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Simple Summary: Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical
course. Thus, predicting the outcome of patients with this disease is a topic of special interest. The
rapidly changing treatment landscape of CLL has questioned the value of classical biomarkers and
prognostic models. Herein we examine the current state-of-the-art of prognostic and predictive
biomarkers in the setting of new oral targeted agents with special focus on the most controversial
findings over the last years. We also discuss the available information on the role of “old” and “new”
prognostic models in the era of oral small molecules.

Abstract: Chronic lymphocytic leukemia (CLL) is an extremely heterogeneous disease. With the
advent of oral targeted agents (Tas) the treatment of CLL has undergone a revolution, which has
been accompanied by an improvement in patient’s survival and quality of life. This paradigm shift
also affects the value of prognostic and predictive biomarkers and prognostic models, most of them
inherited from the chemoimmunotherapy era but with a different behavior with Tas. This review
discusses: (i) the role of the most relevant prognostic and predictive biomarkers in the setting of Tas;
and (ii) the validity of classic and new scoring systems in the context of Tas. In addition, a critical
point of view about predictive biomarkers with special emphasis on 11q deletion, novel resistance
mutations, TP53 abnormalities, IGHV mutational status, complex karyotype and NOTCH1 mutations
is stated. We also go over prognostic models in early stage CLL such as IPS-E. Finally, we provide an
overview of the applicability of the CLL-IPI for patients treated with Tas, as well as the emergence of
new models, generated with data from patients treated with Tas.

Keywords: chronic lymphocytic leukemia; prognosis; targeted therapy

1. Introduction

Chronic lymphocytic leukemia (CLL) is the most frequent chronic leukemia in Western
countries. The diagnosis is usually incidental in a routine blood test and its outcome is
extremely heterogeneous. Some patients present with a rapidly progressive evolution,
while others remain at an indolent state for the rest of their lives. Antitumor therapy is
only required if active disease is documented, according to the International Workshop on
Chronic Lymphocytic Leukemia (iwCLL) criteria [1]. Furthermore, response to treatment is
also variable and may be predicted by different biomarkers. This is of vital importance at
this time, in which treatment algorithms have drastically changed and chemoimmunother-
apy (CIT) has been replaced by targeted agents (Tas) for most patients [2,3]. Research is
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moving ahead at a staggering speed and, consequently, the therapeutic arsenal is grow-
ing. Oral targeted treatments approved and available worldwide are: ibrutinib, the first
generation of Bruton Tirosine Kinase inhibitors (BTKi); idelalisib, the first generation of
phosphatidyl-inositol 3-kinase inhibitors (PI3Ki); and venetoclax (BCL-2 inhibitor). The Eu-
ropean Medicine Agency (EMA) has just approved acalabrutinib, a second class BTKi. The
second class PI3Ki, duvelisib is also available in some countries. Other second class BTKi
(zanubrutinib), PI3Ki (umbralisib) or new reversible, non-covalent BTKi (pirtobrutinib,
ARQ 531) are under investigation and will hopefully be available soon [4–18]. Therefore,
the identification of prognostic and predictive biomarkers is relevant, not only for patient
counseling but also for planning follow-up or selecting treatment at a time where a shift to-
wards personalized medicine is taking place. Table S1 summarizes the names and principal
characteristics of clinical trials with TAs and CIT in CLL mentioned throughout this review.

The difference between the terms prognostic and predictive biomarker has been
previously addressed in depth [19,20]. In brief, prognostic biomarkers separate groups
of patients with different outcomes regardless of treatment. On the contrary, a predictive
biomarker provides information about the possible benefit of a specific treatment and can
be used in the clinical decision-making process [21]. Many of the most powerful prognostic
and predictive biomarkers were identified in the CIT era [22–28] but the validity of most of
them has been evaluated also with oral Tas [6,11,12,29–31].

Although individual factors can be a very important prognostic tool, reality is more
complex, as each patient may harbor several biomarkers with different prognostic value.
To overcome this issue, prognostic scores have been developed integrating biomarkers into
models. The Rai and Binet systems, proposed almost half a century ago, were the pioneers
and, despite their limitations, they are still in force today [32,33]. Since then, various prog-
nostic models and nomograms were proposed that can be applied at different moments
during the course of the disease. The most established today is the CLL-International Prog-
nostic Index (CLL-IPI), which has demonstrated its ability to predict overall survival (OS),
time to first therapy (TTFT) and progression-free survival (PFS) in the CIT setting [34,35].
It has also shown to predict TTFT in early-stage CLL [36] and community-based cohorts of
patients [37,38]. However, its utility to predict PFS and even OS in patients treated with
Tas is limited [39]. Thus, other models have recently emerged to evaluate prognosis in this
setting [40,41].

Herein, we discuss data evaluating the usefulness of prognostic and predictive
biomarkers for patients treated with Tas. We also focus on novel prognostic models
and the value of conventional models for patients treated with Tas.

2. Prognostic Biomarkers: All That Glitters Is Not Gold

Over the last 50 years, plenty of biomarkers with ability to predict CLL evolution were
identified. The most relevant, classified by categories, are illustrated in Figure 1.

