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Simple Summary: Zucchini yellow mosaic virus (ZYMV) is one of the most prevalent plant viruses
and represents a great challenge for crop production sustainability and human food supplementa-
tion. Conventional approaches to disease control depend on the heavy application of hazardous
chemicals, which implies severe environmental, animal, and human health challenges. Using natural
and microbial products represents a promising tool for sustainable and eco-friendly agricultural
applications. The foliar application of the rhizobacteria Paenibacillus polymyxa strain SZYM revealed
significant enhancements in squash growth parameters and enzyme production when compared
to the non-treated plants. On the other hand, there was also a significant decrease in ZYMV accu-
mulation, accompanied with a significant increase in the transcriptional levels of defense-related
genes on plants inoculated with P. polymyxa. Additionally, a significant decrease in non-enzymatic
oxidative stress markers was observed, as well as a considerable increase in reactive oxygen species
scavenging enzymes. The present study showed that the P. polymyxa strain SZYM could be considered
a promising rhizobacterium for enhancing plant growth and defense, and consequently a possible
biocontrol agent of plant viral infections.

Abstract: The use of microbial products as natural biocontrol agents to increase a plant’s systemic
resistance to viral infections is a promising way to make agriculture more sustainable and less harmful
to the environment. The rhizobacterium Paenibacillus polymyxa has been shown to have strong
biocontrol action against plant diseases, but its antiviral activity has been little investigated. Here, the
efficiency of the culture filtrate of the P. polymyxa strain SZYM (Acc# ON149452) to protect squash
(Cucurbita pepo L.) plants against a Zucchini yellow mosaic virus (ZYMV, Acc# ON159933) infection was
evaluated. Under greenhouse conditions, the foliar application of the culture filtrate of SZYM either
in protective or curative treatment conditions enhanced squash growth, reduced disease severity,
and decreased ZYMV accumulation levels in the treated plants when compared to the non-treated
plants. The protective treatment group exhibited the highest inhibitory effect (80%), with significant
increases in their total soluble carbohydrates, total soluble protein content, ascorbic acid content,
and free radical scavenging activity. Furthermore, a considerable increase in the activities of reactive
oxygen species scavenging enzymes (superoxide dismutase, polyphenol oxidase, and peroxidase)
were also found. In addition, the induction of systemic resistance with a significant elevation in the
transcriptional levels of polyphenolic pathway genes (CHS, PAL, and C3H) and pathogenesis-related
genes (PR-1 and PR-3) was observed. Out of the 14 detected compounds in the GC–MS analysis,

Biology 2022, 11, 1150. https://doi.org/10.3390/biology11081150 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology11081150
https://doi.org/10.3390/biology11081150
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-8078-3265
https://orcid.org/0000-0003-2211-7907
https://doi.org/10.3390/biology11081150
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology11081150?type=check_update&version=2


Biology 2022, 11, 1150 2 of 21

propanoic acid, benzenedicarboxylic acid, tetradecanoic acid, and their derivatives, as well as pyrrolo
[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) were the primary ingredient compounds in
the ethyl acetate extract of the SZYM-culture filtrate. Such compounds may act as elicitor molecules
that induce systemic resistance against viral infection. Consequently, P. polymyxa can be considered a
powerful plant growth-promoting bacterium (PGPB) in agricultural applications as well as a source
of bioactive compounds for sustainable disease management. As far as we know, this is the first time
that P. polymyxa has been shown to fight viruses in plants.

Keywords: Zucchini yellow mosaic virus; Paenibacillus polymyxa; squash; antiviral; oxidative stress;
antioxidative enzymes; gene expression; GC–MS

1. Introduction

Crop losses due to plant diseases are a global threat to human food security and
welfare. Food availability and quality should be accounted for among the major scientists’
priorities with the growing world population [1]. The viral infections could develop into
severe plant problems with significant crop losses among plant pathogens. The Zucchini
yellow mosaic virus (ZYMV) is a single-stranded RNA virus in the family Potyviridae. It
affects most cucurbit crops, such as pumpkin, cucumber, squash, rockmelon, watermelon,
and zucchini, causing crop losses of up to 100% when it infects plants before flowering [2–4].
Infected plants show a severe leaf mosaic, yellowing blistering, and reduced leaf size, while
mottled and twisted areas with uneven coloring are the common infection symptoms in
fruits [5,6]. The virus is spread by aphids, which makes it harder to stop the spread of the
infection [7].

Squash has a very high nutritional content with a lower glycemic index. Though squash
fruits are high in vitamins (vitamins B, C, and A), minerals (especially K+), flavonoids, and
phenolic compounds, their glycemic index is very low, which encourages their consumption
worldwide, particularly in Europe and the Mediterranean regions [8,9]. In addition to
the numerous health benefits of squash fruit consumption, several studies have reported
the potential antioxidant, anticancer, and antidiabetic applications of squash fruits and
flowers [9–11]. Considering the high economic importance of squash crops [12,13], ex-
tensive efforts have been directed to ZYMV control through cross-protection [14] and
developing new resistant squash species [15]. However, the ZYMV remains a serious plant
challenge worldwide. Plant viruses find a way to evade and overcome the plants’ resistance
mechanisms. Furthermore, heavy agrochemical applications to control pathogens involves
important environmental issues.

Plant diseases can be controlled through physical, chemical, and biological approaches.
Currently, biological control through plant growth-promoting bacteria (PGPB) represents
an economically valuable and eco-friendly solution for controlling and alleviating the
consequences of viral infection [16,17]. The PGPB could directly increase the nutrient
availability for plant nutrition and improve plant growth and/or stimulate the plants to
produce diverse protective phytochemicals against viral challenges [18,19]. Plant infections
usually trigger the innate immune system cascade to improve plant resistance. This plant
immunity cascade is mediated by two signaling phytochemicals: salicylic acid (SA) and
jasmonic acid (JA), according to the infection type and severity. SA regulates the plants
systemic acquired resistance (SAR) that includes cell-wall fortification and antioxidant
enzyme accumulation in addition to the overexpression of several pathogenesis-related
(PR) proteins [20–22].

