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Abstract
In a recent study, Reinforcement Learning (RL) used in combination with many-objective
search, has been shown to outperform alternative techniques (random search and many-
objective search) for online testing of Deep Neural Network-enabled systems. The empirical
evaluation of these techniques was conducted on a state-of-the-art Autonomous Driving Sys-
tem (ADS). This work is a replication and extension of that empirical study. Our replication
shows that RL does not outperform pure random test generation in a comparison conducted
under the same settings of the original study, but with no confounding factor coming from
the way collisions are measured. Our extension aims at eliminating some of the possible rea-
sons for the poor performance of RL observed in our replication: (1) the presence of reward
components providing contrasting feedback to the RL agent; (2) the usage of an RL algo-
rithm (Q-learning) which requires discretization of an intrinsically continuous state space.
Results show that our newRL agent is able to converge to an effective policy that outperforms
random search. Results also highlight other possible improvements, which open to further
investigations on how to best leverage RL for online ADS testing.
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1 Introduction

Testing Deep Neural Network-enabled systems is a challenging and expensive task, yet
essential in the engineering of many modern systems with artificial intelligence components
at their core. Testing of Autonomous Driving Systems (ADSs) has gained particular attention
in the scientific community, as devising more effective and efficient techniques increases
safety and reduces costs.

In the literature, a common way to test ADSs is to manipulate the simulation environment
where they operates (Tang et al. 2023). The objective of such techniques is to perturb the
environment to try to cause amisbehavior of the ADS, e.g., a collision with another vehicle or
a traffic rule violation. Tests are generated automatically by solving an optimization problem,
which consists of finding the optimal configurations of the objects in the environment to opti-
mize an objective function (usually the distance of the ADS from misbehavior). Researchers
have proposed search-based techniques to address this optimization problem (Tang et al.
2023; Riccio and Tonella 2020; Zohdinasab et al. 2021; Li et al. 2020; Gambi et al. 2019;
Abdessalem et al. 2018), showing their effectiveness at generating static configurations of
the environment that challenge the ADS under test.

However, search-based techniques struggle to deal at runtime with sequential interac-
tions, required to manipulate dynamic objects in the environment (e.g., another vehicle). The
Reinforcement Learning (RL) paradigm requires the agent to dynamically interact with the
environment, learning from the effects of its actions. This offers an alternative way to test
ADSs, by formulating the testing problem as an RL problem. The testing technique needs to
choose a suitable RL algorithm to learn the actions that maximize the reward.

In an article presented in 2023 at the International Conference on Software Engineer-
ing (ICSE), Haq et al. (2023) proposed Many-Objective Reinforcement Learning for Online
Testing (MORLOT), an online testing technique that combinesRL andmany-objective search
to test the ADS module of an autonomous vehicle. MORLOT was evaluated in the CARLA
simulation environment (Dosovitskiy et al. 2017), a widely used high-fidelity driving sim-
ulator (Tang et al. 2023). The ADS under test was the TransFuser model (Prakash et al.
2021), the highest ranked ADS in the CARLA leaderboard (Leaderboard 2020) at the time
of that study. The evaluation shows that MORLOT outperforms random testing as well as
state-of-the-art search-based techniques, in terms of safety requirements violations exposed
in a given time budget.

This work is a replication and extension of the one by Haq et al. (2023). Replication
of past studies is a fundamental aspect of the scientific method (Lindsay and Ehrenberg
1993), to validate (or not) their findings, and to generalize them by establishing different
conditions under which they hold. It is essential in software engineering research (Shull et al.
2008), just as in “the construction of knowledge in any empirical science” da Silva et al.
(2014). Numerous replication studies have been conducted in this field (Stocco et al. 2023;
Dell’Anna et al. 2022; Maes-Bermejo et al. 2022; Novielli et al. 2021; Vescan et al. 2021),
increasing confidence and providing extensions of original works. With this goal, we first
present an exact replication (Shull et al. 2008) of the work by Haq et al. (2023); then we
extend it to investigate the conditions under which RL is actually beneficial in ADS testing.
The contribution is twofold:

Replication. The replication does not confirm the finding that many-objective Reinforcement
Learning, specificallyMORLOT, outperforms the random baseline in ADS test-
ing. We reproduce the experiments of Haq et al. showing that, if MORLOT and
random are compared in the same conditions, they are statistically indistin-
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guishable. We also analyze the design choices in Haq et al. formulation of ADS
testing as an RL problem, and discuss how they reduce the learning capability
of the RL agent, ultimately making the learning process ineffective with the
given time budget.

Extension. In the extension study we show that, by formulating the testing problem as
single-objective, a deepRL agent converges to an effective policy inmost testing
scenarios, and significantly outperforms the random baseline. The results of the
extension study highlight that RL is a promising framework for testing highly
dynamic systems such as ADSs, but further research is needed to address the
limitations of the current formulation.

The paper is structured as follows. Section 2 provides background and basic definitions.
Section 3 describes the study replicating the work by Haq et al. (2023), while Section 4
presents the extension. Section 5 discusses the related work and highlights the novelty of the
contributions. Finally, Section 6 provides concluding remarks.

2 Background

Reinforcement Learning (RL) is the process of learning what to do (i.e., how to relate cir-
cumstances to actions) in order to maximize a reward (Sutton and Barto 2018). The learner
(a.k.a.agent) is not instructed on actions to take, but, interactingwith its environment, explores
which actions produce the highest reward.

The RL process can be formalized through aMarkov Decision Process (MDP), a classical
model for sequential decision-making, where actions do not influence just immediate reward,
but also the following states. An MDP is defined by a tuple (S, A, P, R, γ ), where: S and
A are respectively the sets of states and actions; P is the state transition probability function
P(st+1|st , at ), assigning the probability of state st+1 at time step t + 1, given state st and
action at at time step t ; the reward function R : S × A → R maps a state-action pair to the
set of real values; γ ∈ [0, 1] is the discount factor controlling the trade-off between future
and immediate rewards.

At time step t , the agent observes the state of the environment st , and selects an action at
based on its policy π . The policy is generally a stochastic function π : S → A that yields the
probability of selecting action at ∈ A in state st ∈ S at step t . At step t + 1 the environment
outputs the next state st+1 and a scalar value rt+1, rewarding the goodness of action at . The
reward is the learning signal, that the agent aims to maximize. Through the interactions with
the environment, the agent learns an optimal policy π∗, that maximizes the total expected
reward the agent gets in its lifetime (the expectation accounts for the randomness of both
the transition probability function of the environment and the policy). The RL methods in
the literature differ in how they update the agent’s policy as further experience becomes
available.

The most common RL algorithms are model-free (not equipped with a model of the
environment). Within this family, RL algorithms can be categorized into value-based, policy-
based, or a combination of the two. Value-based algorithms learn a value function giving an
estimate of “howpromising” a state (or a state-action pair) is. The estimate is computed as total
expected reward through a state-value function V (s) (or an action-value function Q(s, a)).
The policy is then built by choosing in each state the action that maximizes the value function.
Policy-based methods (e.g., policy-gradient) maximize the total expected reward by finding
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a policy through stochastic gradient ascent with respect to the policy parameters (e.g., the
parameters of a neural network).