Even though they emerged in the era of CIT, most are valid today, since they are
capable to predict time to first treatment (TTFT), which is not influenced by the choice
of therapy [22–25,42–65]. The mutational status of immunoglobulin heavy chain variable
region (IGHV) gene, cytogenetic abnormalities detected by FISH, CD49d expression and
TP53 mutations are the biomarkers that have been consolidated as the most powerful ones
and are supported by the best scientific evidence [50,66]. Others such as ZAP-70 and CD-38
have lost their strength, although their prognostic value is unquestionable. These flow
cytometry biomarkers may be useful if IGHV mutation status is not available, as they act as
surrogate markers. Among B-cell receptor biomarkers, a selective usage of IGHV genes in
CLL has been described, with an overuse of certain genes. Some of these gene usages have
been associated with clinical outcome such as VH1-69, VH3-21 (bad outcome) or VH 4-34
(good outcome) [67–70]. In addition, almost a third of CLL patients express stereotyped B
cell receptor immunoglobulins (BcR IG). Some of these subsets also harbor prognostic value
highlighting subsets #1, #2, #8 (bad prognosis) and #4 (good prognosis) [63,71]. Recently, a



Cancers 2021, 13, 1782 3 of 20

single point mutation in IGLV3-21 (R110-mutated IGLV3-21) has been studied, identifying
an aggressive biological subtype of CLL [72].
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Figure 1. Relevant prognostic biomarkers for chronic lymphocytic leukemia. Del13q = 13q dele-
tion; +12 = trisomy 12; CK = complex karyotype; del11q = 11q deletion; del17p = 17p deletion; LDH 
= lactate dehydrogenase levels; β2M = beta-2-microglobulin levels; TK = thymidine kinase; LDT = 
lymphocyte doubling time; uMRD = undetectable minimal residual disease.  indicates good 
prognosis;  indicates good and bad prognosis or intermediate prognosis;  indicates poor prog-
nosis. 
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Figure 1. Relevant prognostic biomarkers for chronic lymphocytic leukemia. Del13q = 13q deletion; +12 = trisomy 12; CK
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microglobulin levels; TK = thymidine kinase; LDT = lymphocyte doubling time; uMRD = undetectable minimal residual disease.
N indicates good prognosis; I indicates good and bad prognosis or intermediate prognosis; H indicates poor prognosis.

Recurrent gene mutations identified by next generation whole exome or whole genome
sequencing carry important prognostic information [61,73,74]. However, its implemen-
tation in routine practice has not been fully recommended to date, with the exception
of TP53 mutation [1]. A great variety of mutations have been identified, but only a few
occur in more than ~5% of the patients. Among them stand out NOTCH1, SF3B1, ATM,
BIRC3, POT1 and MYD88. All but MYD88 have been associated with adverse outcome and
other poor prognostic biomarkers [75]. Some patient-related and tumor-load variables such
as age, comorbidities, beta-2-microglobulin levels (B2M), lymphocytosis or lymphocyte
doubling time (LDT) are available in virtually all patients and remain valid in predict-
ing TTFT [76,77]. Novel markers such as complex karyotype (CK), stereotyped subsets,
micro-RNAs or epigenetic subsets need more evidence to be used in the routine setting.
Finally, minimal residual disease (MRD) is one of the strongest predictors of PFS and OS in
CLL patients treated with CIT [78]. Indeed, undetectable MRD (uMRD) is considered a
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surrogate marker for PFS in the context of clinical trials. Regarding targeted treatments,
BTKi or PI3Ki obtain very long PFS despite their low rates of complete responses (CR) and
uMRD. Therefore, uMRD is not a valid prognostic biomarker for patients treated with BTK
or PI3K inhibitors [5,6,11–13]. Conversely, venetoclax-based regimens induce high rates of
uMRD enabling a fixed-duration treatment which has established uMRD as a therapeutic
goal for these combinations. Moreover, the prognostic value of achieving uMRD with
venetoclax has been demonstrated, not only in the relapsed/refractory (R/R) setting but
also as a frontline treatment (Murano and CLL14 phase 3 trials) [10,31]. Combos of novel
agents (TA) between them +/− anti-CD20 monoclonal antibodies or, less frequently, with
CIT is what immediate future holds. Preliminary results of trials using these combinations
are impressive with the highest rates of uMRD ever seen (>50–70%), which might turn
uMRD as the most powerful biomarker to predict prognosis in CLL patients that require
treatment [79–83]. In fact, it could be used to guide treatment decisions in the near future
by helping to decide when to stop or intensify therapy. Nevertheless, questions such as
how to proceed with MRD results after a fixed duration schedule (stop, continue or change
treatment) remain open. In summary, despite this large amount of biomarkers, not all have
been externally and prospectively validated and, furthermore, few are valuable for clinical
decision-making.

