely to develop Wilms tumor than those carrying the GG genotype (adjusted odds ratio [OR]=1.30, 95% confidence interval [CI]=1.004-1.68, *P*=0.046). However, the other three SNPs seemed not to influence the risk for Wilms tumor. Compared to individuals without a risk genotype, those harboring one to three *KRAS* risk genotypes had an adjusted OR of 1.28 for developing Wilms tumor (95% CI=1.002-1.64, *P*=0.048). Stratification analysis revealed that rs12587 GT/TT was associated with Wilms tumor risk in children >18 months old (adjusted OR=1.39, 95% CI=1.02-1.89, *P*=0.037). Our findings indicate that the rs12587 G>T polymorphism in *KRAS* is associated with increased Wilms tumor susceptibility.

INTRODUCTION

Wilms tumor (nephroblastoma) is the most common pediatric renal malignancy [1]. It is normally derived

from embryonal kidney precursor cells in which cell growth and/or differentiation are dysregulated during development [2, 3]. The incidence rate of Wilms tumor is about 1 in 10,000 children in Western countries [4]. The overall five-year survival rate exceeds 90% in developed countries [5-7]. Despite great achievements in the treatment of Wilms tumor, the outcomes for patients with high-risk disease (about 25%) remain disappointing [8]. Apart from this, high treatment costs and severe chronic health conditions that occur in nearly 25% of survivors are also challenging [9, 10].

There is strong evidence that genetic factors contribute to Wilms tumor risk. To date, five Wilms tumor susceptibility loci have been well characterized, including Wilms tumor gene 1 (WTI), Wilms tumor gene on the X chromosome (WTX), catenin beta 1 (CTNNBI), tumor protein 53 (TP53) and the imprinted 11p15 region [11-13]. Although additional genetic variants continue to be identified, the carcinogenesis of Wilms tumor remains to be fully explained [14-16]. Therefore, it is indispensable to identify other genes that increase Wilms tumor susceptibility.

The *RAS* oncogene family has three members: *KRAS*, *NRAS* and *HRAS*. These genes encode a family of highly homologous GTPases that are involved in various cellular activities, such as growth, proliferation and differentiation [17, 18]. *RAS* mutations have been detected in about 20% of human malignancies [19]. *KRAS* mutations are the most common, accounting for approximately 85% of all *RAS* mutations [20, 21], followed by *NRAS* mutations (15%). *HRAS* mutations are very rare, constituting less than 1% of all *RAS* mutations [22].

The impact of *RAS* gene variants on the risk of cancer has been widely investigated, including in studies of colorectal cancer [23], lung cancer [24, 25], breast cancer [26] and melanoma [27]. Clark et al. demonstrated that coordinated activation of *RAS* and β catenin accelerated the growth and metastatic progression of Wilms tumor in a murine model [28]. They later reported that activating *KRAS* mutations were found in human Wilms tumor samples [29]. Recently, another team verified the importance of *RAS* mutations in the development and progression of Wilms tumor [30].

Despite these findings, the link between *RAS* gene polymorphisms and Wilms tumor risk remains obscure. To clarify the association of *RAS* with Wilms tumor risk, we selected single-nucleotide polymorphisms (SNPs) in the two most common diseased-related *RAS* genes, *KRAS* and *NRAS*, for analysis in a four-center hospital-based case-control study.

RESULTS

Correlation of *RAS* gene polymorphisms with Wilms tumor risk

We successfully genotyped 1070 controls and 351 cases for *KRAS* polymorphisms, along with 1070 controls and 355 cases for *NRAS* polymorphism. The demographic characteristics of the subjects are presented in Supplemental Table 1. All the SNP genotype frequencies were in Hardy-Weinberg equilibrium in controls (P>0.05). Our results indicated that the rs12587 GT genotype is a risk variant for Wilms tumor (Table 1), as individuals with this genotype had a 1.30-fold greater risk for developing Wilms tumor (95% confidence interval [CI]=1.004-1.68, P=0.046) than those with the GG genotype. The individual rs7973450 A>G, rs7312175 G>A and rs2273267 A>T variants did not predispose individuals to Wilms tumor.

We further examined the combined effects of the risk genotypes for *KRAS* on Wilms tumor risk. Compared to individuals without a risk genotype, those harboring one to three of these genotypes were at 1.28-fold greater risk for Wilms tumor (95% CI=1.002-1.64, P=0.048).

Stratification analysis

Tables 2 and 3 summarize the analysis of *KRAS* and *NRAS* polymorphisms and Wilms tumor risk after stratification by age, gender and clinical stage. A significant association between rs12587 GT/TT and Wilms tumor risk was only found in children >18 months old among the analyzed strata (adjusted odds ratio [OR]=1.39, 95% CI=1.02-1.89, P=0.037).

False-positive report probability (FPRP) analysis

In FPRP analysis (Table 4), only at a prior probability level of 0.25 and an FPRP threshold of 0.2 did the increased Wilms tumor risk remain noteworthy in carriers of rs12587 GT (FPRP=0.141), children >18 months old with rs12587 GT/TT (FPRP=0.131) and those with one to three risk genotypes (FPRP=0.139).

DISCUSSION

Thus far, only a small portion of genetic loci have been found to increase the risk of Wilms tumor. This underscores the need to reveal more genetic loci that could predispose individuals to this disease. Herein, we evaluated the impact of *KRAS* and *NRAS* gene SNPs on