One of the most important value-based algorithms is Q-learning, proposed in 1989
by Watkins (1989). It learns an action-value function Q(s, a), updated as new data becomes
available. The agent’s knowledge is represented as a table (named Q-table) mapping states
and actions to the expected reward. At each time step, the agent starts from state st , selects
the action with the highest Q-value (max

a∈A
Q(st , a)), enters next state st+1, and collects the

reward rt+1. Finally, it updates the Q-value of the starting state-action pair (st , at ) as:

Q(st , at ) ← Q(st , at ) + α

[
rt+1 + γmax

a∈A
Q(st+1, a) − Q(st , at )

]

where: γ is the discount factor and α ∈ [0, 1] is the learning rate, controlling the step size at
which the Q-values are updated.

Advances in deep learning have led to the development of deep RL (DRL) algorithms like
Deep Q-Network (DQN) (Mnih et al. 2015). DQN combines theQ-learning paradigm with a
neural network that receives a state as input, and approximates the Q-values for each potential
action as output. The neural network replaces the Q-table and concisely stores the agent’s
experience, handling large state spaces such as continuous ones. To enhance stability during
training, DQN typically utilizes a buffer of past experiences. During training, it randomly
samples batches of experiences to update the weights of the neural network. Additionally,
for stabilization DQN uses an auxiliary network (also called target network), a copy of the
network being trained. The weights of such network are kept frozen for a certain number
of training steps, so that the original network is trained with a fixed target. DQN handles
continuous state spaces, but still requires actions to be discrete, as its update rule requires a
maximization over all the actions for a particular state.

Both Q-learning and DQN use a behavior policy in training to explore the environment
and look for actions that lead to high reward. A common policy is ε-greedy, the parameter ε

representing the probability of choosing a random action instead of relying on the Q-value
function (respectively a table and a neural network). Typically, ε is set to 1 at the beginning
of training, so as the agent starts choosing a random action. As training progresses and the
agent acquires knowledge of the environment, ε gradually decreases, and the agent starts
selecting actions greedily with higher probability. The annealing schedule, i.e., the rate at
which ε decreases over time, is problem-specific, as it depends on the rate of exploration that
is required to effectively learn a task.

3 Replication Study

3.1 Problem Definition

In the work by Haq et al. (2023), the ADS is embedded within the CARLA simulator (Doso-
vitskiy et al. 2017), which renders a realistic town environment including junctions, vehicles,
pedestrians, traffic lights, and traffic signs. The ADS that controls the ego-vehicle (EV) has
to drive it through a predefined route. At each time step, the ADS receives and processes data
from sensors (e.g., camera and LIDAR) to generate driving commands (steering, throttle,
and braking) to maximize the driving performance. The CARLA leaderboard (Leaderboard
2020) measures the ADS performance with the driving score, a combination of two metrics,
namely route completion and infraction penalty. The former isthe percentage of route com-
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Table 1 Safety and functional requirements for the ADS under test in Haq et al. (2023)

Requirement Description Reward

R1 EV must keep the lane 1/(1-DCL); 1.0E+06

R2 EV must not collide with other vehicles 1/DV; 1.0E+06

R3 EV must not collide with pedestrians 1/DP; 1.0E+06

R4 EV must not collide with static meshes 1/DS; 1.0E+06

R5 EV must complete the route 1/(1-DT); 1.0E+06

R6 EV must abide by traffic rules (i.e., red lights) 0; 1.0E+06

pletion; the latter measures the number of infractions, including traffic rules violations (e.g.,
red lights and stop signs) and detected collisions with other vehicles, pedestrians, and static
elements (e.g., road signs).

Haq et al. use three test routes, one in which the ADS has to drive through a straight road
(Straight), one simulating a left turn (Left-Turn), and one for a right turn (Right-Turn). Each
route has three actors, the EV, a vehicle in front (VIF), and a pedestrian. They define six
functional and safety requirements for the ADS (listed in Table 1): the EV must (R1) keep
the lane; it must not collide (R2) with the VIF, (R3) with the pedestrian, and (R4) with static
meshes (e.g., traffic lights/signs); it must (R5) complete the route within the given time, and
(R6) abide by traffic rules.

The simulator reports violations of the requirements, respectively: (V1) if the distance
from the center of the lane (DCL) exceeds a threshold identifying the lane boundaries; (V2)
if the distance from the VIF (DV), or (V3) the distance from the pedestrian (DP), or (V4)
distance from static meshes (DS) is less than or equal to zero (i.e., a collision occurs); (V5)
if at the end of the scenario the distance from the destination (DT) is greater than zero,
and (V6) if it detects that the EV has violated a traffic rule (TR) (e.g., running a red light1).
MORLOT (Haq et al. 2023) changes the environment in each route to find violations of the
requirements.

The authors formulate testing as an RL problem. The state space has 19 variables specify-
ing the position, speed, and acceleration of the EV and the VIF, the position and speed of the
pedestrian, and environmental conditions (i.e., fog and rain intensity, and sun altitude). The
action space of the RL agent is discrete: the agent can choose in a set of 17 actions controlling
the VIF (throttle and steering), the pedestrian (speed and position), and the environmental
conditions. Each action changes the value of a controlled variable by a small and constant
amount - e.g., the action for the VIF throttle increase/decrease by 0.1 the current throttle
value. Finally, a reward function is defined for each requirement. For the R6/TR requirement
the agent gets a large reward when the requirement is violated, zero otherwise. For all other
requirements, the reward is a function of the distance to the violation. Specifically, it
is equal to 1

distance when distance > 0, and to 1.0E+06 otherwise (a requirement is
violated). The testing goal is to minimize the distances DV, DP, and DS, and maximize the
distances DCL and DT (in such cases the authors subtract 1 from the original distance value,
i.e., 1 − distance).2

MORLOT is designed as a many-objective search with Q-learning. It builds a Q-table for
each requirement to be violated, such that every Q-table is updated with the transitions (i.e.,

1 Running a red light is the only violation considered for TR in the original study.
2 DCL and DT range between 0 and 1.
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〈state, action, reward, next state〉 tuples) related to the respective reward function. In this
way, each Q-table learns the optimal state-action pairs to violate the respective requirement.
MORLOT stores a list of uncovered objectives (initially all of them are uncovered), and at
each step selects the action from the Q-table associated with the uncovered objective closest
to being covered (i.e., the objectivewith the highest reward at the previous step). For example,
let us assume that at a certain step there are two uncovered objectives, i.e., R2 and R3, and that
the distance between the EV and the VIF is 10 meters (i.e., DV = 10m), while the pedestrian
is at 20 meters from the EV (i.e., DP = 20m). In this case, MORLOT chooses an action from
the Q-table associated with R2, since 1

DV > 1
DP .