3. Predictive Biomarkers in the Targeted Therapy Era: Something Old, Something
New, Something Borrowed and Something Blue

Predictive biomarkers allow anticipating the response to a specific treatment. In fact,
they constitute the cornerstone on which therapeutic algorithms are based. As the thera-
peutic armamentarium expands, the need to identify and validate predictive biomarkers is
reinforced with the aim of offering the treatment that best suits each patient. Nowadays,
American and European guidelines base their treatment algorithms on age and comor-
bidities, IGHV mutation status and the presence of TP53 mutation or del(17p) [2,3]. In
summary, Tas are recommended in all settings as first line treatment, highlighting their
preferred use over CIT for patients with TP53 abnormalities (TP53 mutations or del(17p))
or unmutated IGHV status. The exception where CIT might be appropriated, at the same
level as Tas, is for young patients without TP53 abnormalities and mutated IGHV status.
This is justified by the results of the ECOG-ACRIN E1912 clinical trial that compared
ibrutinib-rituximab versus fludarabine-cyclophosphamide-rituximab (FCR) in patients 70
years of age or younger. The combination of ibrutinib-rituximab resulted to be superior
to FCR in terms of PFS and OS. This benefit was observed for all subgroups with the
exception of IGHV-mutated patients, in which both treatments achieved similar results and
a long follow-up is required to determine the best option for this population. [8]. Given the
change in the therapeutic algorithm that has occurred, some predictive factors will lose
their value, especially if CIT disappears from the treatment scenario. Others are emerging
to help tailoring treatment decisions that involve Tas and combinations. In this section, we
summarize the current situation of factors with predictive value with special focus on BTKi
(ibrutinib, acalabrutinib) and BCL-2 inhibitors (venetoclax).

3.1. Something Old: Invalid Biomarkers for Current Treatment Algorithms That Were Important
Previously and Might Reappear
11q Deletion

Twenty years ago, Döhner et al. demonstrated the prognostic value of certain cyto-
genetic abnormalities detected by FISH. The 11q deletion (del(11q)) is detected in around
20% of the patients who require first line treatment and is associated with unfavorable
outcome [42,84]. Initial studies with CIT pointed out that the addition of anti-CD20 could
overcome the bad prognosis that del(11q) entailed, suggesting that this abnormality could
be considered a predictive biomarker for increased response to FCR or obinutuzumab-
chlorambucil (O-Chl) [85,86]. Later, as antiCD-20 was added universally to chemotherapy
protocols, its predictive utility disappeared. More than 80% of the patients with del(11q)
have an unmutated-IGHV (U-CLL) pattern, another poor outcome marker for patients
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treated with CIT. In the low proportion of patients with mutated-IGHV (M-CLL) and
del(11q), the prognostic role that del(11q) adds is controversial. The CLL-8 trial found
that this subgroup of patients (M-CLL and del(11q)) had an excellent outcome, similar
to other M-CLL [87]. In contrast, results from an Italian multicenter retrospective study
with 404 patients, showed that M-CLL patients without del(11q) had a better outcome than
those who carried this deletion [88].

The prognostic value of del(11q) in patients treated with ibrutinib has recently been
addressed in a pooled analysis that compiled results from three phase 3 clinical trials that
recruited 620 patients. In this study, a longer PFS and a possible OS benefit (not significant)
was observed for patients with del(11q) who were treated with ibrutinib compared to
those without this cytogenetic alteration [89]. Indeed, the authors suggested that del(11q)
could be used as a predictive biomarker for better outcomes in patients receiving this drug.
Anyway, this observation needs further validation and studies with preclinical models
harboring this alteration, which will help to understand 11q-related effects on treatment
response [90]. Direct comparison with other treatment options such as venetoclax or
acalabrutinib combinations should be also explored. In fact, acalabrutinib and venetoclax
also overcome the bad prognosis of del(11q), as reported in the subgroup analysis of major
phase 3 trials of both molecules [11,12,30,31].

3.2. Something New: Novel Biomarkers for the Tas Treatments
3.2.1. Resistance Mutations to BTK Inhibitors

Despite the excellent results provided by ibrutinib, a few patients do not respond
(primary resistance) and others relapse during treatment (acquired resistance). A re-
sponsible mutation can be identified in around 60–80% of the patients with acquired
resistance [91–93]. These mutations occur at the binding site of ibrutinib to BTK, usually
at position C481S. Less frequent, activating mutations in the PLCG2 pathway might be
detected. In some patients, both types coexist [91,92,94]. Interestingly, BTK and PLCG2
mutations were not observed in patients without previous exposure to ibrutinib and usu-
ally appear between the second and fourth year under treatment [91]. Not only that,
some studies were able to detect these mutations in samples around 9–15 months before
relapse happened [95]. Nevertheless, it is unknown whether all patients with treatment
mutations will relapse, and how long it will take. In conclusion, acquired mutations could
represent biomarkers of resistance to ibrutinib. The advantage of their early detection and
the possible switch to other treatments is still to be determined. Recent reports have shown
that mechanisms of resistance to acalabrutinib are similar than to ibrutinib, which is not
surprising as acalabrutinib uses the same position (C481S) to bind to BTK [96]. For readers
interested in this topic, comprehensive reviews have been published and are available in
the references cited below [97–101].