Genotype	Cases	Controls	P ^a	Crude OR	Р	Adjusted OR	Рb
51	(N=355)	(N=1070)		(95% CI)		(95% CI) ^b	
KRAS rs12587	G>T (HWE=0.2	287)					
GG	206 (58.69)	688 (64.30)		1.00		1.00	
GT	129 (36.75)	333 (31.12)		1.29 (1.002-1.67)	0.049	1.30 (1.004-1.68)	0.046
TT	16 (4.56)	49 (4.58)		1.09 (0.61-1.96)	0.772	1.08 (0.60-1.94)	0.806
Additive			0.142	1.18 (0.96-1.44)	0.117	1.18 (0.96-1.44)	0.120
Dominant	145 (41.31)	382 (35.70)	0.059	1.27 (0.99-1.62)	0.059	1.27 (0.99-1.63)	0.058
Recessive	335 (95.44)	1021 (95.42)	0.987	1.00 (0.56-1.77)	0.987	0.98 (0.55-1.75)	0.949
G	541 (77.07)	1709 (79.86)		1.00		1.00	
Т	161 (22.93)	431 (20.14)	0.114	1.18 (0.96-1.45)	0.114	1.18 (0.96-1.45)	0.117
KRAS rs79734	50 A>G (HWE=	0.080)					
AA	282 (80.34)	881 (82.34)		1.00		1.00	
AG	68 (19.37)	185 (17.29)		1.15 (0.84-1.56)	0.380	1.14 (0.84-1.56)	0.402
GG	1 (0.28)	4 (0.37)		0.78 (0.09-7.02)	0.825	0.83 (0.09-7.50)	0.870
Additive			0.660	1.13 (0.84-1.52)	0.436	1.12 (0.83-1.51)	0.448
Dominant	69 (19.66)	189 (17.66)	0.400	1.14 (0.84-1.55)	0.401	1.14 (0.84-1.54)	0.418
Recessive	350 (99.72)	1066 (99.63)	0.807	0.76 (0.09-6.84)	0.808	0.81 (0.09-7.32)	0.853
А	632 (90.03)	1947 (90.98)		1.00		1.00	
G	70 (9.97)	193 (9.02)	0.450	1.12 (0.84-1.49)	0.450	1.11 (0.84-1.49)	0.462
KRAS rs73121	75 G>A (HWE=	0.130)		· · · ·			
GG	270 (76.92)	851 (79.53)		1.00		1.00	
GA	72 (20.51)	201 (18.79)		1.13 (0.84-1.53)	0.431	1.14 (0.84-1.54)	0.404
AA	9 (2.56)	18 (1.68)		1.58 (0.70-3.55)	0.272	1.54 (0.68-3.48)	0.298
Additive			0.423	1.17 (0.91-1.51)	0.222	1.17 (0.91-1.51)	0.218
Dominant	81 (23.08)	219 (20.47)	0.299	1.17 (0.87-1.56)	0.299	1.17 (0.88-1.57)	0.285
Recessive	342 (97.44)	1052 (98.32)	0.294	1.54 (0.69-3.46)	0.297	1.50 (0.67-3.39)	0.326
G	612 (87.18)	1903 (88.93)		1.00		1.00	
А	90 (12.82)	237 (11.07)	0.208	1.18 (0.91-1.53)	0.209	1.18 (0.91-1.53)	0.205
NRAS rs22732	67 A>T (HWE=	0.723)					
AA	183 (51.55)	541 (50.56)		1.00		1.00	
AT	142 (40.00)	443 (41.40)		0.95 (0.74-1.22)	0.676	0.95 (0.74-1.23)	0.714
TT	30 (8.45)	86 (8.04)		1.03 (0.66-1.61)	0.893	1.02 (0.65-1.61)	0.917
Additive			0.889	0.99 (0.82-1.19)	0.883	0.99 (0.82-1.19)	0.890
Dominant	172 (48.45)	529 (49.44)	0.747	0.96 (0.76-1.22)	0.747	0.97 (0.76-1.23)	0.774
Recessive	325 (91.55)	984 (91.96)	0.805	1.06 (0.68-1.63)	0.805	1.05 (0.68-1.62)	0.840
А	508 (71.55)	1525 (71.26)		1.00		1.00	
Т	202 (28.45)	615 (28.74)	0.883	0.99 (0.82-1.19)	0.883	0.99 (0.82-1.19)	0.891
Combined effe	ect of risk genoty	pes for KRAS ^c					
0	200 (56.98)	673 (62.90)		1.00		1.00	
1	13 (3.70)	28 (2.62)		1.56 (0.80-3.07)	0.196	1.57 (0.80-3.10)	0.192
2	132 (37.61)	345 (32.24)		1.29 (1.00-1.66)	0.052	1.29 (1.00-1.66)	0.052
3	6 (1.71)	24 (2.24)		0.84 (0.34-2.09)	0.709	0.84 (0.34-2.09)	0.709
Trend	× /	× /	0.157	1.11 (0.98-1.25)	0.094	1.11 (0.98-1.25)	0.093
0	200 (56.98)	673 (62.90)		1.00		1.00	
1-3	151 (43.02)	397 (37.10)	0.048	1.28 (1.002-1.64)	0.048	1.28 (1.002-1.64)	0.048

Table 1. Logistic regression anal	ysis of associations between RAS	S polymorphisms and Wilms tumor risk.

OR, odds ratio; CI, confidence interval; HWE, Hardy-Weinberg equilibrium.

^a χ^2 test for genotype distributions between Wilms tumor patients and cancer-free controls.

^bAdjusted for age and gender.

^c Risk genotypes were carriers with rs12587 GT/TT, rs7973450 AG/GG and rs7312175 GA/AA genotypes.