3.2 Subject and Configuration

The ADS under test is TransFuser (Prakash et al. 2021), a Deep Neural Network model sub-
mitted to the CARLA Autonomous Driving challenge. TransFuser is a Multi-Modal Fusion
Transformer to predict the trajectory of the ego vehicle to determine the driving commands.
Haq et al. used the first version of TransFuser, proposed in 2021 (Prakash et al. 2021). The
code of the TransFuser agent, and the pre-trained models, are open-source.3 The MOR-
LOT replication package4 links to those models and contains the same scenarios Straight,
Left-Turn, Right-Turn.

We configured the environment to run TransFuser following the instructions in the repli-
cation package of MORLOT, as well as the instructions by the authors of TransFuser. We
validated our local configuration of the ADS by running the agent in the three scenarios
and checking that no violation occurred (i.e., the TransFuser agent drives well in nominal
conditions).

3.3 Replication

3.3.1 Methodology

The replication package of Haq et al. provides the code to execute the considered test genera-
tors, after configuring the ADS and the simulator with the given scenario. In both the original
paper and our replication study, MORLOT is compared against the random baseline that
randomly selects the action to perform at each step. These two techniques, included in the
replication package, require proper configuration of the execution environment. In particular,
by inspecting the code in the package, we found an important, initially undocumented, con-
figuration option (later added by the authors in the package README file), a boolean flag
named “RL”, that determines the way violations are detected. As the name suggests, it needs
to be set to true when running RL-based test generators (like MORLOT), while it needs to
be set to false when running the random baseline, to allow the use of simulator sensors for
detecting collisions and lane invasions. Specifically, setting the flag to true allows MORLOT
to extract requirement violations from a file storing all violations detected by sensors at each
simulation step; the file is deleted after being processed. On the contrary, non-RL algorithms
are designed to process this file only at the end of each episode, thus only detecting violations
at the last step. As a consequence, when running the random baseline with the flag set to true,
the detection is solely based on distances between objects given by the simulator. We execute

3 https://github.com/autonomousvision/transfuser/tree/cvpr2021.
4 https://doi.org/10.6084/m9.figshare.20526867.
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our experiments with both versions of random. We call RANDOM_False the baseline with
the flag set to false, and RANDOM_True, the baseline with the flag set to true (i.e., the default
value in the original replication package).

We compare MORLOT to the baselines in terms of effectiveness (coverage of require-
ments) and efficiency (coverage achieved over time), following the authors’ evaluation (Haq
et al. 2023). The coverage of a technique is 100% when it finds at least one violation per
requirement within the time budget of 4 hours, as in the original study. MORLOT adopts
an ε-greedy strategy with ε linearly decreasing from 1 to 0.1 in the first 48 minutes (20%
of the budget). To account for randomness, we executed each technique 20 times (twice the
repetitions used by Haq et al.) in each of the three scenarios, for a total of 720 hours of com-
putation. All experiments were executed on the Google Cloud Compute Engine platform on
a virtual machine with Ubuntu 18.04, an Intel Haswell CPU (4 cores) and an NVIDIA Tesla
T4 with 16 GB of VRAM.

3.3.2 Testing Techniques Effectiveness

Figure 1 shows the coverage achieved by the three testing techniques over the 20 repetitions.
The orange line and the green arrow represent themedian and themean coverage, respectively.
Results show that RANDOM_True achieves the lowest coverage (0.33) as it never covers
more than 2 requirements. On the other hand, MORLOT and RANDOM_False exhibit a
similar average coverage. MORLOT’s median is slightly lower than RANDOM_False’s in
Straight and Left-Turn routes but higher in the Right-Turn route. Both techniques cover at
least 2 requirements, with a maximum of 4 (coverage: 0.66).

We run the Friedman test (Friedman 1937), a non-parametric hypothesis test for Analysis
of Variance, to assess if there is at least one testing technique that significantly differs from the
others. The Friedman test detects a significant difference for at least one pair for each route

Fig. 1 Coverage of safety and functional requirements of the three techniques
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Table 2 Pairwise comparisons Dunn test - coverage of the requirements (statistically significant differences
are in bold)

Techniques Straight Left-Turn Right-Turn

�MORLOT vs. RANDOM_False	 1.00E+00 8.61E-01 1.00E+00

�MORLOT vs. RANDOM_True	 �<1.00E-04 �<1.00E-04 �<1.00E-04

�RANDOM_False vs. RANDOM_True	 �<1.00E-04 �<1.00E-04 �<1.00E-04

(the p-values are, respectively, 3.93E-06, 1.734E-06, 1.458E-08, for Straight, Left-Turn, and
Right-Turn).

We run the Dunn test (Dunn 1964) for post hoc analysis to detect pairs of techniques
differing significantly. Table 2 reports the p-values per pair. The test confirms there is no sig-
nificant difference between MORLOT and RANDOM_False, while both show a statistically
higher coverage than RANDOM_True.

Table 3 compares the testing techniques as for the average number of violations per
requirement they trigger. It shows thatMORLOT and RANDOM_False expose a comparable
number of violations (respectively: 6.15 and 6.20 for Straight, 16.35 and 15.35 for Left-Turn,
5.45 and 5.30 for Right-Turn), with both being better than RANDOM_True in all the three
routes.

Both the coverage of safety requirements and the average number of violations show
that activating sensors to detect collisions and lane invasions (i.e., setting the “RL” boolean
configuration flag to true) increases the measured effectiveness of the RANDOM_False
baseline. Indeed, we noticed, by inspecting the execution logs, that most of the times a
collision is detected by sensors, the distance value is close to the threshold but does not exceed
it (the threshold value is 0 in the case of the DV, DP, DS requirements and equals 1.15 in the
case of DCL). Upon further inspection of the code, we found that the distance between two
objects is computed considering the geometric centers of their collision boxes, while sensors
detect collisions when the bounding boxes of the respective objects intersect. Depending
on the angle of collision, the distance between the two objects may be greater than zero,
even when the bounding boxes intersect. Ultimately, this issue affects the RANDOM_True
baseline, significantly decreasing its measured effectiveness, but does not represent an issue
for the reward computation forMORLOT, since the implementation forces the distance value
to the threshold value whenever a sensor detects a violation.

Table 3 Average number of violations found by MORLOT, RANDOM_False (RAND_F), and RAN-
DOM_True (RAND_T)

Straight Left-Turn Right-Turn
Requirement MORLOT RAND_F RAND_T MORLOT RAND_F RAND_T MORLOT RAND_F RAND_T

R1, DCL 0.15 0.20 0.15 5.85 4.90 4.90 0.00 0.00 0.00

R2, DV 1.40 1.50 0.00 9.60 9.20 0.00 0.60 0.45 0.00

R3, DP 3.80 3.85 0.80 0.85 1.25 0.60 3.05 3.10 0.45

R4, DS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R5, DT 0.75 0.65 0.75 0.00 0.00 0.00 0.55 0.55 0.65

R6, TR 0.05 0.00 0.00 0.05 0.00 0.00 1.25 1.20 0.00

TOTAL 6.15 6.20 1.70 16.35 15.35 5.50 5.45 5.30 1.10
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Fig. 2 Average coverage of safety and functional requirements over time

3.3.3 Testing Techniques Efficiency

We compare the testing techniques efficiency as coverage of the requirements over time.
Figure 2 shows the trend of average coverage per technique in the 20 repetitions. Each
average coverage value is sampled every 20 minutes; the shaded area represents the standard
error of the mean (i.e.,± s/

√
n). RANDOM_True always achieves the lowest coverage on all

routes. In the Straight and Left-Turn routes, it achieves only half the coverage of MORLOT
and RANDOM_False, and only at the end of the 4-hour budget; in the Right-Turn route it
achieves only a third of the coverage. On the other hand, RANDOM_False and MORLOT
achieve comparable coverage over time. MORLOT curve mostly stays slightly below the
coverage curve of the RANDOM_False baseline, with the exception of the Right-Turn route.