3.2.2. BCL-2 Mutations

Resistance to venetoclax is a more complex process in which different independent
molecular mechanisms are involved [102]. However, a mutation at the G101V location in
BCL-2 has been found but in around 50% of the patients in a small study that analyzed
samples from 15 patients relapsing on venetoclax. This mutation behaves similar to BTK
C481S on three aspects: it affects the venetoclax affinity to BCL-2, it has been detected only
after venetoclax exposure and it can be observed several months prior to clinical relapse
(~25) [103,104]. The same authors published in another small study that a median of 3 other
BCL-2 mutations (different than G101V) may appear in most of R/R patients (91%) [105].
Hence, BCL-2 mutations might also act as biomarkers for venetoclax resistance.
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3.3. Something Borrowed: Biomarkers That Retain Predictive Value on Current
Treatment Algorithms
3.3.1. TP53 Abnormalities

TP53 abnormalities (TP53a) (del(17p), TP53 mutations or both) result in a loss of p53
activity, leading to an impaired regulation of DNA repair mechanisms and resistance to
chemotherapy. These abnormalities are infrequent among untreated patients (5–12%) but
increase significantly during disease evolution, especially after treatment or at the time of
transformation (40–60%). CIT offers no benefit to patients with TP53a that obtain very short
PFS and OS regardless of the combination used [106]. Fortunately, Tas have significantly
improved clinical outcomes in patients with TP53a, since they act independently of the
p53 protein, which has placed them as the gold standard approach for this subset of
patients. However, none of them have completely overcome the bad prognosis that TP53a
carries. In the R/R setting, ibrutinib trials, with a prolonged follow-up time, showed
that patients with TP53a had a shorter PFS than patients without these abnormalities
(41 months vs. 57 months at RESONATE trial) [6]. Conversely, the results from a phase
2 trial (NCT01500733) that included 34 previously untreated patients with TP53a showed a
median PFS and OS of 61% and 79% respectively with a follow-up time of 6.5 years [107].
These results need to be interpreted cautiously due to the low proportion of patients
included in the study and the lack of randomization. In addition, the median age of
the patients was 62.5 year old, suggesting that the study included a younger and highly
selected population and therefore not representative. Acalabrutinib behaves very similar
to ibrutinib for patients with TP53a not only in the first line but also in the R/R setting,
but studies with this compound need a longer follow-up to see the long-term effect [11,12].
Venetoclax-based regimens have also demonstrated to be very active on patients with
TP53a. Nevertheless, the 4-year update of the MURANO trial showed a higher proportion
of patients with detectable MRD after end of trial and a trend to a lower PFS on patients
carrying del(17p) without statistical significance after multivariable adjustment. In addition,
the 5-year update recently communicated at the American Society of Hematology meeting
confirmed that the four patients with del(17p) that achieved uMRD after end of treatment
progressed [108]. Similarly, patients with TP53a from the CLL-14 trial had a shorter PFS
(2-year PFS around 70%) than those with intact TP53. A slightly higher 2-year PFS (75–80%)
has been reported on ibrutinib trials what has led some experts to recommend ibrutinib
over venetoclax in TP53a [2,10]. Shortly, ongoing trials comparing both molecules will
establish the preferential option for these patients. Meanwhile, we can establish that TP53a
have a predictive value for a shorter duration of response to Tas especially in the context of
relapse and poor response to CIT.

3.3.2. IGHV Mutational Status

IGHV mutational status is a robust prognostic biomarker in CLL. M-CLL patients
exhibit a more benign course of the disease with a prolonged TTFT and OS, in contrast to U-
CLL [23,24,60,66,109]. Furthermore, it is also considered a valuable predictive biomarker for
CIT response, especially for the FCR combination. Three independent studies demonstrated
that FCR has probably the potential to “cure” a subset of patients with M-CLL. In these
three studies, the PFS and OS curves reached a plateau with times comparable to age-
matched healthy population [87,88,110]. However, the predictive value of IGHV mutation
status has changed with the advent of Tas. These drugs achieve similar PFS and OS rates
regardless of IGHV mutation status [6,10–12,31,111]. In addition, studies comparing Tas vs.
CIT on previously untreated elderly/unfit patients (ALLIANCE A041202, CLL-14) support
the preferential use of Tas regardless of IGHV mutation status [7,10]. On the other hand,
the E1912 trial could possibly help to answer one of the burning questions today [8]: Will
young M-CLL patients benefit more from FCR or Tas? If the answer is Tas, IGHV mutation
could lose its predictive value, since it will no longer be used as a premise for first line
treatment decisions. If the answer is FCR, IGHV might remain as a predictive biomarker
favoring FCR for most of the M-CLL patients.
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3.4. Something Blue: Biomarkers with Potential Predictive Value Not Fully Validated
3.4.1. Complex Karyotype

The frequency of complex karyotype (CK) varies between 10% (treatment-naïve) and
40% (R/R) and is back in the spotlight again thanks to CpG-stimulation techniques [112].
Recent studies have pointed out that CK might also be identified using genomic arrays.
The detection of ≥5 copy number alterations by this technique identified a subgroup of
patients with independent adverse prognosis in a multicenter retrospective study that
included more than 2000 patients [113].