Variables	Variables rs12587 (case/control)		AOR (95% CI) ^a P	a r (rs797345 (case/cor	50 ntrol)	AOR (95% CI) ^a <i>H</i>	Da	rs731217 (case/con	75 ntrol)	AOR (95% CI) ^a P ^a	Combine (case/con	genotypes trol)	AOR (95% CI) ^a P ^a
	GG	GT/TT		A	AA	AG/GG		-	GG	GA/AA		0	1-3	
Age, mor	nth													
≤18	77/272	46/153	1.06 (0.70-1.61) 0	.771 9	97/341	26/84	1.09 (0.67-1.79) 0).726	99/345	24/80	1.04 (0.63-1.74) 0.870	74/269	49/156	1.14 (0.76-1.73) 0.522
>18	129/416	99/229	1.39 (1.02-1.89) 0	.037 1	185/540	43/105	1.20 (0.81-1.77) 0).373	171/506	57/139	1.21 (0.85-1.73) 0.286	126/404	102/241	1.35 (0.99-1.83) 0.056
Gender														
Female	97/283	66/165	1.17 (0.81-1.68) 0	.412 1	128/369	35/79	1.28 (0.82-1.99) 0).285	129/354	34/94	0.99 (0.64-1.54) 0.973	93/277	70/171	1.22 (0.85-1.75) 0.287
Male	109/405	79/217	1.37 (0.98-1.92) 0	.064 1	154/512	34/110	1.03 (0.67-1.57) 0).897	141/497	47/125	1.34 (0.91-1.97) 0.135	107/396	81/226	1.35 (0.96-1.88) 0.081
Clinical s	stages													
Ι	71/688	48/382	1.23 (0.84-1.82) 0	.293 1	101/881	18/189	0.82 (0.48-1.38) 0).446	90/851	29/219	1.28 (0.82-2.00) 0.276	69/673	50/397	1.25 (0.85-1.84) 0.261
II	51/688	39/382	1.37 (0.89-2.13) 0	.154 6	68/881	22/189	1.48 (0.89-2.45) 0).134	71/851	19/219	1.06 (0.62-1.80) 0.836	50/673	40/397	1.36 (0.88-2.09) 0.172
III	47/688	32/382	1.21 (0.76-1.93) 0	.425 6	67/881	12/189	0.84 (0.44-1.58) 0).587	57/851	22/219	1.48 (0.88-2.47) 0.138	46/673	33/397	1.20 (0.75-1.91) 0.443
IV	28/688	17/382	1.08 (0.59-2.01) 0	.797 3	34/881	11/189	1.51 (0.75-3.04) 0).246	39/851	6/219	0.59 (0.25-1.42) 0.241	27/673	18/397	1.12 (0.61-2.06) 0.714
I+II	122/688	87/382	1.29 (0.96-1.75) 0	.096 1	169/881	40/189	1.08 (0.74-1.58) 0).698	161/851	48/219	1.19 (0.83-1.69) 0.350	119/673	90/397	1.30 (0.96-1.75) 0.093
III+IV	75/688	49/382	1.16 (0.79-1.71) 0	.439 1	101/881	23/189	1.06 (0.66-1.72) 0).800	96/851	28/219	1.12 (0.72-1.75) 0.617	73/673	51/397	1.17 (0.80-1.71) 0.413

Table 2. Stratification analysis for association between KRAS genotypes and Wilms tumor susceptibility.

AOR, adjusted odds ratio; CI, confidence interval.

^a Adjusted for age and gender, omitting the corresponding stratify factor.

Variables	rs2273267		Crude OR	Р	Adjusted OR ^a	P ^a
	(cases/cont	rols)			-	
	AA	AT/TT	(95% CI)		(95% CI)	
Age, month						
≤18	58/199	67/226	1.02 (0.68-1.52)	0.934	1.01 (0.67-1.50)	0.975
>18	125/342	105/303	0.95 (0.70-1.28)	0.730	0.96 (0.71-1.30)	0.799
Gender						
Females	91/234	72/214	0.87 (0.60-1.24)	0.431	0.87 (0.60-1.24)	0.432
Males	92/307	100/315	1.06 (0.77-1.46)	0.727	1.05 (0.76-1.45)	0.764
Clinical stage	S					
Ι	67/541	52/529	0.79 (0.54-1.16)	0.235	0.80 (0.55-1.17)	0.252
II	41/541	51/529	1.27 (0.83-1.95)	0.271	1.27 (0.83-1.96)	0.269
III	41/541	38/529	0.95 (0.60-1.50)	0.819	0.95 (0.60-1.51)	0.832
IV	28/541	19/529	0.69 (0.38-1.26)	0.229	0.70 (0.38-1.26)	0.233
I+II	108/541	103/529	0.98 (0.73-1.31)	0.868	0.98 (0.73-1.32)	0.888
III+IV	69/541	57/529	0.85 (0.58-1.22)	0.373	0.85 (0.59-1.23)	0.392

Table 3. Stratification analysis for the association between *NRAS* rs2273267 A>T polymorphism and Wilms tumor risk.

OR, odds ratio; CI, confidence interval.

^a Adjusted for age and gender, omitting the corresponding stratify factor.

the risk of Wilms tumor in 355 Wilms tumor patients and 1070 healthy control subjects. To the best of our knowledge, we are the first to report the association of RAS gene polymorphisms with Wilms tumor risk in Chinese children.

KRAS and *NRAS* have been mapped to chromosomes 12p12.1 and 1p13.2, respectively. Many studies have investigated the mechanisms by which *RAS* gene polymorphisms impact cancer risk. In particular, rs61764370 and rs712, two *KRAS* polymorphisms in

miRNA-binding sites, have been intensively studied. These two SNPs are located in the 3' untranslated region (UTR) of *KRAS*, where they disrupt a let-7 miRNA binding site, thus increasing *KRAS* expression and enhancing tumor growth [31]. Chin et al. studied 46 populations worldwide, and identified the rs61764370 SNP in the 3' UTR of the *KRAS* gene (*KRAS*-LCS6). This SNP was associated with increased expression of *KRAS*, reduced expression of let-7 and increased risk of lung cancer [31]. Furthermore, this allele was demonstrated to elevate the risk of epithelial ovarian

Table 4. False-positive report probability analysis for the association between *KRAS* genotypes and Wilms tumor susceptibility.

Genotype	Crude OR	P ^a	Statistical power ^b	Prior probability				
	(95% CI)			0.25	0.1	0.01	0.001	0.0001
rs12587 G>T								
GT vs. GG	1.29 (1.002-1.67)	0.049	0.886	0.141	0.330	0.844	0.982	0.998
GT/TT vs. GG								
>18 months	1.39 (1.02-1.89)	0.037	0.682	0.131	0.311	0.832	0.980	0.998
Risk genotypes								
1-3 vs. 0	1.28 (1.002-1.64)	0.048	0.903	0.139	0.326	0.841	0.982	0.998

OR, odds ratio; CI, confidence interval.

 $^{a}\chi^{2}$ test was used to calculate the genotype frequency distributions.

^b Statistical power was calculated using the number of observations in the subgroup and the OR and *P* values in this table.

cancer [32] and triple-negative breast cancer [33]. In a population-based case-control study conducted in the US by Christensen et al., the *KRAS*-LCS6 variant genotype (rs61764370) was not associated with the overall risk of head and neck squamous cell carcinoma, but was associated with a significantly reduced survival time [34].

