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Abstract
Background  The nuclear pore complexes (NPCs) are built of about 30 different nucleoporins and act as key regulators of 
molecular traffic between the cytoplasm and the nucleus for sizeable proteins (> 40 kDa) which must enter the nucleus. 
Various nuclear transport receptors are involved in import and export processes of proteins through the nuclear pores. The 
most prominent nuclear export receptor is chromosome region maintenance 1 (CRM1), also known as exportin 1 (XPO1). 
One of its cargo proteins is the prolyl hydroxylase 2 (PHD2) which is involved in the initiation of the degradation of hypoxia-
inducible factors (HIFs) under normoxia. HIFs are proteins that regulate the cellular adaptation under hypoxic conditions. 
They are involved in many aspects of cell viability and play an important role in the hypoxic microenvironment of cancer. 
In cancer, CRM1 is often overexpressed thus being a putative target for the development of new cancer therapies. The newly 
FDA-approved pharmaceutical Selinexor (KPT-330) selectively inhibits nuclear export via CRM1 and is currently tested in 
additional Phase-III clinical trials. In this study, we investigated the effect of CRM1 inhibition on the subcellular localiza-
tion of HIF-1α and radiosensitivity.
Methods  Human hepatoma cells Hep3B and human osteosarcoma cells U2OS were treated with Selinexor. Intranuclear 
concentration of HIF-1α protein was measured using immunoblot analysis. Furthermore, cells were irradiated with 2–8 Gy 
after treatment with Selinexor compared to untreated controls.
Results  Selinexor significantly reduced the intranuclear level of HIF-1α protein in human hepatoma cells Hep3B and human 
osteosarcoma cells U2OS. Moreover, we demonstrated by clonogenic survival assays that Selinexor leads to dose-dependent 
radiosensitization in Hep3B-hepatoma and U2OS-osteosarcoma cells.
Conclusion  Targeting the HIF pathway by Selinexor might be an attractive tool to overcome hypoxia-induced radioresistance.
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Introduction

To cure cancer is a major problem in the world and new 
questions arise faster than old ones are solved. The disease 
is characterized by different genetic aberrations leading 
to uncontrolled cell division and distraction of the sur-
rounding tissue (Hanahan and Weinberg 2011). Therapy 
strategies include surgical and medical treatment, radiation 
therapy or a combination with one of these approaches.

All cellular proteins are embedded in their specific 
microenvironment. Hence, the functions of proteins are 
manifold: they serve as part of the cytoskeleton, catalyze 
biochemical reactions and are part of important signaling 
cascades acting for example as transcription factors.

Eukaryotic cells are structural and functional compart-
mentalized resulting in the spatial separation of cytoplasm 
and nucleus. These two compartments are separated by 
the nuclear envelope (D’Angelo and Hetzer 2008). In the 
nucleus, DNA is transcribed into mRNA, which is trans-
lated into proteins via ribosomes in the cytosol. Therefore, 
mRNA and translated proteins have to shuttle between 
the nucleus and the cytoplasm through nuclear pore com-
plexes (NPCs). These NPCs are built of about 30 differ-
ent nucleoporins (Beck and Hurt 2017). Smaller proteins 
can passively diffuse through the NPCs; whereas, macro-
molecules greater than 40 kDa need facilitated transport 
(Stelma et al. 2016).

The translocation is mediated by the protein superfam-
ily of karyopherins, which function as mobile transport 
receptors. Simplified, they can be divided in import and 
export receptors and recognize special localization sig-
nals, the nuclear localization signal (NLS) and the nuclear 
export signal (NES), respectively (Turner and Sullivan 
2008). The best characterized nuclear export receptor 
is the export protein chromosome region maintenance 1 
(CRM1), also known as exportin1 (XPO1) (Ishizawa et al. 
2015). In the nucleus, CRM1 forms a complex with the 
cargo protein and Ras-related nuclear guanosine triphos-
phate (RanGTP) followed by export into the cytosol. Here, 
RanGTP is hydrolyzed into RanGDP and the trimer dis-
sociates (Dickmanns et al. 2015).