In spite of the controversies that surround this biomarker, it seems clear that, altogether,
it confers a dismal prognosis to CLL, and some guidelines advocate for its incorporation in
clinical practice [3]. In the first place, there is an urgent need to generate an international
standardized consensus on the exact definition of CK and how to count and interpret
chromosomal abnormalities. In general, CK in CLL is defined by the presence of ≥3 abnor-
malities and high risk CK by the presence of ≥5 aberrations. However, not all cases with
more than three abnormalities behave the same way. For instance, the association of tri-
somy 12 (+12), trisomy 19 and other trisomies provides good prognosis, while unbalanced
translocations appear to carry a worse outcome than balanced translocations [114,115].

Secondly, CK was designated as a poor prognostic factor and a predictive biomarker
for poor response to CIT based on large retrospective cohort studies [28,77,116,117]. This
bad outcome has not been verified in the context of prospective randomized trials. The
results of the only two trials in which CK independently predicted OS and PFS for patients
treated with either FCR or chlorambucil (Chl) are illustrated in Table S2. As shown in the
table, the methodology used in both studies was suboptimal.

Third and last, Tas might overcome the poor prognosis that CK entails, but this is
another topic of debate. Table 1 summarizes the studies that have assessed the impact of
CK in patients receiving Tas. As shown, the results are discordant.

Table 1. Impact of complex karyotype on clinical outcome for patients treated with ibrutinib, acalabrutinib and venetoclax.

Drug Impact of CK Study Type Study N (% CK) Population Prognostic Impact of CK Others Ref.

Ib
ru

ti
ni

b

CK does not
impact

outcome

Phase 3 CT RESONATE 39/153 (25%) R/R No impact on PFS (40 vs.
44 months, NS) [6]

Phase 3 CT ALLIANCE
A041202 99/333 (29%) TN No impact on PFS [7]

Pooled
analysis

PCYC-1102
PCYC1103 41/132 (31%) TN & R/R No impact on PFS and OS

in MA [118]

Pooled
analysis

RESONATE
RESONATE 2

HELIOS
41/338 (12.1%) TN & R/R No impact on PFS or OS Excluded

del(17p) [89]

CK aggravates
outcome

Retrospective Cohort 21/56 (37.5%) R/R Independently associated
with shorter PFS and OS 17/21 del(17p) [119]

Pooled
analysis

PCYC-1102
PCYC-1109

OSU11
RESONATE

172/295 (58%) R/R (8 TN)
Associated with disease

progression or
transformation

[91]

A
ca

la
br

ut
in

ib CK does not
impact

outcome

Phase 3 CT ASCEND 50/154 (32%) R/R PFS benefit for acala arm
on subgroup analysis

16 m median
follow up [11]

Phase 3 CT ELEVATE TN 60/358 (16.7%) TN PFS benefit for acala arms
on subgroup analysis

28 m median
follow up [12]

CK aggravates
outcome Phase 1/2 CT 20/57 (35%) R/R Shorter PFS (33m vs. NR) [120]

V
en

et
oc

la
x

CK does not
impact

outcome

Phase 3 CT CLL-14 30/200 (17%) TN
No impact on PFS or OS
(not reached in CK and

non-CK)
[121]

Retrospective Cohort 52/130 (26.8%) R/R (2 TN) No impact on PFS 7 m median
follow up [122]

CK aggravates
outcome

Pooled
analysis

M12-175
M13-365
M13-982

16/38 (46%) R/R CK independently
associated with PFS

23 m median
follow up [123]

Phase 3 CT MURANO 94/288
(36.3%) R/R Shorter PFS and uMRD

for CK
4 year

follow up [31]

N = number of patients; CK = complex karyotype; REF = reference; CT = clinical trial; R/R = relapsed/refractory; PFS = progression free sur-
vival; TN = treatment-naïve; OS = overall survival; MA = multivariate analysis; del(17p) = 17p deletion; m = months; uMRD = undetectable
minimal residual disease; acala = acalabrutinib.



Cancers 2021, 13, 1782 8 of 20

Starting with ibrutinib, overall, treatment naïve patients that receive this drug appear
to get prolonged responses irrespectively of cytogenetics [7]. On the other hand, if CK
appears as a consequence of treatment, the situation changes. Even though the RESONATE
trial (R/R), with a follow up of 6 years, could not identify CK as a predictive biomarker [6],
other studies have linked CK to relapse, transformation and even a resistance mecha-
nism [91,119]. In this setting CK usually comes with other dismal factors such as del(17p),
del(18p) or acquired mutations, maybe acting as a confounding factor. Not surprisingly,
the same conclusions can be extrapolated from acalabrutinib studies, albeit with a shorter
follow-up (Table 1) [11,12,124]. With regard to venetoclax, a recent report from the CLL-14
highlights that venetoclax-obinutuzumab is able to overcome the deleterious effect of
CK, in line with a previous study from real life [121,122]. Both studies need a prolonged
follow-up to confirm these outcomes. In contrast, evidence from the MURANO trial (R/R)
and early studies with venetoclax, showed the opposite [123] (Table 1).

Interestingly, two different studies (retrospective single center analysis with ibrutinib
and the MURANO trial) have recently demonstrated that increasing karyotype complexity
to ≥5 abnormalities predicts inferior survival for patients treated with TAs, similarly to
what happens with CIT [31,125]. This reinforces the need for harmonization and standard-
ization of CK definitions.