Paenibacillus spp. are Gram-positive/negative, rod-shaped, endospore-producing,
facultative anaerobic bacteria that were reclassified from Bacillus in 1993 [23,24]. The
biocontrol potential of the Paenibacillus species has been documented in numerous articles,
and recently, Paenibacillus polymyxa (P. polymyxa) was identified as a biocontrol agent
against a wide variety of pathogenic bacteria, nematodes, oomycetes, and fungi [25,26].
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However, its antiviral activity is still under investigation. The current study evaluates
the protective and curative activities of the foliar application of the P. polymyxa strain
SZYM-culture filtrate (SZYM-CF) against ZYMV infection in squash plants. SZYM-CF
was also studied for its effects on plant growth parameters, total soluble carbohydrates
(TSC), total soluble proteins (TSP), ascorbic acid (AsA), diphenyl-1-picrylhydrazyl (DPPH),
superoxide dismutase (SOD), polyphenol oxidase (PPO), and peroxidase (POX). In addition,
the levels of transcription of three pathogenesis-related genes (PR-1, PR-2, and PR-3) and
three polyphenolic genes (Phenylalanine Ammonia-Lyase (PAL), Chalcone Synthase (CHS),
and p-coumarate 3-hydroxylase (C3H)), as well as the ZYMV accumulation level were
evaluated. Furthermore, gas chromatography–mass spectrometry (GC–MS) analysis was
used to investigate the bioactive constituents of SZYM-CF.

2. Materials and Methods
2.1. Virus Isolation, Identification, and Molecular Characterization

In 2021, squash (Cucurbita pepo L.) leaves showing ZYMV-like symptoms such as a mo-
saic, yellowing, and leaf deformation were collected from an open field in Alexandria gover-
norate, Egypt. As previously described, the samples were tested for the presence of a ZYMV
infection using a complete double antibody-sandwich enzyme-linked immunosorbent assay
(DAS-ELISA) kit (DSMZ, RT-0234, Germany) [27]. Squash leaves of DAS-ELISA-positive
samples were mechanically inoculated onto Chenopodium amaranticolor (Ch. Amaranticolor)
leaves to develop chlorotic local lesion symptoms [28]. The developed single local lesion
at 6 days post-ZYMV inoculation (dpi) was subsequently employed as a source for the
ZYMV. The ZYMV isolate was maintained on the squash plants by mechanical inoculation
under an insect-proof greenhouse. According to the manufacturer’s instructions, a Plant
Virus RNA Kit PVR050 (Geneaid Biotech Ltd., New Taipei City, Taiwan) was used to extract
viral RNA from the squash plants. The cDNA was generated from 1 µg of RNA using the
Maxima Reverse Transcriptase kit (Thermo Fisher Scientific, Waltham, MA, USA). PCR re-
actions were carried out with 2 µL of generated cDNA and ZYMV-CP gene-specific primers
(Table 1) as previously described [29]. The PCR products were separated on 1.5% agarose
gel electrophoresis, stained with ethidium bromide, analyzed using a gel documentation
system, purified using a PCR clean-up column kit, and sequenced using an ABI PRISM
model 310 DNA sequencer. NCBI-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was
used to compare the annotated nucleotide sequences to the sequences of previously re-
ported ZYMV isolates. The sequences were then deposited in the GenBank and given an
accession number.

Table 1. Nucleotide sequences of primers used in this study.

Target Gene Primer Name Direction Nucleotide Sequence (5′ to 3′)

Zucchini yellow mosaic virus-coat protein ZYMV-CP
Forward GGACAGTGCGACTATAGCTTCAA

Reverse TTTAACCGCGAATTGCGTATC

16S ribosomal RNA 16S rRNA
Forward AGAGTTTGATCCTGGCTCAG

GGTTACCTTGTTACGACTTReverse

Pathogenesis related protein-1 PR-1
Forward CCAAGACTATCTTGCGGTTC

Reverse GAACCTAAGCCACGATACCA

Endoglucanase PR-2
Forward TCAATTATCAAAACTTGTTC

Reverse AACCGGTCTCGGATACAAC

Chitinase PR-3
Forward GGAGGAGTTCTTCAACGGCA

Reverse ACGATTGGAGGGCTTCAAGG

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 1. Cont.

Target Gene Primer Name Direction Nucleotide Sequence (5′ to 3′)

Phenylalanine Ammonia-Lyase PAL
Forward ATGGAGGCAACTTCCAAGGA

Reverse CCATGGCAATCTCAGCACCT

Chalcone Synthase CHS
Forward CACCGTGGAGGAGTATCGTAAGGC

Reverse TGATCAACACAGTTGGAAGGCG

p-coumarate 3-hydroxylase C3H
Forward TTGGTGGCTACGACATTCCTAAGG

Reverse GGTCTGAACTCCAATGGGTTATTCC

Elongation factor 1-alpha EF1a
Forward ATTCGAGAAGGAAGCTGCTG

Reverse TTGGTGGTCTAAACTTCCAC

2.2. Bacterial Isolation, Characterization, and Molecular Identification

As previously described [22], the bacterial isolates were isolated and purified from
the rhizosphere soil of the healthy squash plants growing in the Egyptian governorate
of Alexandria. Briefly, after removing 3 cm of the soil surface, five soil samples were
obtained from 5 to 15 cm at a root depth. Each sample (10 g) was made up of five 2 g
samples taken from five rhizospheres of different squash plants growing in the same place.
Each sample (10 g) was then agitated in 100 mL of a 0.9% NaCl solution for 30 min. On
duplicate nutrient agar plates, 100 µL of each dilution (1 × 10−4, 1 × 10−5, and 1 × 10−6)
was streaked aseptically and was incubated at 30 ◦C for 24 h. Different purified colonies
were cultured separately in nutrient broth media for 48 h at 30 ◦C with 200 rpm shaking.
After centrifugation (10 min, 13,000× g), the supernatant was collected and filtered with
a 0.45 m syringe filter to produce bacterial culture filtrate (CF). The antiviral activity of
the bacterial CF was examined on Ch. Amaranticolor plants using the half-leaf method [30].
Based on the percentage of inhibition in relation to the number of local lesions, the isolate
with the highest effective antiviral activity was subjected to molecular identification and
was chosen for further experiments. First, the bacterial isolate was cultivated in a nutrient
broth medium under shaking for 24 h. Then, the total DNA was obtained from the cell
pellet using a DNA purification kit (Wizard DNA kit, Promega, WI, USA). The genomic
DNA was used as a template for 16S rRNA PCR amplification using 16S rRNA universal
primers (Table 1) [31]. The resultant 16S rRNA PCR amplicon was electrophoresed in
agarose gel, purified using the QIAquick PCR purification kit (Qiagen, Hilden, Germany)
and sequenced. The resultant sequence was aligned using CLUSTALW (1.82) and was
compared to the sequences in the GenBank database (http://www.ncbi.nlm.nih.gov). The
MEGA 11 program was used to create the phylogenetic tree, which was based on the
Bootstrap neighbor-joining tree from the CLUSTALW alignment [32].