We compute the Area Under the Curve (AUC) for the curves of the coverage of the
techniques over time (Fig. 2). Table 4 reports the (min-max)5 normalized mean value and
standard deviation for all routes. Again, RANDOM_True achieves significantly lower values,
whileMORLOT andRANDOM_False obtain comparable results, with the first being slightly
worse among all routes except for Right-Turn. The Friedman test applied to the AUC values
detects a significant difference for at least one pair for each route (the p-values are
respectively 1.09E-05, 4.11E-10, 4.11E-10 for Straight, Left-Turn, and Right-Turn). The

5 With min and max respectively equal to 0 and the overall maximum value.
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Table 4 Area under the curve: normalized Mean and Std

Straight Left-Turn Right-Turn
Technique Mean (±Std) Mean (±Std) Mean (±Std)

MORLOT 0.52 (±0.22) 0.64 (±0.12) 0.60 (±0.18)

RANDOM_False 0.57 (±0.20) 0.67 (±0.12) 0.56 (±0.21)

RANDOM_True 0.23 (±0.18) 0.30 (±0.09) 0.19 (±0.20)

Dunn Test (Table 5) confirms that MORLOT and RANDOM_False are equivalent, while
both outperform RANDOM_True.

3.4 Discussion

Comparing our findings with those of Haq et al. we observe that MORLOT and RAN-
DOM_True match the results of the original paper. However, setting the sensor activation
flag to false in the random baseline (which we call RANDOM_False in the evaluation),
we found no significant difference with MORLOT, in both effectiveness and efficiency. We
investigated the causes for the poor performance of MORLOT w.r.t. RANDOM_False and
we identified two reasons, related to the design and implementation of the RL algorithm.

The first reason concerns Q-learning, the RL algorithm chosen by Haq et al. Q-learning
requires both state and action spaces to be discrete. In MORLOT, actions are discretized,
but the state is implemented as a string concatenating the continuous values of the 19 state
variables. MORLOT’s implementation of Q-learning is dynamic, i.e., it initializes an empty
table and adds a row each time it encounters a new state. During training, if it revisits a
previously discovered state, it updates the corresponding Q-value. To explore the evolution
of the Q-table dimension, we monitored the count of distinct states memorized in the Q-
table (i.e., its dimension) relative to the total number of steps executed by the agent in a
repetition. To prevent potential biases due to the overhead of collecting this information, we
ran 3 additional repetitions forMORLOT in the three routes. The average Q-table dimensions
are depicted in Fig. 3, revealing a nearly linear progression over time. This suggests that the
agent rarely encounters the same state more than once, decreasing the learning effectiveness
of the algorithm and its ability to detect violations.

The second reason concernsMORLOT’s definition of the reward functions and theway the
algorithm utilizes the Q-table. For requirement R6 on traffic rules (TR), the reward function
is sparse (reward is different from 0 only in case of violations, which are very rare). For
requirement R5 on distance from destination DT, the reward function starts at its maximum
at the beginning of the route (maximum DT) and decreases as the EV progresses along

Table 5 Area under the curve: pairwise comparisons Dunn test (statistically significant differences are in bold)

Techniques Straight Left-Turn Right-Turn

�MORLOT vs. RANDOM_False	 1.00E+00 1.00E+00 1.00E+00

�MORLOT vs. RANDOM_True	 �1.00E-03 �<1.00E-04 �<1.00E-04

�RANDOM_False vs. RANDOM_True	 �<1.00E-04 �<1.00E-04 �1.00E-04
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Fig. 3 Average Q-table dimension (number of observed states) over number of steps

the route. The function rewards the RL agent, independently6 of the chosen action, which
makes it difficult for the RL algorithm to properly assign credit to the actions that make the
ADS violate R5. As for requirements R1–R4 (on DCL, DV, DP, DS, respectively), some of
them are trivial to violate, while others are very challenging (e.g., R4/DS is rarely violated).
We noticed that MORLOT covers first the easiest requirements to violate (namely: R2/DV
and R3/DP in Straight; R1/DCL and R2/DV in Left-Turn)7 and then starts to select actions
from the Q-table associated with the R4/DS requirements. This happens because DS has
one of the highest average reward values, and MORLOT selects the Q-table with the highest
reward at each step. Since R4/DS is difficult to violate, this results in MORLOT wasting the
remaining search budget without addressing any further requirement. Table 6 shows themean
and standard deviations of the reward values obtained by MORLOT for each requirement.8

Notably, DS ranks third in terms of reward value. In conclusion, MORLOT’s formulation
translates the multi-objective problem into a multi-agent one. However, addressing a multi-
objective problem by using multiple agents, each associated with a single objective, requires
specific methodologies to ensure balanced training, selection of different agents, and to
promote “altruism” among the agents (e.g., as designed in distributed reinforcement learning
frameworks (Hayes et al. 2022)).

6 An exception is when the VIF stops and the EV waits for it to move out of its trajectory. In this case, the
reward remains constant.
7 We also observed that most of the times R2/DV is violated, R1/DCL is violated, too.
8 TR is not reported as it is binary.
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Table 6 Statistics of MORLOT rewards per requirement

R1/DCL R2/DV R3/DP R4/DS R5/DT

Mean (Median) 1.7 (1.1) 12.1 (11.1) 9.0 (5.9) 6.8 (5.3) 0.8 (0.9)

Std (IQR) 37.4 (0.2) 7.4 (11.1) 9.5 (6.0) 4.3 (5.64) 0.2 (0.33)

4 Extension Study

4.1 Motivation

The results of the replication study motivate to investigate the extent to which RL can benefit
online testing of ADS. To avoid potential inefficiencies arising fromMORLOT’smulti-agent
formulation, the extension considers the reward function for only one requirement, in a single-
objective problem formulation. We choose DQN as it can naturally handle continuous state
spaces, and is expected to scale to the size of the case study state space. The goal is thus to
assess if an RL agent trained with DQN performs better than RANDOM under the settings
of Haq et al. in a single-objective problem formulation.

We start focusing on the DV requirement (Sections 4.2 and 4.4), as it proved to be a non-
trivial yet coverable requirement in all routes of the replication study. Existing studies show
that this requirement covers the majority of challenging situations for an ADS, as more than
80% of the accidents involving an ADS in California are caused by the maneuvers of other
vehicles (Favarò et al. 2017; US Department of Transportation 2022). Then, in Section 4.5
we investigate to what extent the findings generalize to two other requirements, DCL and
DP.