Wang et al. [7] reported that the rs712 polymorphism in the KRAS 3' UTR was associated with a reduced risk for oral squamous cell carcinoma, while rs1137282 in KRAS exon 6 was not [35]. In contrast, in a study of 181 gastric cancer patients and 674 cancer-free controls, Li et al. found that the T allele of rs712 significantly enhanced the susceptibility to gastric cancer [36]. As different types of tissues and cells have different miRNA profiles, the effects of SNPs in specific 3' UTRs may vary accordingly. Moreover, differences in the population sources, environmental exposures, sample sizes and selection criteria of subjects may also have influenced the contribution of RAS SNPs to cancer susceptibility of different types. Therefore, it is necessary to define the impact of RAS polymorphisms on the risk of a certain cancer type in a certain population.

Our findings indicated that carriers of the KRAS rs12587 GT genotype had a genetic predisposition to Wilms tumor risk. Unexpectedly, rs7973450 A>G, rs7312175 G>A and rs2273267 A>T were not significantly associated with Wilms tumor risk. The rs12587 G>T, rs7973450 A>G and rs2273267 A>T polymorphisms reside in different complementary miRNA sites. The different locations of these SNPs may be one reason for their different effects on cancer risk. Other plausible interpretations of the null association include the relatively small sample size and susceptibility the low-penetrance of single polymorphisms.

One limitation of this study was the relatively small sample size, which may have impaired the statistical power, especially for the stratification analysis. Another limitation was the restriction of the included population to a single ethnicity (Chinese Han), which may render the findings inapplicable to other populations. Further, though we analyzed four SNPs in the current study, additional SNPs should be considered in future studies. Lastly, the current study only focused on genetic factors, and gene-environment interaction analysis was not performed due to the lack of relevant information. Wilms tumor is a heterogeneous disease, and both genetic and environmental factors contribute to its tumorigenesis. Thus, more comprehensive studies are warranted. In conclusion, this was the first multi-center evaluation of the association of *KRAS* and *NRAS* gene SNPs with Wilms tumor susceptibility. Our study has provided the first evidence that *KRAS* gene SNPs may increase Wilms tumor susceptibility. Ongoing epidemiological studies in other independent populations are warranted prior to extrapolation of the current conclusions.

MATERIALS AND METHODS

Study subjects

In total, 355 cases and 1070 healthy controls were included in this study (Supplemental Table 1). The subject selection criteria were described in detail in our previous study [37-43]. In brief, cases with newly diagnosed and histologically confirmed Wilms tumor were recruited from four centers in China (Guangzhou Women and Children's Medical Center [37-43], The First Affiliated Hospital of Zhengzhou University, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, and The Second Affiliated Hospital of Xi'an Jiao Tong University). All the included cases were sporadic cases. The controls were healthy volunteers without a history of Wilms tumor, matched to the cases by age, gender and city of residency. All the subjects or their guardians provided written informed consent before participating. Approval of the study protocol was obtained from the Institutional Review Board of each center prior to the study.

Polymorphism selection and genotyping

We analyzed three potential functional SNPs in the KRAS gene and one potential functional SNP in the NRAS gene. SNPs were selected from the NCBI dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP) and SNPinfo (http://snpinfo.niehs.nih.gov/snpfunc.htm). These four SNPs could capture an additional 89 SNPs with $R^2 > 0.8$ (Supplemental Table 2). The selection criteria were set as previously described [42, 44]. Genomic DNA was extracted from venous blood with a TIANamp Blood DNA Kit (TianGen Biotech Co. Ltd., Beijing, China). SNP genotyping was performed with a TaqMan SNP Genotyping Assay (Applied Biosystems, Foster City, CA, USA). Negative controls with water and 10% replicates were also genotyped to ensure genotyping accuracy. No discordant genotypes were found in the replicates.

Statistical analysis

Statistical analysis was performed in SAS release 9.1 (SAS Institute, Cary, NC, USA). The genotype frequency distributions of the polymorphisms were first

evaluated among the controls, and Hardy-Weinberg equilibrium was assessed with the χ^2 test. The distribution of subject characteristics between cases and controls was examined with a two-sided χ^2 test. Unadjusted and adjusted (for age and gender) ORs and 95% CIs were generated for both single and combined SNPs. We then determined the association of the SNPs with Wilms tumor risk using the OR and 95% CI calculated from multivariable logistic regression analysis. FPRP analysis was performed as described previously [45]. All results were considered statistically significant if P < 0.05.

CONFLICTS OF INTEREST

There are no competing interests to declare.

FUNDING

This study was funded by grants from the National Natural Science Foundation of China (No: 81803320), the Pearl River S&T Nova Program of Guangzhou (No: 201710010086), the Science and Technology Project of Guangzhou (No: 201804010037) and the Science and Technology Planning Project of Guangdong Province (No: 2016A020215009).

REFERENCES

- Davidoff AM. Wilms' tumor. Curr Opin Pediatr. 2009; 21:357–64. https://doi.org/10.1097/MOP.0b013e32832b323a
- Beckwith JB, Kiviat NB, Bonadio JF. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms' tumor. Pediatr Pathol. 1990; 10:1–36. https://doi.org/10.3109/15513819009067094
- Hohenstein P, Pritchard-Jones K, Charlton J. The yin and yang of kidney development and Wilms' tumors. Genes Dev. 2015; 29:467–82. https://doi.org/10.1101/gad.256396.114
- Breslow N, Olshan A, Beckwith JB, Green DM. Epidemiology of Wilms tumor. Med Pediatr Oncol. 1993; 21:172–81. https://doi.org/10.1002/mpo.2950210305
- Gadd S, Huff V, Walz AL, Ooms AH, Armstrong AE, Gerhard DS, Smith MA, Auvil JM, Meerzaman D, Chen QR, Hsu CH, Yan C, Nguyen C, et al. A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat Genet. 2017; 49:1487–94. https://doi.org/10.1038/ng.3940
- Dome JS, Liu T, Krasin M, Lott L, Shearer P, Daw NC, Billups CA, Wilimas JA, and Jude Children's Research Hospital. Improved survival for patients with

recurrent Wilms tumor: the experience at St. J Pediatr Hematol Oncol. 2002; 24:192–98. https://doi.org/10.1097/00043426-200203000-00007