2.3. Greenhouse Experimental Design

Virus-free seeds of squash (Cucurbita pepo L.) plants, cultivar Eskandarani, were pro-
vided by the Agriculture Research Center, Egypt. Under greenhouse-controlled conditions
of 28 ◦C/16 ◦C (day/night) with a relative humidity of 70%, the squash seeds were grown
in plastic pots (20 cm in diameter). Each pot was filled with 3 kg of mixed sand and clay (1:1)
that had been autoclaved before use. On the 15th day after sowing, the size of the plants
was carefully monitored to ensure that they were as uniform as possible. The true upper
leaves of each plant were dusted with carborundum (600 mesh) and were mechanically
inoculated with the ZYMV, using a sodium phosphate buffer (10 mM, pH 7.2) with 0.1%
sodium sulfite [33]. The experiment was divided into four groups; each group comprised
five replicates. The first treatment group (the mock treatment group) was a group of squash
plants that were foliar sprayed with a sterile nutrient broth and mocked with a viral inoc-
ulation buffer. The second treatment group (the infected treatment group) was the plant
group mechanically inoculated with the ZYMV with foliar spraying of a sterile nutrient

http://www.ncbi.nlm.nih.gov
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broth. The third treatment group (the protective treatment group) was a ZYMV-inoculated
plant group sprayed with bacterial CF 24 h before viral inoculation. The fourth treatment
group (the curative treatment group) was the ZYMV-inoculated plant group treated by the
foliar spraying of bacterial CF 24 h after viral infection. The foliar spray was applied to the
complete plant shoots using a hand-held pressure sprayer until drainage occurred and the
CF appeared to be coated on the leaves. All the plant groups were maintained for 3 weeks
under greenhouse conditions and were monitored daily for symptom development. The
squash plants from each group were harvested at 21 days post-ZYMV inoculation (dpi),
rinsed several times with water, and assessed for fresh and dry weights (g). For further
analysis, the independent biological replicate of each treatment was a pool of 6 squash
leaves collected from the 3 plants (2 leaves/plant) in each pot. For an accurate evaluation,
each biological replicate was subjected to three separate technical replications. The ZYMV
accumulation level was determined using the DAS-ELISA Complete kit. An ELISA was
performed on all treatment squash groups to check for systemic viral movement. The opti-
cal densities (Ods) were measured at 405 nm with a thermo microplate reader (Multiskan
ascent, USA). Absorbance values higher than twice the level of the reactivity of the healthy
controls were considered positive for a ZYMV infection. The viral inhibition rate [34] was
calculated using the following formula

Viral inhibition rate (%) =
C− T

C
× 100

where “C” represents the mean average A405 value of the infected treatment group and “T”
represents the average A405 value of each treatment (protective and curative) plant group.

2.4. Evaluation of the Total Soluble Carbohydrates and Proteins

The total soluble carbohydrate (TSC) was evaluated in squash plant groups through the
anthrone method as described by Islam et al. [35]. Firstly, squash leaves were homogenized
in 95% ethanol in a solid: liquid ratio of 1: 20. After precipitation (at 8000 g for 10 min),
100 µL was added to 1 mL of the anthrone solution (200 mg of anthrone in 100 mL of
concentrated H2SO4) and was incubated in a boiling water bath (100 ◦C) for 10 min.
After cooling for 1 h, the reaction absorbance was measured at 625 nm, where the total
soluble carbohydrate (mg/g dry weight) was calculated through a standard glucose curve.
Furthermore, the total soluble proteins were evaluated in all groups through the Bradford
method using a standard curve of bovine serum albumin [36].

2.5. Evaluation of Ascorbic Acid Content

Ascorbic acid (AsA) accumulation in the squash plant groups was evaluated through
Na-molybdate according to Oser and Hawk [37]. Fresh squash leaf samples were ho-
mogenized in sulfosalicylic acid (a solid: liquid ratio of 1: 5). The homogenate was then
centrifuged at 13,000× g for 15 min. Clear leaves extract (1 mL) was added to 5 mL of the
freshly prepared reaction mixture containing 2% Na-molybdate, 0.15 N H2SO4, and 1.5 mM
Na2HPO4 (2:2:1 v/v). After incubation at 60 ◦C for 40 min, the reaction absorbance was
measured at 660 nm, where the AsA contents (mg/g FM) were deducted from a standard
curve of AsA.

2.6. Free Radical Scavenging Activity Evaluation

The free radical scavenging activity was evaluated in different squash plant groups
under the ZYMV challenge according to Shimada et al. [38] as follows: 100 µL of plant
leaves extract (in a phosphate buffer of pH 7.0) was added to 2 mL of 2,2-Diphenyl-1-
picrylhydrazyl (DPPH, 0.05 M in methanol). The color reduction was determined for
30 min at 517 nm and was expressed as the scavenging activity (%) according to the
following equation: free radical scavenging (%) = (AI – A30/AI) × 100, where AI is the
initial reaction absorbance and A30 is the reaction absorbance after 30 min.
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2.7. Antioxidant Enzyme Assays