We compare Q-learning, as implemented in MORLOT’s replication package, and DQN
with the RANDOM_False baseline (called simply RANDOM hereinafter) on the same tasks
defined by Haq et al. In the replication, we execute 20 repetitions with a budget of 4 hours for
all techniques on the three routes, for 720 hours of computation.Additionally, the experiments
on the DCL and DP requirements demanded for a further 960 hours of computation, totaling
1,680 hours. We share all results in the online repository.9

4.2 Problem Definition

The replication study showed that: (1) inclusion of multiple requirements, some of which are
almost impossible to violate, but still return high rewards, is one of the reasons for the degen-
erate behavior of RL, which performed comparably to random; (2) adoption of Q-learning
reduces the agent’s learning capability, as similar continuous states are not recognized as
recurring states. Hence, in our extension study, the main focus is on a single requirement
(e.g., respect safety distance from other vehicles), and the comparison of two RL methods
(DQN10 and Q-learning) with RANDOM as baseline. We also update the termination condi-
tion of an episode, to take into account the achievement of the driving objective. An episode

9 https://doi.org/10.6084/m9.figshare.24794544.
10 The DQN model consists of a multi-layer perceptron with three hidden layers, two of size 2 ×
input_dimension, and one of size input_dimension (where input_dimension is the size
of the state space, i.e., 19). The hyperparameters are: learning_rate = 1e − 2, gamma = 0.9,
batch_size = 32, buffer_size = 2, 000, target_update_interval = 100.
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stops both when the simulator detects a collision between the ADS and the VIF (a violation
is detected), and when the ADS overtakes the VIF (a violation can no longer occur).

4.3 Experiments

4.3.1 Evaluation Criteria

We compare DQN, Q-learning (hereafter simply Q), and RANDOM as for effectiveness and
efficiency. Effectiveness is computed as total number of violations of the R2/DV requirement
(collisions with VIF) in a 4 hours budget. Efficiency is computed as average number of
violations over time. In the subsequent qualitative evaluationwe analyze the failures exposed
by the techniques.

4.3.2 Effectiveness

Figure 4 shows the box plots of the number of violations of the DV requirement found by
all the techniques across the 20 repetitions in the three routes. We observe that Q triggers as
many violations as the RANDOM baseline across all routes. This supports the conclusion of
the replication study: even with a single-objective formulation, Q is indistinguishable from
RANDOM. On the contrary, a deep RL agent like DQN demonstrates performance superior
to the other two techniques in most of the routes (Straight and Right-Turn), where it triggers,
on average, twice the number of violations compared to Q and RANDOM. DQN is the least
effective in the Left-Turn route.

Fig. 4 Box plots of the number of violations of the DV requirement

123



   19 Page 14 of 33 Empirical Software Engineering            (2025) 30:19 

Table 7 Pairwise comparisonsDunnTest -Number of violations of theDVrequirement (statistically significant
differences are in bold)

Techniques Straight Left-Turn Right-Turn

�DQN vs. Q	 �3.43E-02 	9.20E-03 �<1.00E-04

�DQN vs. RANDOM	 �4.00E-03 	1.80E-03 �2.90E-03

�Q vs. RANDOM	 1.00E+00 1.00E+00 1.00E+00

To statistically compare the three techniques, we run the Friedman test, which detects a
significant difference for at least one pair of approaches for all the routes (p-value = 1.94E-03,
7.76E-03, 1.67E-03). Table 7 reports the p-values for all the pairwise comparisons, computed
with the Dunn test. DQN significantly outperforms both Q and RANDOM in the Straight and
Right-Turn routes, while performing worse than both in the Left-Turn route. On the other
hand, Q and RANDOM are statistically indistinguishable.

4.3.3 Efficiency

Figure 5 shows the average number of violations identified by the three techniques over time,
with the shaded area representing the standard error of the mean (i.e., ± s/

√
n). We observe

Fig. 5 Average number of violations of the DV requirement over time
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Table 8 Area under the average
number of violations of the DV
requirement curve: normalized
Mean and Std

Technique Straight Left-Turn Right-Turn

DQN 0.38 (±0.26) 0.32 (±0.15) 0.34 (±0.32)

Q 0.22 (±0.20) 0.48 (±0.20) 0.03 (±0.09)

RANDOM 0.19 (±0.19) 0.51 (±0.22) 0.06 (±0.10)

that DQN is the most efficient technique in 2 of the 3 routes. For the Straight route, DQN
triggers the first violation, on average, one hour earlier than Q and RANDOM, and it requires
less than half the budget to obtain the same number of violations. In the Right-Turn route,
DQN is the only technique able to discover up to two violations in each repetition. In the
Left-Turn route, DQN is less efficient than Q and RANDOM.

Q and DQN have the same trend as RANDOM in the initial 50 minutes, the time budget
allocated for ε-greedy exploration. However, unlike Q, which maintains the same behavior
as RANDOM through the entire period, DQN is able to learn an effective policy to trigger
violations of the ADS under test.

To quantitatively evaluate the efficiency, we measured the AUC of the average number
of violations over time (Fig. 5). Table 8 shows the (min-max) normalized AUC mean and
standard deviation per technique, in all routes. DQN covers 54% of the area in Straight and
48% in Right-Turn, while the coverage is lower than Q and RANDOM in Left-Turn (i.e.,
36% vs ≈ 56% of Q and RANDOM). The Friedman test applied to the AUC values detects
a significant difference for at least one pair for Left-Turn and Right-Turn routes, but not
for the Straight route (i.e., the p-values are 1.10E-01, 1.82E-02, and 5.88E-03 for Straight,
Left-Turn, and Right-Turn, respectively).

We then ran the Dunn test for all pairs of approaches and for the routes in which Friedman
exposed a significant difference (i.e., Left-Turn and Right-Turn). Table 9 shows that there
is no significant difference between Q and RANDOM in all routes. DQN shows a higher
AUC than both in the Right-Turn route. Despite no statistically significant difference in the
Straight route, the trend is in favor of DQN (on average, the AUC values of DQN compared
to Q and RANDOM are respectively 53% vs 31% and 26%). In the Left-Turn route, DQN
has an AUC lower than both Q and RANDOM.

We investigate the performance difference ofDQN in the three scenarios, by first analyzing
the trend of the DV metric quantifying the distance from the VIF over time. As the reward
function for Q and DQN is the inverse of DV (until a requirement violation occurs, when a
reward of 1.0E+06 is returned), the RL agent aims at minimizing the distance between the
EV and the VIF. Figure 6 shows the trend of this distance (in meters); each point represents
an average of the distance values collected in a window of 10 minutes of execution; we then
average all the values across the 20 repetitions.