- Dome JS, Graf N, Geller JI, Fernandez CV, Mullen EA, Spreafico F, Van den Heuvel-Eibrink M, Pritchard-Jones K. Advances in Wilms Tumor treatment and biology: progress through international collaboration. J Clin Oncol. 2015; 33:2999–3007. https://doi.org/10.1200/JCO.2015.62.1888
- Sonn G, Shortliffe LM. Management of Wilms tumor: current standard of care. Nat Clin Pract Urol. 2008; 5:551–60. https://doi.org/10.1038/ncpuro1218
- 9. Pritchard-Jones K, Moroz V, Vujanic G, Powis M, Walker J, Messahel B, Hobson R, Levitt G, Kelsey A, Mitchell C, and Children's Cancer and Leukaemia Group (CCLG) Renal Tumours Group. Treatment and outcome of Wilms' tumour patients: an analysis of all cases registered in the UKW3 trial. Ann Oncol. 2012; 23:2457–63. https://doi.org/10.1093/annonc/mds025
- Malogolowkin M, Cotton CA, Green DM, Breslow NE, Perlman E, Miser J, Ritchey ML, Thomas PR, Grundy PE, D'Angio GJ, Beckwith JB, Shamberger RC, Haase GM, et al, and National Wilms Tumor Study Group. Treatment of Wilms tumor relapsing after initial treatment with vincristine, actinomycin D, and doxorubicin. A report from the National Wilms Tumor Study Group. Pediatr Blood Cancer. 2008; 50:236–41. https://doi.org/10.1002/pbc.21267
- Little SE, Hanks SP, King-Underwood L, Jones C, Rapley EA, Rahman N, Pritchard-Jones K. Frequency and heritability of WT1 mutations in nonsyndromic Wilms' tumor patients: a UK Children's Cancer Study Group Study. J Clin Oncol. 2004; 22:4140–46. https://doi.org/10.1200/JCO.2004.02.136
- Scott RH, Douglas J, Baskcomb L, Huxter N, Barker K, Hanks S, Craft A, Gerrard M, Kohler JA, Levitt GA, Picton S, Pizer B, Ronghe MD, et al, and Factors Associated with Childhood Tumours (FACT) Collaboration. Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat Genet. 2008; 40:1329–34. https://doi.org/10.1038/ng.243
- Andrade RC, Cardoso LC, Ferman SE, Faria PS, Seuánez HN, Achatz MI, Vargas FR. Association of TP53 polymorphisms on the risk of Wilms tumor. Pediatr Blood Cancer. 2014; 61:436–41. https://doi.org/10.1002/pbc.24775
- 14. Rakheja D, Chen KS, Liu Y, Shukla AA, Schmid V, Chang TC, Khokhar S, Wickiser JE, Karandikar NJ, Malter JS, Mendell JT, Amatruda JF. Somatic

mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun. 2014; 2:4802. https://doi.org/10.1038/ncomms5802

- 15. Torrezan GT, Ferreira EN, Nakahata AM, Barros BD, Castro MT, Correa BR, Krepischi AC, Olivieri EH, Cunha IW, Tabori U, Grundy PE, Costa CM, de Camargo B, et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun. 2014; 5:4039. https://doi.org/10.1038/ncomms5039
- Walz AL, Ooms A, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM, Meerzaman D, Chen QR, Hsu CH, Yan C, Nguyen C, Hu Y, Bowlby R, et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell. 2015; 27:286–97. https://doi.org/10.1016/j.ccell.2015.01.003
- 17. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989; 49:4682–89.
- Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003; 3:459–65. https://doi.org/10.1038/nrc1097
- 19. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016; 129:1287–92. https://doi.org/10.1242/jcs.182873
- 20. Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ, Vogelstein B. Prevalence of ras gene mutations in human colorectal cancers. Nature. 1987; 327:293–97. https://doi.org/10.1038/327293a0
- 21. Kranenburg O. The KRAS oncogene: past, present, and future. Biochim Biophys Acta. 2005; 1756:81–82. https://doi.org/10.1016/j.bbcan.2005.10.001
- Irahara N, Baba Y, Nosho K, Shima K, Yan L, Dias-Santagata D, lafrate AJ, Fuchs CS, Haigis KM, Ogino S. NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol. 2010; 19:157–63. https://doi.org/10.1097/PDM.0b013e3181c93fd1
- 23. Yang M, Xiao X, Xing X, Li X, Xia T, Long H. KRAS and VEGF gene 3'-UTR single nucleotide polymorphisms predicted susceptibility in colorectal cancer. PLoS One. 2017; 12:e0174140. https://doi.org/10.1371/journal.pone.0174140
- 24. Nelson HH, Christensen BC, Plaza SL, Wiencke JK, Marsit CJ, Kelsey KT. KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer. 2010; 69:51–53. https://doi.org/10.1016/j.lungcan.2009.09.008