To elucidate the antioxidant potential of the squash plants under the ZYMV challenge,
leave samples were collected from all treatment groups (4 groups) and were assessed for
three antioxidant enzyme activities, including superoxide dismutase, polyphenol oxidase,
and peroxidase. The leave samples were dried and homogenized in a 0.1 M phosphate
buffer (pH 7.0), Na-EDTA (100 mM), and polyvinylpyrrolidone (1% w/v) with a final
solid to liquid ratio of 1:4. The resulting homogenate was then centrifuged (5000 rpm)
for 10 min. The clear supernatant was used as a source for different enzymes. First, the
superoxide dismutase (SOD) activity was evaluated through a photocatalytic reduction
approach using nitro blue tetrazolium (NBT) chloride as described by Beauchamp and
Fridovich [39] with some modifications as follows: 100 µL of plant extract was added
to a mixture of 75 µM NBT, 13 mM methionine, 0.05 mM EDTA, and 20 µM riboflavin.
The final reaction volume was adjusted to 1.5 mL with a potassium phosphate buffer
(pH 7.8). Two fluorescent lamps (15-W) were used to initiate the photochemical reaction
and the mixture was incubated at 25 ◦C for 15 min. The reduction in the mixture color was
determined at 560 nm, where one unit of SOD activity was defined as a 50% reduction in
NBT color. Additionally, the polyphenol oxidase (PPO) activity was evaluated through
the quinone method according to CHO and AHN [40] as follows: 0.5 mL of plant extract
was added to 1 mL of 50 mM quinone with a pH 6.0 (prepared in 100 mM Tris-HCl) and
was incubated for 10 min at 25 ◦C. At the reaction conditions, the developed color was
measured at 420 nm, increasing the absorbance with a 0.001 value representing one unit
of the enzyme activity (µM/g of fresh weight). Finally, the peroxidase (POX) activity was
determined using guaiacol and hydrogen peroxide as described in Angelini et al. [41]. The
assay reaction (1.2 mL) contained: 80 µL of plant extract, 0.5 mL of guaiacol (5 mM), and
120 µL of hydrogen peroxide (1 mM). The final volume was adjusted with a phosphate
buffer (100 mM, pH 7.0) and was incubated at 30 ◦C for 10 min. The developed color was
measured at 480 nm and was related to POX activity using a guaiacol extinction coefficient
of ε = 26,600 M−1 cm−1.

2.8. The Effect of Foliar CF Application on Squash Plant Gene Expression under ZYMV Challenge

The relative expression levels of three pathogenesis-related genes (PR-1, PR-2, and
PR-3) and three polyphenolic genes (PAL, CHS, and C3H) were evaluated through qRT-PCR
as previously described [42,43]. Firstly, the total plant RNA was extracted from leaf samples
using the RNeasy plant mini kit (QIAGEN, Germany) according to the manufacturer’s
instructions and was quantified by the NanoDrop UV spectrophotometer (Labtech Interna-
tional Ltd., Sussex, UK). The purified RNA was used as a template for cDNA synthesis as
follows: the DNase I-treated RNA (2 µg) of each sample was reverse transcribed to cDNA
using oligo (dT) and random hexamer primers, together with the reverse transcriptase
enzyme of Super-Script II (Invitrogen, Waltham, MA, USA), as described previously [22,44].
The cDNA was used as a template for qRT-PCR, using sets of different primers (Table 1),
having the EF1a gene (housekeeping gene) as a reference to normalize the transcription
levels. The qPCR reaction was conducted according to the manufacturer’s instructions of
the SYBR Green PCR Master Mix (Fermentas, USA) on the Rotor-Gene 6000 (QIAGEN, ABI
System, USA). The relative expression ratio was accurately quantified and calculated ac-
cording to the 2−∆∆Ct algorithm [45]. A transcriptional value of > 1 indicates transcriptional
up-regulation and values <1 indicate down-regulation.

2.9. Identification of CF Bioactive Compounds through Gas Chromatography–Mass
Spectrometry (GC–MS)

The bacterial culture filtrate was subjected to GC–MS analysis to elucidate the bioactive
compounds behind the antiviral and growth promotion activities. First, the CF was mixed
with ethyl acetate in a ratio of 1:1 and was incubated for 20 min under vigorous orbital
shaking (200 rpm). The aqueous layer was retrieved and dried under a reduced vacuum.
The dried extract was analyzed through GC–MS (TRACE 1300 Series, Thermo, Waltham,
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MA, USA), using a mass detector in split mode. Helium gas was used as a carrier (flow
rate of 1 mL/min). The injector temperature was 250 ◦C, while the oven temperature was
60–250 ◦C for 20 min, with a scanning duration of 0.2 s and a range of 50–650 amu. The CF
mass spectra were discovered through comparison to the GC–MS library’s built-in data
after 53 min of running time at 70 eV.

2.10. Statistical Analysis

The statistical significance of the results was evaluated using GraphPad Prism software
using an analysis of variance (ANOVA) at a probability value (p-Value) ≤ 0.05. The results
represented in the current study are the means (M) of the triplicate experiments with
standard deviation (SD) from the means represented as M±SD in tables and error bars in
histograms. Statistical significance was indicated with letters in descending order where
(a > b > c). Equal statistical significance was indicated with the same letters.

3. Results and Discussion
3.1. Virus Isolation and Identification

Almost 94% of the collected squash samples were found to be positive of a ZYMV
infection with the DAS-ELISA method. The ZYMV-infected plants exhibited a systemically
mild to severe mosaic and squash leaf distortion symptoms, all resembling those of ZYMV
infections previously reported [46,47]. A nucleotides sequence analysis of the ZYMV-coat
protein (380 bp) showed that our ZYMV isolate (ZSA1) shared 99% of its identity with the
other homologues reported in the GenBank, especially with the Australian isolate ZYMV
Q2542 (Acc # MN422077); these data were further confirmed by the phylogenetic analysis
conducted in this study (Figure 1). The sequence of the ZYMV ZSA1 isolate was deposited
in the Genbank under the accession number ON159933.

Figure 1. A neighbor-joining phylogenetic tree was constructed based on the nucleotides sequences of
Zucchini yellow mosaic virus isolate obtained in this study (ZSA1) and those reported in the GenBank.
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3.2. Bacterial Isolation and Identification

Normal rhizosphere microbiota impact plant growth and disease resistance in both
direct and indirect ways [48]. Soil from the rhizosphere of squash plants was tested to find
biocontrol agents against ZYMV infection. About thirty morphologically diverse colonies
were purified and tested for antiviral activity. The bacterial isolate coded SZYM that
showed the greatest antiviral activity was selected and subjected to molecular identification.
Paenibacillus spp. recently emerged as a powerful and promising PGPR that can be widely
applied to enhance growth and disease resistance in several important plants [49–51].
According to the NCBI-BLAST analysis, the nucleotide sequence of 16S rRNA of SZYM
(1468 bp) had a similarity of 99% with other P. polymyxa isolates. P. polymyxa is commonly
found in the rhizosphere of several plants. [51]. Based on the sequence homology results, the
bacterial isolate was identified as the P. polymyxa strain SZYM, and the annotated sequence
was deposited in the GenBank under the accession number ON149452. A phylogenetic
tree analysis (Figure 2) showed that SZYM is closely related to other P. polymyxa strains,
especially to those that were isolated from Pakistan (Acc# MT367718, strain MJ4), China
(Acc# HQ844466, strain HLJFQ25), Spain (Acc# MZ456261, strain MRBN15), and Finland
(Acc# JF683620, strain RS-10). This means that SZYM is part of the evolutionary lineage of
P. polymyxa (Figure 2).