Finally, although the widespread use of idelalisib has been limited by toxicity, it is
worth mentioning that this molecule might vanquish the bad prognosis of CK even for
R/R patients, although with little evidence [126]. To sum up, the predictive value of CK in
the era of Tas is not clear. From our point of view, patients with this biomarker should be
preferentially treated with Tas, turning this marker into a predictor of better response to
Tas than CIT.

3.4.2. NOTCH1 Mutations

NOTCH1 mutations are the most common recurrent mutations, seen in about 10% of
CLL-patients, with increasing frequency as the disease progresses. This biomarker has been
proposed as a mild negative prognostic factor, based on evidence from retrospective stud-
ies and clinical trials [73,127–131]. Indeed, patients with NOTCH1 mutations constitute a
heterogeneous subgroup of patients in which other factors are also important. For example
the association of NOTCH1 mutation to +12 seems to overshadow the clinical outcome of
patients with +12 [132,133]. In addition, clonal and subclonal NOTCH1 mutations predicted
inferior TTFT while only clonal mutations predicted inferior OS in a cohort of patients
treated with CIT [134]. Mutations of the NOTCH1 appear to be a predictive biomarker of
response to anti-CD20 treatments. The CLL8 trial showed lack of benefit from adding rit-
uximab to conventional CT [84]. Furthermore, in trials using ofatumumab as a comparator
arm, patients with wild-type NOTCH1 performed better than those with the mutation [29].
In contrast, patients with NOTCH1 mutations treated with obinutuzumab had a better
outcome than patients treated with rituximab [135]. However, these observations need
further validation to be incorporated into routine practice. In general, the PFS and OS
of patients treated with Tas do not appear to be influenced by the presence or absence of
NOTCH1 mutations [29,136]. Therefore, NOTCH1 is proposed as a biomarker that predicts
inferior response to rituximab or ofatumumab, but at the moment it has no impact “by
itself” in patients treated with Tas.

4. Prognostic Models. Different Models for Different Moments: Do Not Compare
Apples with Oranges

After the enormous advance in deciphering the biological landscape of CLL, which
has been accompanied by a “treatment-revolution” and a significant improve on survival,
prognostic models have not evolved at the same speed [137]. Rai [33] and Binet [32] clinical
staging systems, available for almost 50 years, have the merit of being in force today. Their
major limitation is that none of the models is accurate enough to predict clinical outcome
at the individual level and discriminate patients with early-stage disease that progress in a
short period of time. With the aim of improving the accuracy of these models, many scoring
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systems have emerged, integrating biological and clinical variables. Most of the models
were initially developed to predict OS in the CIT era. Others were designed to predict
TTFT and are not influenced by treatment decisions. A recent meta-analysis published
by the Cochrane Library has analyzed this topic in depth. They identified 52 prognostic
models, but only 12 were externally validated (5 for TTFT; 6 for OS and 1 for PFS). Thus,
prognostic models validated in the CIT period will not be the subject of this review. In this
section, we review current evidence about prognostic models based on their applicability
to predict TTFT and for patients treated with Tas [138].

4.1. Apples: Scoring Systems That Predict Time to First Treatment

The percentage of CLL patients diagnosed at early stages (Binet A, Rai 0) is now
very high (~80%) due to the generalization of routine blood tests in asymptomatic peo-
ple [139]. Prognostic models developed to evaluate TTFT help to counsel patients and
their families, plan surveillance and identify high-risk candidates that may benefit from
early intervention in the context of clinical trials. For this purpose, many scoring systems
were published [36,109,140–144] but most of them have not been validated in independent
cohorts and thus, are not transferred to clinical practice [138]. Table 2 summarizes the most
relevant. Two of them deserve special mention. First, the recently published IPS-E that has
been validated in nine external cohorts and only requires two clinical variables and one
molecular (IGHV mutation status) for its implementation. Authors of this work concluded
that the simplicity of this score might facilitate its translation to the clinic, although this
requires knowledge of the IGHV mutation status since diagnosis [109]. Second, the innova-
tive European Research Initiative on CLL (ERIC) “tailored approach” score that separates
M-CLL and U-CLL and elaborates two different scores for each subset of patients. In this
case, translation to the clinic will be more difficult, since it includes biomarkers not widely
available such as SF3B1 mutation or stereotyped subsets [143].

Table 2. Selection of prognostic models validated to predict time to first treatment.