- Kim M, Chen X, Chin LJ, Paranjape T, Speed WC, Kidd KK, Zhao H, Weidhaas JB, Slack FJ. Extensive sequence variation in the 3' untranslated region of the KRAS gene in lung and ovarian cancer cases. Cell Cycle. 2014; 13:1030–40. https://doi.org/10.4161/cc.27941
- 26. Uvirova M, Simova J, Kubova B, Dvorackova N, Tomaskova H, Sedivcova M, Dite P. Comparison of the prevalence of KRAS-LCS6 polymorphism (rs61764370) within different tumour types (colorectal, breast, non-small cell lung cancer and brain tumours). A study of the Czech population. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015; 159:466–71. https://doi.org/10.5507/bp.2015.029
- Tomei S, Adams S, Uccellini L, Bedognetti D, De Giorgi V, Erdenebileg N, Ascierto ML, Reinboth J, Liu Q, Bevilacqua G, Wang E, Mazzanti C, Marincola FM. Association between HRAS rs12628 and rs112587690 polymorphisms with the risk of melanoma in the North American population. Med Oncol. 2012; 29:3456–61. https://doi.org/10.1007/s12032-012-0255-3
- Clark PE, Polosukhina D, Love H, Correa H, Coffin C, Perlman EJ, de Caestecker M, Moses HL, Zent R. β-Catenin and K-RAS synergize to form primitive renal epithelial tumors with features of epithelial Wilms' tumors. Am J Pathol. 2011; 179:3045–55. https://doi.org/10.1016/j.ajpath.2011.08.006
- Polosukhina D, Love HD, Correa H, Su Z, Dahlman KB, Pao W, Moses HL, Arteaga CL, Lovvorn HN 3rd, Zent R, Clark PE. Functional KRAS mutations and a potential role for PI3K/AKT activation in Wilms tumors. Mol Oncol. 2017; 11:405–21. https://doi.org/10.1002/1878-0261.12044
- Dalpa E, Gourvas V, Soulitzis N, Spandidos DA. K-Ras, H-Ras, N-Ras and B-Raf mutation and expression analysis in Wilms tumors: association with tumor growth. Med Oncol. 2017; 34:6. https://doi.org/10.1007/s12032-016-0862-5
- 31. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA, Crowell RE, Patel R, Kulkarni T, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008; 68:8535–40. https://doi.org/10.1158/0008-5472.CAN-08-2129
- 32. Ratner E, Lu L, Boeke M, Barnett R, Nallur S, Chin LJ, Pelletier C, Blitzblau R, Tassi R, Paranjape T, Hui P, Godwin AK, Yu H, et al. A KRAS-variant in ovarian

cancer acts as a genetic marker of cancer risk. Cancer Res. 2010; 70:6509–15. https://doi.org/10.1158/0008-5472.CAN-10-0689

- 33. Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A, Dorairaj J, Geyda K, Pelletier C, Nallur S, Martens JW, Hooning MJ, Kerin M, et al. A 3'-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. Lancet Oncol. 2011; 12:377–86. https://doi.org/10.1016/S1470-2045(11)70044-4
- 34. Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, Marsit CJ, Kelsey KT. A let-7 microRNA-binding site polymorphism in the KRAS 3' UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009; 30:1003–07. https://doi.org/10.1093/carcin/bgp099
- Wang WY, Chien YC, Wong YK, Lin YL, Lin JC. Effects of KRAS mutation and polymorphism on the risk and prognosis of oral squamous cell carcinoma. Head Neck. 2012; 34:663–66. https://doi.org/10.1002/hed.21792
- 36. Li ZH, Pan XM, Han BW, Guo XM, Zhang Z, Jia J, Gao LB. A let-7 binding site polymorphism rs712 in the KRAS 3' UTR is associated with an increased risk of gastric cancer. Tumour Biol. 2013; 34:3159–63. https://doi.org/10.1007/s13277-013-0885-x
- 37. Fu W, Zhu J, Xiong SW, Jia W, Zhao Z, Zhu SB, Hu JH, Wang FH, Xia H, He J, Liu GC. BARD1 gene polymorphisms confer nephroblastoma susceptibility. EBioMedicine. 2017; 16:101–05. https://doi.org/10.1016/j.ebiom.2017.01.038
- 38. Fu W, Zhuo ZJ, Jia W, Zhu J, Zhu SB, Lin ZF, Wang FH, Xia H, He J, Liu GC. Association between TP53 gene Arg72Pro polymorphism and Wilms' tumor risk in a Chinese population. Onco Targets Ther. 2017; 10:1149–54. https://doi.org/10.2147/OTT.S131014
- 39. Jia W, Deng Z, Zhu J, Fu W, Zhu S, Zhang LY, Hu J, Wang F, Xia H, Liu GC, He J. Association between

HACE1 gene polymorphisms and Wilms' Tumor risk in a Chinese population. Cancer Invest. 2017; 35:633–38.

https://doi.org/10.1080/07357907.2017.1405016

- Fu W, Li L, Xiong SW, Zhang T, Jia W, Zhu J, Zhao Z, Xia H, He J, Liu GC. miR-423 rs6505162 C>A polymorphism contributes to decreased Wilms tumor risk. J Cancer. 2018; 9:2460–65. https://doi.org/10.7150/jca.24916
- 41. Fu W, Liu GC, Zhao Z, Zhu J, Jia W, Zhu SB, Hu JH, Wang FH, He J, Xia H. The correlation between LIN28B gene potentially functional variants and Wilms tumor susceptibility in Chinese children. J Clin Lab Anal. 2018; 32:e22200. https://doi.org/10.1002/jcla.22200
- Zhu J, Fu W, Jia W, Xia H, Liu GC, He J. Association between NER pathway gene polymorphisms and Wilms Tumor risk. Mol Ther Nucleic Acids. 2018; 12:854–60. https://doi.org/10.1016/j.omtn.2018.08.002
- 43. Zhu J, Jia W, Wu C, Fu W, Xia H, Liu G, He J. Base excision repair gene polymorphisms and Wilms Tumor susceptibility. EBioMedicine. 2018; 33:88–93. https://doi.org/10.1016/j.ebiom.2018.06.018
- Zhuo ZJ, Liu W, Zhang J, Zhu J, Zhang R, Tang J, Yang T, Zou Y, He J, Xia H. Functional polymorphisms at ERCC1/XPF genes confer neuroblastoma risk in Chinese children. EBioMedicine. 2018; 30:113–19. https://doi.org/10.1016/j.ebiom.2018.03.003
- 45. He J, Wang MY, Qiu LX, Zhu ML, Shi TY, Zhou XY, Sun MH, Yang YJ, Wang JC, Jin L, Wang YN, Li J, Yu HP, Wei QY. Genetic variations of mTORC1 genes and risk of gastric cancer in an Eastern Chinese population. Mol Carcinog. 2013 (Suppl 1); 52:E70–79. https://doi.org/10.1002/mc.22013

SUPPLEMENTARY MATERIAL

Variables	Cases (n=	355)	Controls (r	n=1070)	P^a		
	No.	%	No.	%	_		
Age							
Range, months	1-148.63		0.03-156		0.131		
Mean \pm SD, months	30.67 ± 23	.96	32.27 ± 26	.89			
≤ 18 months	125	35.21	425	39.72			
>18 months	230	64.79	645	60.28			
Gender					0.182		
Female	163	45.92	448	41.87			
Male	192	54.08	622	58.13			
Clinical stages							
I	119	33.52					
II	92	25.92					
III	79	22.25					
IV	47	13.24					
NA	18	5.07					

Supplemental Table 1. Frequency distribution of selected variables in Wilms tumor patients and controls.