Figure 2. Phylogenic relationship of the locally isolated Paenibacillus polymyxa strain SZYM to the
other Bacillus sp., as represented in the Bootstrap neighbor-joining tree.

3.3. Efficacy of SZYM-CF on Symptom Development, Growth Parameters, and Viral
Accumulation Level

Under greenhouse conditions, squash plants mechanically inoculated with the ZYMV
exhibited ZYMV-like symptoms at 13 dpi, and severe mosaic symptoms were clearly visible
at 15 dpi (Figure 3). Intriguingly, the use of SZYM-CF as a protective or curative treatment
caused a delay of roughly five and three days, respectively, in the onset of symptoms. At
16 dpi (Figure 3), mild mosaic symptoms were observed on plants undergoing curative
treatment, but no symptoms were shown on plants undergoing protective treatment. On
mock-treated squash plants, no symptoms were noticed. In line with how the symptoms
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showed up, the protective and curative treatments reduced the severity of the disease
by 23.15 and 35.27%, respectively. In addition, treatment with SZYM-CF significantly
decreased the ZYMV accumulation levels in symptomatic squash leaves. Table 2 shows
that the ZYMV accumulation level assessed by DAS-ELISA was the highest at 1.69 for the
viral treatment, followed by the protective treatment at 0.34 and the curative treatment
at 0.43. The protective activity of SZYM-CF demonstrated encouraging results, with the
strongest inhibitory effect (80%). In addition, the inhibition rate for the curative activity
was about 75%. Consequently, the results showed that SZYM-CF had different ZYMV
infection-inhibiting properties.

Figure 3. Morphological characteristics of squash leaves under ZYMV challenge in different treat-
ments at 16 days post-ZYMV inoculation. Mock: squash plants foliar sprayed with sterile nutrient
broth and mocked with viral inoculation buffer; infected: squash plants mechanically inoculated
with ZYMV with foliar spraying of sterile nutrient broth; protective: squash plants sprayed with
Paenibacillus polymyxa strain SZYM-CF 24 h before ZYMV inoculation; curative: squash plants sprayed
with SZYM-CF 24 h after ZYMV inoculation.

Table 2. The DAS-ELISA values, growth parameters, and total soluble carbohydrates and proteins of
squash plants under ZYMV challenge upon treatment with Paenibacillus polymyxa strain SZYM-CF.
Mock: squash plants foliar sprayed with sterile nutrient broth and mocked with viral inoculation
buffer; infected: squash plants mechanically inoculated with ZYMV with foliar spraying of sterile
nutrient broth; protective: squash plants sprayed with P. polymyxa strain SZYM-CF 24 h before ZYMV
inoculation; curative: squash plants sprayed with SZYM-CF 24 h after ZYMV inoculation.

Treatment DAS-ELISA
Values * Fresh Weight (g) Dry Weight (g)

Total Soluble
Carbohydrates

mg/g DW

Total Soluble
Proteins

mg/g DW

Mock 0.09 ± 0.02 d 8.09 ± 0.52 a 0.975 ± 0.25 a 11.2 ± 0.6 a 2.5 ± 0.2 a

Infected 1.69 ± 0.06 a 5.78 ± 0.45 d 0.630 ± 0.23 d 0.7 ± 0.02 c 1.9 ± 0.01 b

Protective 0.34 ± 0.03 c 6.64 ± 0.36 b 0.863 ± 0.24 b 1.8 ± 0.1 b 2.3 ± 0.4 a

Curative 0.43 ± 0.03 b 6.42 ± 0.39 c 0.775 ± 0.21 c 1.5 ± 0.1 d 2.1 ± 0.1 ab

* Optical density at 405 nm by DAS-ELISA. The mean values of each column with the same letter do not differ
significantly.

The results of the squash growth parameters (Table 2) indicated significant reductions
in the fresh and dry weights upon the ZYMV infection (5.78 ± 0.45 and 0.630 ± 0.23,
respectively) in the infected treatment group compared to the mock plants (8.09 ± 0.52 and
0.975 ± 0.25, respectively) at 21 dpi. This weight reduction represents about 30% to 35% of
both the fresh and dry weights. Plant size reduction and stunting are among the main infec-
tion symptoms in the ZYMV that contribute to a total weight reduction [5,52]. Compared
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to the infected plants, the application of SZYM-CF significantly increased the fresh weights
(6.64 ± 0.36 and 6.42 ± 0.39 g) by 14% and 11% in the protective and curative treatment
groups, respectively. In the same regard, the squash dry weight was also enhanced in the
protective (0.863 ± 0.24) and curative (0.775 ± 0.21) plants to 37% and 23%, respectively,
compared to the infected plants (0.975 ± 0.25). Though the plant weight enhancement in
the protective and curative treatment groups was significant when compared to the infected
treatment group, the values were lower than those of the mock plants. Additionally, the
protective treatment increased the plant weights more than the curative treatment, showing
how important it is to use SZYM-CF as a preventative measure before an infection for
better growth.

3.4. Effect of SZYM-CF on Total Soluble Carbohydrates and Total Soluble Protein Content

The evaluation of the total soluble carbohydrates and protein contents in all the treat-
ment groups indicated a significant reduction in these parameters in the infected treatment
group to 0.7 ± 0.02 and 1.9 ± 0.01 mg/g DW, which represented about 94% and 24% de-
creases, respectively, in the total carbohydrate and protein contents, compared to the mock
plants. This reduction could be attributed to the leaf size reduction symptoms in ZYMV
infections, which directly affect the photosynthesis process and hence the total carbohy-
drate contents [5]. The foliar application of SZYM-CF enhanced both the carbohydrate
and soluble protein contents in the treated groups, with maximum levels in the protective
treatment group of about 1.8 ± 0.1 and 2.3 ± 0.4, respectively.