Model Population Stage Biomarkers Risk Groups Validation

MDAC
2011 [141]

Retrospective
single-center cohort All

IGHV ms
Diameter of largest palpable LN

FISH (11q/17p Vs none)
N involved LN sites

LDH
IGHV-LDH interaction

Nomogram 1 external

O-CLL1
2016 [142]

Prospective
multicenter cohort Binet A

IGHV ms
Rai stage

ALC
B2M

3 3 external

CLL-IPI
2016 [145]

8 Ph3 multicenter
clinical trials All

IGHV ms
TP53 status

B2M
Clinical stage

Age

3 9 external

Barcelona-Brno
2017 [140]

Retrospective
single-center cohort All (83% Binet A) IGHV ms

del(17p)/del(11q) 3 7 external

Tailored approach
2019 [143]

Retrospective
multicenter cohort Binet A

M-CLL: TP53 abn; +12; subset #2 2 2 external
U-CLL: TP53 abn; del(11q);

gender 3

IPS-E
2020 [109]

Multicenter
retrospective cohort Binet A

IGHV ms
ALC > 15 × 109/L

Palpable LN
3 9 external

CLL-1 PM
2020 [144] Ph 3 clinical trial Binet A

IGHV ms
del(11q)
del(17p)

B2M
LDT < 12 m

Age

4 No

IGHV ms = IGHV mutation status; LN = lymph node; N = number; ALC = absolute lymphocyte count; B2M = beta-2-microglobuline;
+12 = trisomy 12; TP53abn = TP53 abnormalities; m = months; LDT = lymphocyte doubling time.
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Our group recently published data comparing the accuracy of five scores (IPS-E,
CLL-01, CLL-IPI, Barcelona-Brno and tailored approach) in a multicentric cohort of Binet
A patients. We found that the most accurate score in predicting TTFT was IPS-E with a
low concordance between the different models. In addition, none of the models was able
to predict the clinical course of the disease with absolute accuracy, as one quarter of the
patients could have been assigned to an incorrect risk group with any of the PIs used,
underscoring that models cannot totally replace clinical expertise [146].

4.2. Oranges: Scoring Systems That Predict OS for Patients Treated with New Targeted Agents

As previously stated, a recent meta-analysis revealed that despite the high amount of
published prognostic models, only six had been externally validated for OS and all of them
were tested for patients treated with CIT. The popular CLL-IPI was the model with the best
discrimination power [138]. The CLL-IPI scores the highest values to TP53 abnormalities
(4 points), B2M and U-CLL (2 points each). Given that Tas improve the poor prognosis
provided by TP53a and U-CLL, it is not surprising that CLL-IPI decreases its accuracy
for patients treated with these drugs. A retrospective cohort analysis of 326 frontline-
ibrutinib–treated patients could analyze the CLL-IPI on 79 and found that it did not predict
12 month PFS [147]. The prognostic utility of the CLL-IPI has also been addressed in a
cohort of R/R patients treated with idelalisib-rituximab in the context of phase 3 trials [148].
Most patients (~85%) were assigned to the high or very high risk subgroups and the
discriminatory value of the CLL-IPI was less robust (C-statistic 0.6) than in its original
publication and subsequent validation studies and meta-analyses (C-statistic 0.72). Thus,
the authors proposed a modified version of the CLL-IPI, assigning only 1 point to each
adverse factor and modifying the cut-off of clinical stage. An external validation study
showed that this modified version of the CLL-IPI failed to provide prognostic information
in a cohort of patients from real life treated with ibrutinib [149]. Molica et al. performed a
systematic review that analyzed published studies that had applied the CLL-IPI to patients
treated with CIT or Tas. They grouped data from the two studies previously commented
and, not surprisingly, concluded that the utility of the CLL-IPI remains uncertain for
patients treated with Tas [39].

Therefore, the “old” scores do not seem to be valid for patients receiving Tas. To cover
this gap, novel prognostic models built with data from individuals treated with Tas have
emerged. Table 3 compares and summarizes the principal characteristics of these models.

Table 3. Description of the published prognostic scores developed to predict outcomes for patients treated with targeted agents.

Characteristics BALL [40] NIH (Ahn et al.) [41] Simplified PI [150] SRSI [151]

N 2475 720 346 541

Study
Retrospective multicenter

pool cohort from randomized
trials

Retrospective pooled cohort
from randomized trials

Retrospective multicenter
cohort from academic

medical centers

Retrospective multicenter
working group, real

life patients

Treatment

Ibrutinib
Idelalisib

Venetoclax
CIT

Ibrutinib Ibrutinib Ibrutinib

Population R/R TN and R/R TN and R/R R/R

Validation cohorts 1 internal
4 external

1 internal
1 external No 1 internal

1 external

Scores

B2M ≥ 5→ 1p
LDH> ULN→ 1p

Hb < 11F/12M→ 1p
TILT < 24 m→ 1p

B2M ≥ 5→ 1p
LDH > 250U/L→ 1p

TP53ab→ 1p
Prior treatment→ 1p

Age ≥ 70→ 1p
R/R→ 1p

ECOG ≥ 1→ 1p

B2M ≥ 5→ 1p
LDH > ULT→ 1p

Hb < 11F/12M→ 2p

Groups Low (0–1) Low (0–1) Low (0–1) Low (0)
Intermediate (2–3) Intermediate (2) Intermediate (2) Intermediate (1–3)

High (4) High (3–4) High (3) High (4–5)
Prediction OS PFS and OS PFS and OS OS

Accuracy CS = 0.79 (OS) CS = 0.69 (PFS) AUC = 0.6 (PFS)
AUC = 0.66 (OS) CS = 0.71 (OS)