SD, standard deviation; NA, not available.

^a Two-sided χ^2 test for distributions between Wilms tumor patients and cancer-free controls.

rs	Chr.	Allele	LDsnp	Pop/LD	TFBS	Splicing (ESE or ESS)	miRNA (miRanda)	nsSNP	Nearby Gene	Distance (bp)	Allele	e Asian	CHB
rs10842466	12	A/G	rs12587	CHB/0.856					LRMP	46140 9888	G	0.217	0.274
rs10842492	12	G/T	rs12587	CHB/0.818					CASC1	45785 41086	Т	0.237	0.287
rs10842494	12	C/T	rs12587	CHB/0.842					CASC1	48236 38635	Т	0.767	0.700
rs10842496	12	G/T	rs12587	CHB/0.831		Y		Y	CASC1	50266 36605	G	0.758	0.720
rs10842498	12	C/T	rs12587	CHB/1					CASCI	76131 10740	С	0.225	0.267
rs10842501	12	C/T	rs12587	CHB/1	Y				CASC1	82293 4578	Т	0.781	0.756
rs10842502	12	C/T	rs12587	CHB/0.941	Y				CASC1	82484 4387	Т	0.762	0.716
rs10842505	12	A/G	rs12587	CHB/1					LYRM5	5442 4357	А	0.791	0.731
rs11047824	12	A/G	rs12587	CHB/0.887					LRMP	40512 15516	G	0.204	0.273
rs11047865	12	C/G	rs12587	CHB/0.833					CASC1	45284 41587	С	0.236	0.284
rs11047887	12	A/C	rs12587	CHB/1	Y				LYRM5	522 9277	А	0.222	0.244
rs11047888	12	C/T	rs12587	CHB/1	Y				LYRM5	666 9133	Т	0.778	0.756
rs11047894	12	C/G	rs12587	CHB/1					KRAS	7495 38179	С	0.778	0.733
rs11047901	12	A/G	rs12587	CHB/1					KRAS	18149 27525	А	0.219	0.267
rs11047902	12	C/T	rs12587	CHB/1					KRAS	21613 24061	С	0.193	0.267
rs1137188	12	G/A	rs12587	CHB/1			Y		KRAS	1172 44502	А	0.778	0.727
rs11611468	12	A/C	rs12587	CHB/1					CASC1	79900 6971	С	0.785	0.757
rs11832421	12	C/T	rs12587	CHB/0.831					LRMP	42465 13563	Т	0.787	0.720
rs12368504	12	C/T	rs12587	CHB/1					KRAS	19512 26162	Т	0.772	0.756
rs12423443	12	C/T	rs12587	CHB/0.807					CASC1	69228 17643	Т		0.714
rs12579073	12	A/C	rs12587	CHB/1					KRAS	17619 28055	С	0.116	0.244
rs12579942	12	C/T	rs12587	CHB/1					KRAS	25014 20660	Т	0.810	0.756
rs12587	12	T/G	rs12587	1			Y		KRAS	648 45026	G	0.807	0.756
rs12810577	12	A/G	rs12587	CHB/0.91	Y				CASC1	84940 1931	G	0.222	0.262
rs12815546	12	C/T	rs12587	CHB/1					KRAS	24362 21312	Т	0.778	0.756
rs12822857	12	A/G	rs12587	CHB/1					KRAS	11437 34237	G	0.775	0.727
rs13096	12	T/C	rs12587	CHB/1			Y		KRAS	1661 44013	Т	0.190	0.244
rs17329025	12	A/G	rs12587	CHB/0.91					KRAS	25633 20041	А	0.193	0.262
rs1908946	12	G/C	rs12587	CHB/0.891				Y	LRMP	37874 18154	G	0.214	0.278
rs2352782	12	G/A	rs12587	CHB/0.806					CASC1	24735 62136	G	0.219	0.289
rs4246229	12	A/G	rs12587	CHB/1					KRAS	9489 36185	А	0.807	0.759

Supplemental Table 2. SNPs captured by the four selected potentially functional SNPs as predicted by SNPinfo software.