In two scenarios - Left- and Right-Turn - DQN makes the distance decrease over time
(i.e., it maximizes the average reward); however, observing the average distance over time
(Fig. 6) and the average number of violations over time (Fig. 5), we notice that in one of

Table 9 Area under the the
average number of violations of
the DV requirement curve -
pairwise comparison Dunn Test
(statistically significant
differences are in bold)

Compared techniques Straight Left-Turn Right-Turn

�DQN vs. Q	 – �2.30E-02 �1.00E-04

�DQN vs. RANDOM	 – �1.13E-02 �3.50E-03

�Q vs. RANDOM	 – 1.00E+00 1.00E+00
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Fig. 6 Average distance from the vehicle in front (DV) over time

the two scenarios (Left-Turn) a decreasing distance does not correspond to a higher number
of violations. Moreover, in the Straight route, DQN outperforms both Q and RANDOM for
number of violations, while the three seem to be equivalent w.r.t. the distance trend (left-most
plots in Figs. 5 and 6). This might be due to the effectiveness of the large reward returned
upon collision. Indeed, by looking at Fig. 7, which plots the average reward computed within
a time window of 10 minutes, we observe that the average reward for DQN has an increasing
trend in the Straight and Right-Turn routes, and it is consistently higher than the average
reward obtained by Q and RANDOM. In the Left-Turn route, DQN finds less violations
than Q and RANDOM despite being able to minimize the distance between the two vehicles
over time (center plots in Figs. 5 and 6). However, the reward it obtains (Fig. 7) shows
constantly lower values compared to Q and RANDOM. The only scenario where the number
of violations triggered by DQN is higher, the reward increases, and the distance decreases is
the Right-Turn. Also in this case the distance for Q and RANDOM does not decrease over
time, as well as their respective reward curves.

These observations point to issues associated with the reward function (defined by Haq
et al. and adopted unchanged in our extension study). Specifically, this reward function has
two components: 1) a continuous value determined by the inverse of the distance between
the EV and the VIF, and 2) a very large constant value (1.0E+06) when a collision occurs.
The first component is dense, i.e., it is given to the agent at each time step, while the second
one, although larger than the first one (1.0E+06 against the first one that ranges between
0 and 100), is sparse as it is only given when a collision occurs. In this setting, the agent
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Fig. 7 Average reward over time (DV requirement)

needs to find a trade-off between the two components. For instance, in both Left-Turn and
Right-Turn the agent tends to privilege the immediate reward by minimizing the distance
between the EV and the VIF (see the decreasing distance trend in Fig. 6). In particular, the
agent, which controls the VIF, learns to steer to move backward, in order to get closer to
the EV. However, while in the Left-Turn route, this behavior does not lead to collisions, in
the Right-Turn route, where the two components of the reward function positively correlate
with each other, the DQN agent learns to minimize the distance, which eventually leads to a
collision and ultimately to a higher average reward (Fig. 7). In summary, the inverse distance
used as a dense reward component is not always guiding the agent toward violations of the
R2/DV safety requirement.

Figure 8 shows the distribution of the actions selected by each technique in the three
routes, across 20 repetitions. We can observe that the actions selected by Q and RANDOM
follow a uniform distribution. This suggests that the Q agent does not converge, as it selects
actions randomly.On the other hand,DQN tends to privilege certain sets of actions, despite the
distributions include the exploration phase, whenDQN samples actions uniformly at random.
In particular, in the Straight and Right-Turn routes, where DQN finds more violations, it
selects actions related to the VIF (i.e., actions 0—3) and weather conditions (i.e., actions 4—
9). In the Left-Turn route, where DQN performs worse and converges to a suboptimal policy,
besides actions related to the VIF, it also tends to select actions related to the pedestrian (i.e.,
actions 10—15).
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Fig. 8 Action distributions (DV requirement)

4.3.4 Qualitative Evaluation

To analyze the different effectiveness ofDQN in the three routes, we qualitatively evaluate the
violations triggered byDQNand those triggered byRANDOM.Wedonot show the violations
of the Q agent, as results show that Q is statistically indistinguishable from RANDOM both
in terms of effectiveness and efficiency.11 During the execution of the testing agents, we log
the x and y coordinates of the VIF, and we keep only the trajectories that result in a violation.
For each route, Fig. 9 shows: on the left, a bird’s eye view of a failing scenario, with the
starting point of the EV (black circle), the most relevant obstacles in the route (zebra-striped
rectangles), and the lane the EV is expected to follow (delimited by two solid red lines); on
the right, the failure trajectories of the VIF for each technique, as well as the obstacles.

The failure trajectories show, for each route, that whenever the VIF stops and partially
occupies the EV lane, the ADS controlling the EV is unable to avoid it, resulting in a collision
(the three bird’s-eye views in Fig. 9 show such collisions in each route). This occurs in two
main cases. The first one is when the sequence of VIF actions leads it to brake and stop in the
critical zone. This case accounts for all the trajectories in Fig. 9 that do not terminate close
to an obstacle. The second case occurs when the VIF collides with an obstacle such that the
tail of the vehicle remains partially in the EV lane.

Figure 9 shows that, independently of the route, themost common type of failure trajectory
is the second one. In the Straight and Right-Turn routes one observes that DQN learns to

11 We report the violations of the Q agent in the replication package.
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Fig. 9 Failure trajectories of the vehicle in front in the three scenarios

collide the VIF with the obstacles on the right to effectively find a high number of violations.
The behavior of DQN, in terms of failure trajectories, is very similar in these two routes.
The Right-Turn route has a long straight road before the turn, and all the failure trajectories
terminate before the turn. In these two routes, the two components of the reward function
positively correlate. Indeed, the agent, by steering in one direction to minimize the distance,
makes the VIF collide with obstacles and, at the same time, this maneuver causes the EV
to collide with the VIF. This way, the agent gets positively rewarded at each time step by
minimizing the distance (first component), receiving a large (constant) reward for the collision
with the EV and the violation of the DV requirement (second component).

In the Left-Turn route (center plots), the turn is very close to the starting point, playing
an active role in most of the failure trajectories. We observe that most violations found by
RANDOM occur when the VIF collides with the first obstacle, located at the beginning of
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the curve, yet in a straight line from the starting point. Its position contributes to making the
RANDOM approach effective in this route, together with the way the action space is defined.

We identify two reasons why the formulation of the action space is critical in this route.
First, by selecting random actions, there is a small chance of choosing actions that affect the
VIF trajectory (only 4 out of 17 actions increase/decrease the throttle or steer left/right; the
others manipulate environment variables, such as the luminosity). Since the actions affecting
the VIF consist of small variations of the throttle and steering commands, an action needs to
be repeatedly selected to meaningfully affect the trajectory of the VIF in the short distance
that separates the starting point from the obstacle. Second, even assuming that RANDOM
repeatedly selects VIF-related actions, there is the possibility of selecting counter-actions,
i.e., increase the throttlewhen the previous action decreased it, or steer rightwhen the previous
action turned the steer to the left, resulting in the VIF going straight. Indeed, Fig. 9 shows
that the trajectories of the VIF with RANDOM are mostly straight, which is one of the ADS
failing conditions in the Left-Turn route.

In the Left-Turn route, theDQNagent follows the immediate reward of the first component
of the reward function, which privileges steering actions to minimize the distance between
the EV and the VIF. This makes collisions between the two vehicles very infrequent. Cor-
respondingly, the agent is unable to trade off immediate and long-term rewards, within the
given time budget. In summary, in the Left-Turn route, minimizing the distance between the
EV and the VIF does not frequently lead to collisions, since most of the collisions are caused
by the VIF stopping in the middle of the two lanes due to a crash with a static obstacle.
Moreover, random search is particularly effective in this route, as it tends to generate straight
trajectories that frequently lead the VIF to collide with the static obstacle, causing a collision
with the EV.