3.5. Alternation in Ascorbic acid Content and Free Radical Scavenging Activity

Ascorbic acid (AsA) is a major non-enzymatic antioxidant that plays a key role in
plant growth and defense [53–55]. Though the exact mechanism of AsA in enhancing
plants’ resistance to infection is still unclear, the high level of AsA accumulation with the
oxidative stress reported in several viral infections strongly asserts its importance [56].
In order to evaluate the potential of SZYM-CF to enhance antioxidant phytochemical
accumulation, the AsA level was evaluated in the treated ZYMV-challenged groups com-
pared to the controls, as represented in Figure 4A. The AsA content was greatly reduced
upon viral infection to about 55% (386 ± 19 mg/g FM) compared to the mock group
(834 ± 16.7 mg/g FM). The foliar application of SZYM-CF alleviated the AsA content in
both the protective and curative treatment groups with a significant enhancement in the
protective group to 579 ± 32.3 mg/g FM (a 50% increase) compared to the infected treat-
ment group. However, the measured AsA levels in the treated groups were lower than
that in the mock plants. In addition to the efficient removal of free radical species, AsA
accumulation has been reported to alleviate viral infection symptoms and inhibit RNA
virus replication [57,58].

The ability of the squash plants under the ZYMV challenge to scavenge free radicals
was evaluated based on the DPPH approach. As shown in Figure 4B, the free radical scav-
enging activity was significantly enhanced in the infected treatment group to 63.9 ± 0.4%,
representing about a 1.8-fold increase compared to the non-challenged control (mock,
34.8 ± 2.2%). The enhancement of the free radical removal potential is a part of the plant’s
defense against microbial infection to alleviate the adverse side effects of the surge increase
in oxidative stress [59,60]. In the treated groups, the SZYM-CF foliar application enhanced
the free radical scavenging by approximately two-fold in both the protective (72.6 ± 1.8%)
and curative (69.7 ± 1.3%) groups compared to the mock group. The maximum free radical
scavenging activity in the protective plants (72.6 ± 1.8%) represents about a 14% increase
compared to the infected treatment group.
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Figure 4. Evaluation of ascorbic acid production titer (A) and free radical scavenging activity (B) in
squash plants. Mock: squash plants foliar sprayed with sterile nutrient broth and mocked with
viral inoculation buffer; infected: squash plants mechanically inoculated with ZYMV with foliar
spraying of sterile nutrient broth; protective: squash plants sprayed with P. polymyxa strain SZYM-CF
24 h before ZYMV inoculation; curative: squash plants sprayed with SZYM-CF 24 h after ZYMV
inoculation. The mean values of each column with the same letter do not differ significantly.

3.6. Antioxidant Enzymes Evaluation

High oxidative stress is a hallmark of most plant viral infections; hence, the viral
challenged plant accumulates a high level of several antioxidant enzymes to overcome
the potential adverse effects of reactive oxygen species accumulation [54,60,61]. In the
current study, three antioxidant enzymes were evaluated in squash plants under a ZYMV-
challenge as indicators for oxidative stress. As depicted in Figure 5, the SOD level was
slightly reduced, with about 22% in the infected treatment group (0.09 ± 0.05 µM/g f.wt.)
compared to the mock treatment group (0.11 ± 0.02 µM/g f.wt.). The foliar application of
SZYM-CF increased SOD production in both treatment strategies (protective and curative),
with a maximum production of 0.17± 0.09 µM/g f.wt. in the protective group, representing
55% and 88% increases compared to the mock and infected treatment groups, respectively.
The first step in the detoxification of superoxide species (O2

−) is mainly mediated through
SOD to generate hydrogen peroxide (H2O2) molecules that are subsequently hydrolyzed
with plant catalases or glutathione peroxidase [22,62].

For PPO activity, the results (Figure 5) indicated a slight enhancement (about 14%)
in the PPO level in the infected treatment plants (0.16 ± 0.01 µM/g f.wt.) compared
to the non-challenged plants (0.14 ± 0.01 µM/g f.wt.), which could be attributed to the
first plant response to viral infection. In the treatment groups, the PPO levels were en-
hanced by about 60% and 80% in the protective (0.26 ± 0.02 µM/g f.wt.) and curative
(0.29 ± 0.02 µM/g f.wt.) groups, respectively, compared to the infected treatment group,
which asserts the ability of SZYM-CF to stimulate PPO production in squash plants even
after 24 h of a ZYMV infection. In addition to its role in oxygen buffering during the photo-
synthesis process, PPO′s defensive role in plant tissue was reported [63–65]. PPO mediates
the scavenging of many reactive oxygen species by phenolic compounds, generating lignin
that is deposited as a physical barrier against pathogens [44,66].

Furthermore, the POX activity was also evaluated in the SZYM-CF treatment groups
compared to the controls. POXs comprise a large group of enzymes that participate in many
physiological and defensive processes in plant cells. Under plant infection conditions, class
III POX plays a major role in lignin formation, the enhancement of cell wall cross-linking,
and reactive oxygen metabolism that inhibits pathogen entry and replication [67,68]. The
POX titer revealed no change in the infected plants compared to the mock plants, reporting
about 0.34 ± 0.01 µM/g f.wt. Upon treatment with SZYM-CF, the POX level was signifi-
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cantly enhanced in both treatment groups: the protective group (0.57 ± 0.03 µM/g f.wt.)
and the curative group (0.49 ± 0.05 µM/g f.wt.). The maximum POX production in the
protective group represents about a 68% increase in the enzyme level when compared
to the control, indicating the efficacy for prophylactic SZYM-CF foliar spraying in POX
accumulation. Collectively, the results of the three enzymes′ evaluation reflect the high
potential of SZYM-CF foliar application for alleviating the oxidative stress generated during
a ZYMV infection, mainly through the enzymatic pathway, especially with prophylactic
application before the viral infection.

Figure 5. Evaluation of three antioxidant enzymes, including superoxide dismutase (SOD), polyphe-
nol oxidase (PPO), and peroxidase (POX) in squash plants. Mock: squash plants foliar sprayed with
sterile nutrient broth and mocked with viral inoculation buffer; infected: squash plants mechanically
inoculated with ZYMV with foliar spraying of sterile nutrient broth; protective: squash plants sprayed
with Paenibacillus polymyxa strain SZYM-CF 24 h before ZYMV inoculation; curative: squash plants
sprayed with SZYM-CF 24 h after ZYMV inoculation. The mean values of each column with the same
letter do not differ significantly.