Other
BTK and PLG2 mutations

detected more frequently in
the high risk group

NIH = National Institutes of Health; Simplified PI = simplified prognostic index; SRSI = survival risk score ibrutinib; N = number;
R/R = relapsed/refractory; TN = treatment naïve; B2M = beta2microglobulin; ULN = upper normal limit; Hb = hemoglobin; F = female;
M = male; TP53ab = TP53abnormalities; TILT = time from initiation of last therapy; ECOG = Eastern Cooperative Oncology Group;
CS = C-statistic; AUC = area under the curve.
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Briefly, the BALL and the NIH (Ahn et al.) scores were generated with clinical trial
data, while the simplified PI and the SRS were generated with real life data. The NIH
and the “simplified score” are suitable for the frontline and R/R settings. However, the
“simplified score” has not been validated in other cohorts. The BALL score included
patients with all type of Tas and CIT, while the other scores were applied to ibrutinib-
treated-patients. The NIH score was able to assign most patients that generated secondary
BTK and PLCG2 acquired mutations to the high risk group. Very recently, the BALL and
the NIH (Ahn et al.) models were validated in another external study and at the same time
compared to the CLL-IPI model. The discriminatory ability of the two scores was better
than that of CLL-IPI. The BALL score had the best discriminatory capacity with respect to
OS and the NIH score with the PFS prediction. The NIH score was the only model that
provided a good prediction of both PFS and OS [152].

Interestingly, all these models used parameters related to bone marrow reserve and
tumor burden, widely available worldwide, which a priori suggest that its introduction
into clinical practice should be easy and straightforward. The only genetic data included
in one score is TP53 mutation, which agrees with what was previously stated about the
loss of the prognostic and predictive value of many other genetic factors such as IGHV
mutation status or del(11q) with the arrival of Tas. However, further work is needed to
explore the relevance of including novel biomarkers such as complex karyotype, uMRD
and recurrent or acquired mutations in the context of new scores. Recently, a promising
dynamic score named Continuous Individualized Risk Index (CIRI) has been published
and applied to patients with diffuse large B cell lymphoma, CLL and breast cancer. It
has been developed with the aim of predicting a personalized probability of PFS and OS
over time, considering the response to treatment as a feature. In CLL (CIRI-CLL), it has
been built with variables such as the CLL-IPI, MRD or the choice of therapy. Furthermore,
CIRI-CLL has demonstrated to provide superior outcome prediction to current prognostic
indices (CLL-IPI) with a better C-statistic value in patients treated with CIT [153].

Other challenges include determining which is the most accurate score and whether
in real life they can help the clinicians select high-risk patients who will benefit from novel
treatments/combinations. Probably, new technology such as machine learning will be
crucial to solve all these challenges. Machine learning is able to evaluate in a non-linearity
and a more complex way data from different variables. In addition, artificial technology
algorithms can deal with missing data form retrospective studies form the real-world
setting to improve the precision of the models [154]. Nevertheless, clinical expertise and
medical judgement should be complemented and not be replaced by models [20].

5. Conclusions

Predicting the outcome of CLL is an important and dynamic field of research that
evolves in parallel with biological and therapeutic advances. From the patient´s perspec-
tive, it provides information that can help with personal planning. It also guides clinicians
toward the best therapeutic option and is an important step in personalized medicine.
Novel targeted agents have changed treatment algorithms in CLL and, consequently, the
role of predictive biomarkers has been questioned. Herein, we provided a critical view
of the currently most controversial issues regarding the value of prognostic and predic-
tive biomarkers as well as prognostic models for patients with CLL treated with Tas. In
summary, prognostic factors from the CIT era remain valid for predicting time to first
treatment, being the most important FISH abnormalities, IGHV mutational status, TP53
abnormalities and CD49d. Achieving uMRD after treatment is an important survival
biomarker for venetoclax-based regimens but not for BTKi or PI3Ki. The few predictive
biomarkers validated in the CIT era do not behave the same way right now. For instance,
if an old patient is going to be treated with Tas, IGHV mutational status will no longer
be a predictive biomarker for treatment election. On the other hand, the classic del(11q)
might be a biomarker of better response to Tas. TP53 abnormalities seem to ameliorate
but not mitigate the poor outcome that they provide when patients receive Tas instead of
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CIT. CK may be the most controversial biomarker in the setting of Tas providing better
outcome when it is detected in treatment-naïve than in the R/R patients. Acquired BTK
and BCL-2 mutations are good candidates to be used as biomarkers for treatment failure.
The predictive value of other biomarkers like NOTCH1 mutations needs further studies.
Concerning prognostic models, the accuracy of the classic systems such as the CLL-IPI has
been reduced for patients undergoing Tas. Thus, new models such as the BALL and the
NIH (Ahn et al.) have been proposed to predict outcome for patients receiving novel agents.
For patients with early stage CLL, other scores have also been published, highlighting
the IPS-E prognostic model, easily applicable and widely validated. However, all the
prognostic models need to be complemented with clinical expertise.

In conclusion, despite that we are moving in the right direction, there is still scope
for improvement in CLL prognostication. Some biomarkers are already extinct but surely
new ones will appear and others will evolve to be incorporated in the changing landscape
of CLL.
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