4.4 Discussion

The extension study highlights both the advantages and the limitations of using RL for testing
ADS in the settings of Haq et al. (2023).We show that DQN is able to learn an effective policy
to trigger significantly more ADS violations than both Q and RANDOM in 2 out of 3 routes.
DQN is alsomore efficient than compared approaches in finding violations,which is critical in
the context of ADS testing where the tests execution is highly time-consuming. In addition,
the routes in which DQN outperformed other techniques are the most meaningful from a
testing point of view, as they are those where it is difficult to find violations by random
exploration. Indeed, throughout the entire budget, RANDOM finds, on average, only one
violation in the Straight route, less than one in Right-Turn route, and eleven violations in the
Left-Turn route.

Overall, our extension study supports the claim that a DRL agent such as DQN can
converge to an effective policy, significantly improving effectiveness and efficiency over
random search. This result enables the design of novel RL-based techniques to test ADS
in complex driving simulators like CARLA. However, this requires researchers to carefully
formulate the RL problem, including the definition of states and actions spaces, and the
reward function. Indeed, our extension study pinpoints the limitations of the replicated study.
We identified three issues in the RL formulation by Haq et al. that need to be addressed to
fully exploit the RL framework as a testing tool for ADS.

First, the two (dense and sparse) components of the reward function are not always con-
nected with each other, making them sometimes inadequate to effectively guide the agent in
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complex scenarios such as the Left-Turn route. A possible alternative is the one proposed
by Lu et al. (2023), who use the probability of collision as a reward function. The collision
probability accounts for lateral and longitudinal distances, as well as for additional metrics
such as the speed and positions of all the actors in the testing scenario.

The second issue concerns the definition of the state space of the RL agent. Indeed, in
the formulation by Haq et al. (2023) the state includes absolute coordinates, which unnec-
essarily increases the dimensionality of the state space. For instance, two configurations of
the environment that are similar in terms of relative positions of the EV and VIF vehicles
but occur in different locations of the route, are encoded as different states. This reduces the
possibility for the agent to reuse previously acquired knowledge, potentially increasing the
training time. One way to overcome this issue is to encode relative variables in the state space
such as ego-centric polar coordinates, or lane-centric coordinates (Leurent 2018). This can
increase the generalization capabilities of the RL agent in those situations that require the
same behavior.

The third issue is related to the definition of the action space. The actions are discrete in
the setting by Haq et al. and they are designed to slightly perturb the dynamics of actors in
the environment, such as slightly increasing/decreasing the throttle of the VIF, or making
it slightly steer left/right. The effects of such small changes are delayed, as multiple small
perturbations are needed to create ameaningful change. This slows down the learning process
for the agent, as it needs to assign credit to the actions that lead to a high reward, despite their
delayed effect. A possible solution to speed up learning, is to use a mixture of two common
strategies. The first strategy is using an Observation Time Period (OTP) (Lu et al. 2023) (also
called frame skipping in the RL literature (Bellemare et al. 2012; Mnih et al. 2015)), which
consists of applying an action and waiting for it to produce an effect on the environment, by
pausing the RL agent for a number of simulation steps (in the current setting, the RL agent
acts at each simulator step). This way, the reward computed for a certain action comprises
multiple simulation steps, giving more precise feedback to the agent. The second strategy
consists of creating a layer of abstraction between the decision-making policy of the agent,
and the low level actions needed to control dynamic actors in the environment (i.e., low level
controls of throttle and steering angle for the VIF) (Leurent 2018). In this setting, the actions
available to the agent would be meta-actions, such as “change lane”, “overtake”, and “stay
idle”. The low level controller, running at a higher frame rate than the RL policy, takes care of
translating the meta-actions to the actual commands, leaving the RL agent the responsibility
to make the most important and relevant decisions.

In summary, results on the DV requirement show that complex scenarios demand a thor-
ough reformulation of the problem to allow Reinforcement Learning agents to be effective.
On the positive side, they also show that the DQN agent may be more effective and efficient
in the most meaningful and interesting scenarios (i.e., those where it is difficult to expose
failures). Based on these findings, we further investigate, in the next section, to what extent
they apply to other safety requirements under the setting of Haq et al.

4.5 Other Requirements

4.5.1 Formulation

We now study DQN performance on two other requirements: distance from the center of
the lane (R1/DCL, DCL hereinafter) and distance from pedestrians (R3/DP, DP hereinafter).
The problem formulation is the same as for the DV requirement (Section 4.2), apart from the
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obviously different termination condition: an episode ends when the ego vehicle exceeds its
lane boundaries (for DCL) or collides with a pedestrian (for DP). Clearly, distances from the
center of the lane and from the pedestrian are now used for reward computation.

We compare DQN effectiveness and efficiency against the RANDOM baseline, in finding
violations of the two requirements We execute 20 repetitions with a 4-hours budget for all
the techniques on the three routes, totaling 960 hours of computation.

4.5.2 Distance from Center of Lane

Figure 10 shows the box plots of the number of violations of the DV requirement found by
DQN and RANDOM across the 20 repetitions in the three routes. We observe that in two
routes (Straight and Right-Turn), violations are very difficult to expose: DQN and RANDOM
have a median number of violations equal to 0, while DQN exhibits a slightly higher mean.
Specifically, in the Straight route, DQN found one violation in 3 out of 20 repetitions, com-
pared to one violation found by RANDOM in just one repetition. In the Right-Turn route,
DQN is the only technique that finds a violation (also including the techniques considered in
the replication study), in 2 out of 20 repetitions. In the Left-Turn route, where violations are
easier to expose, DQN and RANDOM find on average the same number of violations (i.e.,
approximately 4). To statistically compare the results, we ran the Wilcoxon test (Wilcoxon
1992), at α = 0.05 significance level, which did not detect a significant difference between
the two techniques in any of the routes (i.e., p-values = 3.17E-01, 6.86E-01, 1.57E-01, respec-
tively for Straight, Left-Turn and Right-Turn). Despite the lack of statistical significance, the
trend seems to be in favor of DQN, which triggers on average more violations in the most
difficult routes.

As for efficiency, Fig. 11 shows the average number of violations of DQN and RANDOM
over time. While in the Left-Turn route the two techniques appear equivalent, DQN outper-

Fig. 10 Box plots of the number of violations of the DCL requirement
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Fig. 11 Average number of violations of the DCL requirement over time

forms RANDOM in the other two routes. On average, the former requires half the budget to
find more violations than the latter. The Wilcoxon test at α = 0.05 on the AUC of the two
techniques, fails to reject the null hypothesis (i.e., p-values = 4.65E-01, 9.56E-01, 1.79E-
01, respectively for Straight, Left-Turn and Right-Turn routes). Again, despite the lack of
statistical significance, DQN shows a positive trend in finding more violations quicker than
RANDOM, especially in the Right-Turn route.