3.7. Effect of SZYM-CF Foliar Application on Polyphenolic Pathway Synthesis Genes′ Expression

The effect of the foliar application of SZYM-CF upon the inoculation of the ZYMV
on squash was evaluated through monitoring the expression levels of several polypheno-
lic/flavonoid synthesis enzymes and pathogenesis-related (PR) proteins. Plant chalcone
synthase (CHS) is a key enzyme that catalyzes the biosynthesis of several flavonoid phy-
toalexins that are involved in plant protection as a part of the salicylic acid (SA) defense
mechanism [69,70]. As indicated in Figure 6A, CHS expression was down regulated by
about 13% in the infected treatment plants, with a relative expression level 0.87-fold lower
than the control. Upon SZYM-CF spraying, CHS expression was enhanced in both treat-
ment groups. The protective treatment increased the transcriptional level by about 55%
and 35% compared to the mock and infected treatment groups, respectively. Phenylalanine
ammonia-lyase (PAL) is a crucial enzyme in salicylic acid biosynthesis that regulates several
plant cell defensive mechanisms under abiotic and biotic stresses [71]. The results shown
in Figure 6A indicated a slight activation of PAL expression in the infected treatment group
with about 32% (1.32 ± 0.12) compared to the control, which could be attributed to the
initial response of the squash plant against the ZYMV infection. Upon treatment with
SZMV-CF, the PAL expression level surged in the protective and curative treatment groups
with about an 8.3- and 6.1-fold increase over that of the mock treatment (Figure 6A) group.
The maximum PAL expression level was 6.3-fold higher than reported in the infected
treatment group, indicating the high potency of SZYM-CF to activate the SA resistance
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pathway through PAL up-regulation. Additionally, the p-coumarate 3-hydroxylase (C3H)
gene was also evaluated in all the plant groups. In the ZYMV-infected group (the infected
treatment group), the C3H expression was down regulated by about 50% compared to
the non-infected plants (the mock treatment group). Interestingly, the treatment with
SZYM-CF significantly enhanced C3H expression by about 3- and 2.2-fold in the protective
(3.05 ± 0.98) and curative (2.17 ± 0.99) treatment groups, respectively. Recent reports
have widely addressed the C3H protein for plant growth regulation and resistance under
many stresses [72,73].

3.8. Effect of Foliar Application of SZYM-CF on Pathogenesis-Related Genes′ Expression

Under different abiotic and/or biotic stresses, plants usually overexpress several
pathogenesis-related (PR) genes that regulate the plants growth and defense to the current
challenge [43,74]. Among others, PR-1, PR-2, and PR-3 are very important in viral infection,
hence they were evaluated in all the treatment groups. As shown in Figure 6B, the ZYMV
infection (in the infected treatment group) activated PR-1 gene expression by 2.3-fold over
that of the non-infected plants (the mock treatment group), which could be attributed to the
initial response of the squash plants to the ZYMV infection. The results are in accordance
with several studies reporting the slight activation of the PR-1 gene in several plants
upon viral infection [43,74,75]. In the SZYM-CF-treated groups, the PR-1 gene expression
was up regulated to 12- and 6.5-fold increases in the protective and curative treatment
groups, respectively, compared to the control. The prophylactic application of SZYM-CF
before viral infection was superior in PR-1 overexpression, reporting about a five-fold
increase compared to the infected treatment group and reflecting that the SA pathway is
the main resistance mechanism in squash plants under the ZYMV challenge. PR-1 is an SA
accumulation marker that regulates systemic acquired resistance (SAR) mechanisms against
plant infections [29]. This could be supported by the high titer of PAL expression in the
SZYM-CF treatment groups as indicated previously (Figure 6A), as PAL is a crucial enzyme
for SA precursor synthesis [71]. Chen and his colleagues reported a significant reduction in
SA accumulation and SA gene markers in Lotus japonicus due to PAL knockdown [76]. The
PR-1 gene is an essential gene in plant defense to biotic and abiotic stresses, in addition to
the regulation of plant growth and development away from stress conditions [21].

The PR-2 gene family includes the β-1,3-glucanases that hydrolyze and modifyβ-glucan,
which is a dominant sugar in plant cells and several invading microbes [77]. The released
β-glucan units signaled the plant resistance state and enhanced the production of plant
phytoalexins as antimicrobial agents [78,79]. Regarding the PR-2, the results indicated a
significant up-regulation of PR-2 gene expression in the infected treatment plants, up to a
4.4-fold increase compared to the control. This overexpression could be attributed to the
callose-hydrolyzing activity reported for β-1,3-glucanases, which facilitates intracellular
viral spreading between adjacent plant cells [80–82]. Treatment with SZYM-CF significantly
down regulated the PR-2 gene expression that peaked in the protective treatment group
(a 1.26-fold increase) compared to the control. The minimum PR-2 level in the protective
treatment group was about 71% lower than that reported in the infected treatment group,
which indicated the ability of prophylactic SZYM-CF spraying to down regulate PR-2
gene expression and hence the ZYMV internal spread. Furthermore, the expression of
the chitinase-encoding gene, PR-3, was significantly reduced in the infected treatment
plants, up to 71% compared to the mock treatment plants. Treatment with SZYM-CF
up regulated the PR-3 gene expression with 3.7- and 1.4-fold increases compared to the
control. PR-3 encoded chitinase activity and its overexpression is a marker for plant
resistance mechanisms mediated through jasmonic acid as a part of induced systemic
resistance [20,83]. The PR-3 role in plant resistance to fungal infection has been widely
reported; however, its role in enhancing plant resistance under a viral challenge is still
indecisive [84,85]. Zhu and his colleagues reported the necessity of the first induction of JA
for SA accumulation in TMV infection, which could explain the reason behind the PR-3
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induction in the ZYMV infection [86]. The results are fully consistent with the increased
chitinase activity reported in several plant viral infections [80,87].

Figure 6. Relative expression levels of three polyphenolics (A) and three pathogenesis-related genes
(B) in squash plants. Mock: squash plants foliar sprayed with sterile nutrient broth and mocked
with viral inoculation buffer; infected: squash plants mechanically inoculated with ZYMV with foliar
spraying of sterile nutrient broth; protective: squash plants sprayed with Paenibacillus polymyxa strain
SZYM-CF 24 h before ZYMV inoculation; curative: squash plants sprayed with SZYM-CF 24 h after
ZYMV inoculation. The mean values of each column with the same letter do not differ significantly.