rs4963859	12	A/C	rs12587	CHB/1				 KRAS	9658 36016	С	0.785	0.733
rs4963860	12	C/T	rs12587	CHB/1				 KRAS	14015 31659	С	0.778	0.733
rs712	12	C/A	rs12587	CHB/1			Y	 KRAS	4372 41302	А	0.193	0.250
rs7299998	12	C/T	rs12587	CHB/0.882				 CASCI	70161 16710	Т	0.864	0.732
rs7302922	12	C/T	rs12587	CHB/1	Y			 LYRM5	1167 8632	Т	0.778	0.756
rs7306769	12	A/G	rs12587	CHB/0.856				 CASCI	53831 33040	А	0.758	0.726
rs7308865	12	A/C	rs12587	CHB/0.841				 CASCI	49501 37370	С	0.779	0.693
rs9266	12	G/A	rs12587	CHB/1			Y	 KRAS	4037 41637	G	0.811	0.756
rs9634100	12	C/T	rs12587	CHB/0.837				 CASCI	51646 35225	С	0.759	0.705
rs2273267	1	T/A	rs2273267	1	Y	Y		 NRAS	9884 46	Α	0.720	0.816
rs10842508	12	C/T	rs7312175	CHB/0.956				 KRAS	13282 32392	С	0.900	0.839
rs10842509	12	C/G	rs7312175	CHB/0.92				 KRAS	17766 27908	G	0.889	0.833
rs11047826	12	C/T	rs7312175	CHB/0.848				 LRMP	42929 13099	Т	0.884	0.805
rs11047880	12	A/G	rs7312175	CHB/1				 CASCI	78620 8251	А	0.909	0.866
rs11047882	12	C/T	rs7312175	CHB/0.956				 CASCI	79954 6917	Т	0.898	0.839
rs11047918	12	A/G	rs7312175	CHB/1				 KRAS	38852 6822	G	0.873	0.844
rs12228277	12	A/T	rs7312175	CHB/0.919				 KRAS	39838 5836	Т	0.908	0.812
rs12229161	12	C/T	rs7312175	CHB/0.809				 LRMP	43583 12445	С	0.888	0.815
rs12230737	12	A/G	rs7312175	CHB/1				 KRAS	30531 15143	G	0.887	0.788
rs12423489	12	C/T	rs7312175	CHB/1				 CASCI	80819 6052	Т	0.899	0.841
rs12424283	12	A/G	rs7312175	CHB/0.92				 KRAS	19846 25828	А	0.875	0.814
rs12427141	12	A/G	rs7312175	CHB/1				 KRAS	8625 37049	G	0.904	0.844
rs2970532	12	C/T	rs7312175	CHB/0.956				 KRAS	37855 7819	С	0.898	0.839
rs3782188	12	A/G	rs7312175	CHB/0.85				 LRMP	44304 11724	А	0.893	0.818
rs3924649	12	G/A	rs7312175	CHB/0.842				 CASCI	77051 9820	А	0.908	0.821
rs4623993	12	C/T	rs7312175	CHB/1				 KRAS	27248 18426	С	0.952	0.844
rs7312175	12	A/G	rs7312175	1	Y			 KRAS LOC100133222	-750 -157604	G	0.906	0.845
rs7973746	12	C/G	rs7312175	CHB/1				 KRAS	33059 12615	G	0.916	0.845
rs7979296	12	G/T	rs7312175	CHB/0.956	Y			 LYRM5	364 9435	G	0.928	0.839
rs10505959	12	C/T	rs7973450	CHB/1				 LRMP	49335 6693	С	0.884	0.917
rs10771166	12	C/T	rs7973450	CHB/1				 LRMP	44544 11484	С	0.899	0.909
rs10771174	12	C/T	rs7973450	CHB/0.887				 CASCI	46348 40523	С	0.853	0.869
rs10771175	12	C/G	rs7973450	CHB/1				 CASCI	51425 35446	G	0.882	0.898

rs10771176	12	C/T	rs7973450 CHB/1	 		 CASCI	51497 35374	Т	0.876	0.917
rs10842464	12	C/T	rs7973450 CHB/1	 		 LRMP	44502 11526	Т	0.101	0.091
rs10842470	12	G/T	rs7973450 CHB/1	 		 CASCI	4980 81891	Т	0.888	0.917
rs10842490	12	C/G	rs7973450 CHB/1	 		 CASCI	45380 41491	С	0.872	0.868
rs11047825	12	C/T	rs7973450 CHB/0.877	 		 LRMP	41847 14181	Т	0.895	0.907
rs11047858	12	C/T	rs7973450 CHB/0.887	 		 CASCI	29567 57304	Т	0.867	0.878
rs11047885	12	A/C	rs7973450 CHB/1	 		 CASCI	81407 5464	А	0.891	0.917
rs11834088	12	G/T	rs7973450 CHB/1	 		 LRMP	40930 15098	G	0.893	0.909
rs12227966	12	G/T	rs7973450 CHB/1	 		 CASCI	44450 42421	G	0.895	0.893
rs12228638	12	A/G	rs7973450 CHB/0.807	 		 CASCI	21281 65590	G	0.101	0.101
rs12367971	12	A/G	rs7973450 CHB/1	 		 CASCI	50110 36761	G	0.886	0.917
rs1497253	12	G/A	rs7973450 CHB/0.888	 		 LRMP	40807 15221	А	0.894	0.884
rs2220196	12	T/G	rs7973450 CHB/1	 		 CASCI	23249 63622	G	0.903	0.900
rs3924650	12	T/C	rs7973450 CHB/1	 		 CASCI	77006 9865	Т	0.907	0.895
rs4313666	12	A/G	rs7973450 CHB/1	 		 CASCI	43484 43387	А	0.878	0.889
rs7134616	12	C/G	rs7973450 CHB/1	 		 CASCI	2667 84204	G	0.888	0.916
rs7303373	12	A/T	rs7973450 CHB/1	 		 CASCI	53583 33288	А	0.878	0.889
rs7303669	12	C/T	rs7973450 CHB/0.927	 		 LRMP	40363 15665	Т	0.894	0.910
rs7960092	12	A/C	rs7973450 CHB/0.807	 		 LRMP	46937 9091	С	0.889	0.899
rs7960428	12	A/G	rs7973450 CHB/1	 		 LRMP	47047 8981	G	0.889	0.893
rs7960917	12	C/T	rs7973450 CHB/1	 	Y	 KRAS	3466 42208	Т	0.882	0.917
rs7964195	12	C/T	rs7973450 CHB/1	 		 LRMP	38938 17090	Т	0.893	0.909
rs7971062	12	C/T	rs7973450 CHB/1	 		 CASC1	36490 50381	Т	0.888	0.898
rs7973450	12	A/G	rs7973450 1	 	Y	 KRAS	2962 42712	Α		0.917
rs7975271	12	C/T	rs7973450 CHB/0.927	 		 LRMP	47169 8859	Т	0.907	0.911
rs7976254	12	C/T	rs7973450 CHB/1	 		 LRMP	51113 4915	С	0.878	0.916
rs7977670	12	A/G	rs7973450 CHB/0.927	 		 LRMP	39142 16886	А	0.889	0.911
rs7980769	12	C/T	rs7973450 CHB/1	 		 CASCI	77720 9151	Т	0.878	0.917

SNP, single nucleotide polymorphism; LD, linkage disequilibrium; TFBS, transcription factor binding sites; ESE, exonic splicing enhancer; ESS, exonic splicing silencer; nsSNP, nonsynonymous single nucleotide polymorphism; CHB, Han Chinese in Beijing, China.