For further performance comparison, Fig. 12 plots the average reward of the two tech-
niques, computed within an execution window of 10 minutes. It confirms that in the Straight
and Right-Turn routes DQN obtains a higher reward, while the two techniques seem to be
equivalent in the Left-Turn route.

Finally, Fig. 13 plots the distribution of actions selected by the two techniques. It shows
that, in contrast to RANDOM’s uniform distribution, DQN privileges a certain set of actions
and converges to a non-uniform policy.

4.5.3 Distance from Pedestrians

Figure 14 shows the box plots of the number of violations of the DP requirement found
by DQN and RANDOM across the 20 repetitions in the three routes. DQN outperforms
RANDOM only in the Left-Turn route, while it finds fewer violations in other routes. These
results, in line with the experiments on other requirements, highlight the superiority of RL
agents in finding violations in scenarios where violations are difficult to expose randomly
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Fig. 12 Average reward over time (DCL requirement)

(i.e., the Left-Turn route in this case). For statistical comparison, we ran the Wilcoxon test
at α = 0.05 significance level, which detected a significant difference for the Straight and
Right-Turn routes (p-values = 4.59E-03, 5.05E-02 12, 2.15E-02, respectively for Straight,
Left-Turn and Right-Turn routes).

As for efficiency, Fig. 15 plots the average number of violations over time found by DQN
and RANDOM. It confirms that RANDOMfinds violations quicker than DQN in the Straight
and Right-Turn routes, while the contrary happens in Left-Turn. Indeed, in Left-Turn DQN
requires about one third less time (80 minutes) than RANDOM to find the first violation. The
Wilcoxon test at significance level α = 0.05 for the AUC of the two techniques confirms the
difference in the Straight and Right-Turn routes (p-values = 4.20E-02, 1.14E-01, 4.40E-02,
respectively for Straight, Left-Turn and Right-Turn).

Finally, Figs. 16 and 17 plot, respectively, the average reward of DQN and of RANDOM in
a 10minutes window, and the distribution of the selected actions across repetitions. Figure 16
shows that in the Straight and Right-Turn routes DQN obtains lower reward values. Figure 17
shows that DQN converges to a subset of actions with respect to RANDOM, though in the
Straight and Right-Turn routes this does not lead to more violations.

12 Power analysis requires a sample of ≈140 repetitions to reach the conventional statistical power threshold
β = 0.8, which would cost weeks of computation time.
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Fig. 13 Actions distributions (DCL requirement)

Fig. 14 Box plots of the number of violations of the DP requirement
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Fig. 15 Average number of violations of the DP requirement over time

4.5.4 Discussion

The experiments on additional requirements confirmed both the positive and negative findings
obtained on the DV requirement. As autonomous systems become more reliable, RL shows
potential as a technique for online testing, particularly in scenarios where violations are
challenging to identify.

On the other hand, RL is not always effective, especially in scenarios where violations are
easily exposed by random search. To address these limitations, a reformulation of the testing
problem in the RL framework is in order.

5 RelatedWork

Online testing of ADSs has been widely investigated, with many approaches proposed to
generate scenarios that cause ADSmisbehaviors (Abdessalem et al. 2018; Gambi et al. 2019;
Riccio and Tonella 2020; Majumdar et al. 2019; Tuncali et al. 2018; Haq et al. 2022; Calò
et al. 2020; Klischat and Althoff 2019; Li et al. 2020). Among them, search-based techniques
showed particularly effective. Before MORLOT, Haq et al. (2022) introduced SAMOTA, a
technique utilizing surrogate models to predict the outcome of a test case without executing
it. A test case is a static configuration of the environment, including factors like road type
and weather parameters. Riccio and Tonella (2020) proposed DeepJanus to generate frontier
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Fig. 16 Average reward over time (DP requirement)

inputs, i.e., similar input pairs that cause the ADS to misbehave for one input while working
correctly for the other. Calò et al. (2020) used search-based techniques to identify avoidable
collision scenarios, where a collision would not have occurred with an ADS reconfiguration.
They first search for a collision and then for a proper ADS configuration to avoid it.

These proposals do not deal with sequences of dynamic interactions, required to manipu-
late objects during simulations (e.g., another vehicle). In this context, the use of RL for online
testing of ADSs is gaining increasing interest. Besides (Haq et al. 2023), a relevant work
is the one by Lu et al. (2023). Similarly to MORLOT, they propose a learning technique
(DeepCollision) that dynamically changes the environmental conditions to find collisions
with vehicles, pedestrians, and static obstacles (corresponding to violations V2, V3, and V4
in Section 3.1). DeepCollision uses DQN as RL agent to select actions from a set of 52
options to control weather, time of the day, and behavior of actors (e.g., pedestrian crossing
the road and vehicle switching lane). The state is defined by a set of 12 variables including
traffic lights color, EV kinematics (position, speed, and rotation), and weather conditions.
The authors employ the Apollo ADS (Apollo 2017) and the LGSVL simulator (Rong et al.
2020). Unfortunately, LGSVL is unmaintained since 2022, and the cloud servers are no
longer operational.

Other techniques use Adaptive Stress Testing (AST), a method initially employed by Lee
et al. (2015) to test an aircraft collision avoidance system. AST formulates the problem of
finding themost likely failure scenarios as aMarkov decision process, which can be solved by

123



   19 Page 28 of 33 Empirical Software Engineering            (2025) 30:19 

Fig. 17 Actions distributions (DP requirement)

RL agents. Koren et al. (2018) explore the application of AST to find collisions in pedestrian
crossing scenarios by extending it with deep RL. Corso et al. (2019) also use AST, focusing
on the reward formulation to find diverse and avoidable scenarios13 as failing scenarios.

Sharif and Marijan (2022) define a multi-agent environment in which a set of deep RL
agents are trained with adversarial inputs. The goal is to find ADS failure states in which the
EV goes off road or collides with obstacles. ADS robustness is then improved by retraining
it with adversarial inputs.

The advances in applying reinforcement learning for online testing of ADSs are unde-
niable. However, the proposed techniques involve highly intricate and varied simulators,
defining complex RL environments that require thorough study for drawing accurate conclu-
sions. Our work highlights the significance of replication studies in this context, which have
not been conducted thus far.

6 Conclusions

Scientific research on testing core software components - driven by artificial intelligence
- of Autonomous Driving Systems has shown that Reinforcement Learning can be highly
beneficial in this difficult and time-consuming task. However, replication studies still lack in

13 They consider some scenarios to be unavoidable (e.g., a pedestrian causing a collision with a stoppedADS).
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this field, despite their importance to establishwell-grounded scientific evidences in empirical
software engineering.

We have replicated a recent study which showed the superiority of RL, combined with
many objective search, with respect to random testing for ADSs. While not confirming the
results in the original study, the replication has provided insights on how to design RL
algorithms tailored to the specific domain.

We have thus extended the original study, showing that deep RL, with an agent designed to
better fit the characteristics of the state and action spaces of the RL problem for testing ADSs,
can outperform random testing in effectiveness and efficiency in covering their functional
and safety requirements. Further empirical studies are needed to address for more complex
scenarios.
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