3.9. Phytochemical Analysis of the SZYM-CF Using GC–MS

The components in the culture filtrate of the SZYM bacterial isolate were subjected to
GC–MS analysis to elucidate the compounds behind the antiviral and growth promotion
activities. The GC–MS analysis (Table 3) revealed 14 different compounds in the SZYM-CF,
including several biologically active aromatic compounds and fatty acids. Figure 7 illus-
trates the chemical structures of the ten most abundant bioactive compounds identified
by GC–MS analysis. Among the detected compounds, two esters, including propanoic
acid, 2-oxo-, ethyl ester and benzenedicarboxylic acid, mono (2-ethylhexyl) ester, were
detected at a retention time (RT) of 3.43 and 23.40, respectively. The two esters previously
revealed diverse biological activities, including antimicrobial, antifungal, antioxidant, and
anti-inflammatory potential [88,89]. Benzenedicarboxylic acid, mono(2-ethylhexyl) ester
from the marine Streptomyces spp. was found to have anticancer activity in vitro against
human breast adenocarcinoma (MCF-7) and hepatocellular liver carcinoma (HepG 2) [90].
Tetradecene and Hexadecene are long-chain hydrocarbons that were also detected in
SZYM-CF at a RT of 11.03 and 12.74, respectively, with reported antimicrobial activities [91].
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Tetradecene revealed several biological activities as reported in the Lentinus squarrosulus
wild mushroom aqueous extract [92] and also reported from different Streptomyces spp. [93].
The GC–MS analysis also revealed the presence of two long-chain alkanes, namely hexade-
cane and tridecane. Hexadecane (RT of 11.09) was previously reported in the crude extract
of Paracoccus pantotrophus FMR19, revealing potent antimicrobial activity against Salmonella
sp., Proteus sp., and Staphylococcus aureus [94], and also revealed antioxidant activity [91].
Tridecane (RT of 12.79) is one of the main components of Bupleurum marginatum oil that
revealed significant anti-inflammatory and anticancer effects [95]. Two long-chain fatty
acids were also detected in SZYM-CF, including tetradecanoic and pentadecanoic acid at a
RT of 14.06 and 15.48. Tetradecanoic acid, also known as myristic acid, is a saturated fatty
acid that was recently proved to have antimicrobial activity through targeting ATP-binding
cassettes in multidrug resistant Bacillus subtilis [96]. Phenol, 2,4-bis(1,1-dimethylethyl)- (RT
of 12.18) was reported from Pseudomonas fluorescens TL-1 that revealed strong antifungal
activity against several phytopathogenic fungi [97] as well as antioxidant activity from
Streptomyces spp. [98]. Furthermore, Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-
methylpropyl)- was detected in CF (RT of 14.75) and is a biologically active antioxidant
isolated from Streptomyces mangrovisoli [99]. The wide range of the biologically active com-
pounds detected in SZYM-CF nominated the P. polymyxa isolate SZYM as a powerful PGPR
in agricultural applications. It may also explain the reasons behind the potent antiviral
activity against the ZYMV reported in the current study; however, further studies are
mandatory to specify the exact agent (s) for such antiviral activity. The current study may
pave the way for future studies concerning the application of P. polymyxa to control other
plant viral infections.

Table 3. The chemical properties of the 14 compounds of ethyl acetate extract of Paenibacillus polymyxa
isolate SZYM culture filtrate using GC–MS analysis.

Peak
No

Retention
Time
(RT)

Compound Name Area Molecular
Formula Molecular Weight

1 3.43 Propanoic acid, 2-oxo-, ethyl ester
(ethyl pyruvate) 1.143.99 C5H8O3 116

2 11.03 1-Tetradecene 253.40 C14H28 196

3 11.09 Hexadecane 460.90 C16H34 226.44

4 11.96 Nonane, 1-iodo- 245.18 C9H19I 254

5 12.18 Phenol, 2,4-bis(1,1-dimethylethyl)- 1.478.91 C14H22O 206

6 12.74 1-Hexadecene 154.66 C16H32 224.42

7 12.79 Tridecane 318.84 CH3(CH2)11CH3 184.37

8 13.69 Nonane, 5-(2-methylpropyl)- 205.97 C13H28 184

9 14.06 Tetradecanoic acid 803.98 CH3(CH2)12COOH 228.37

10 14.75 Pyrrolo [1,2-a]pyrazine-1,4-dione,
hexahydro-3-(2-methylpropyl)- 214.59 C11H18N2O2 210.27

11 15.43 1-Butanamine, N-(1-propylbutylidene)- 610.87 C11H23N 169.31

12 15.48 Pentadecanoic acid 318.68 C15H30O2 242.40

13 15.54 L-Proline, N-valeryl-, heptadecyl ester 994.52 C27H51NO3 437.7

14 23.40 1,2-Benzenedicarboxylic acid,
mono(2-ethylhexyl) ester 31.739.38 C16H22O4 278.34
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Figure 7. Chemical structures of the ten most abundant bioactive compounds detected in the GC–MS
analysis of ethyl acetate extract of culture filtrate of Paenibacillus polymyxa isolate SZYM.

4. Conclusions

Under greenhouse conditions, the foliar application of the culture filtrate of the
P. polymyxa strain SZYM isolated from the squash rhizosphere seems to be a promising
inducer for systemic resistance in squash against ZYMV infections. When compared to
squash plants that were not treated with SZYM-CF, either a preventative or a curative
treatment decreased the severity of the disease by up to 23.15% and increased the inhibition
index by up to 80%. It also helped the plants grow and increased the amount of their
total soluble carbohydrates and total soluble proteins. In addition, the levels of DPPH
and antioxidant enzymes (SOD, PPO, and POX) increased in the presence of SZYM-CF
in the ZYMV-challenged plants. Furthermore, the induction of systemic resistance with
considerable increases in the expression levels of polyphenolic pathway genes (PAL, CHS,
and C3H) and pathogenesis-related genes (PR-1 and PR-3) was also reported. Many active
compounds such as propanoic acid, benzenedicarboxylic acid, tetradecanoic acid, and
pyrrolo [1,2-a] pyrazine-1,4-dione and their derivatives that were detected in the ethyl
acetate extract of SZYM-CF could potentially be used as plant growth promoters, defense
modulatory agents, as well as for the development of plant-derived compounds to protect
plants against viral infections. However, additional studies are needed to confirm these
results under field conditions.
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