CRM1 has been shown to be involved in the export of 
over 200 proteins including the tumor suppressor protein 
p53 and the protein family of prolyl hydroxylases (PHDs) 
(Xu et  al. 2012; Hutten and Kehlenbach 2007). PHDs 
belong to a family of proteins regulating the stability of 
other proteins via hydroxylation in an oxygen-dependent 
manner. The most abundant member of this family is 
PHD2, the key regulator of hypoxia-inducible factor (HIF-
1). HIFs play a major role in the transcriptional response 
to hypoxia. They promote angiogenesis by inducing the 
expression of transcriptional factors including vascular 

endothelial growth factor (VEGF) (Du et al. 2008). HIF-1 
consists of HIF-1β, which is constitutively expressed and 
HIF-1α, which is degraded in normoxia; whereas, it is sta-
bilized in hypoxia. Several studies demonstrate that HIF-
silencing induces anti-tumor effects under hypoxic condi-
tions (Choi et al. 2014). In addition, it has been shown that 
stabilization of HIFs in hypoxia decreases radiosensitiv-
ity; whereas, a HIF knockdown increases radiosensitivity 
(Strofer et al. 2011).

In many cancer cells, CRM1 is upregulated and its over-
expression is directly linked to cancer cell survival (Watt 
et  al. 2009). In line with this, nuclear protein levels of 
CRM1-cargo proteins such as p53 and PHDs are decreased 
in some types of cancer. Thus, the inhibition of transport 
proteins such as CRM1 seems to be an interesting way in 
understanding cell function on the one hand and establish-
ing new therapy concepts on the other hand (Kosyna 2018).

The new pharmaceutical Selinexor is a selective inhibi-
tor of nuclear export (SINE). Selinexor was designed using 
consensus-induced fit docking (cFID), a method which 
allows to simulate the interaction between different mol-
ecules on the computer. Structure analysis demonstrate that 
SINE bind specific to the cysteine-residue of CRM1 which 
binds to the NES of cargo proteins. It is not hydrolysated 
by CRM1 and although it is a covalent binding, it is not an 
irreversible but rather a slow-reversible inhibitor (Fung and 
Chook 2014). Selinexor is currently tested in three differ-
ent Phase-3 clinical trials in solid and hematological tumors 
(Kauffman 2020). Furthermore, it was approved for refrac-
tory multiple myeloma by the FDA in 2019 (Dolgin 2019). 
Selinexor inhibits CRM1 via reversible covalent binding to 
cysteine 528 in the cargo binding region of CRM1, leading 
to a higher nuclear concentration of proteins translocated by 
CRM1 (Gounder et al. 2016).

In this study, we focused on the effects of Selinexor on 
the HIF-pathway. We demonstrate that Selinexor decreases 
nuclear HIF-1α protein levels in human hepatoma Hep3B 
cells and human osteosarcoma U2OS cells under hypoxic 
conditions. To the best of our knowledge, we show for the 
first time, that Selinexor treatment increases radiosensitivity 
in both cell lines. Thus, we further underline the potential of 
Selinexor in cancer treatment.

Results

U2OS and Hep3B cells are susceptible to Selinexor 
treatment under normoxic and hypoxic conditions

Tumor hypoxia causes a more malignant phenotype of solid 
tumors and contributes to therapy resistance. To investigate 
whether hypoxia might promote the resistance of U2OS 
and Hep3B cells to Selinexor, dose–response curves were 
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conducted under normoxic and hypoxic conditions. As 
expected, viability of U2OS and Hep3B cells decreased in 
a dose-dependent manner when incubated with Selinexor 
in doses of 0.031 µM up to 0.5 µM for 72 h in normoxia 
or hypoxia. Higher concentrations than 0.5 µM revealed 
no significant decrease in cell viability (Fig. 1). In addi-
tion, no statistically significant differences were observed 
under hypoxic conditions. These results indicate that both 
cell models respond to CRM1 inhibition even under oxygen 
deprivation. It should be noted, that the slight increase in 
U2OS cell viability in normoxia after treatment with 0.3 µM 
Selinexor is not statistically significant.

Selective inhibition of CRM1 affects the nuclear 
concentration of HIF‑1α and p53

To analyze whether CRM1 was blocked by Selinexor, we 
determined the intranuclear level of p53 as control. Human 
hepatoma Hep3B cells are inherently deficient for p53, hence 

they were transiently transfected with a p53-pcDNA-plasmid. 
As expected, Selinexor treatment increased intranuclear p53 
protein level in U2OS cells. In Hep3B cells, we observed a 
trend towards an increase in intranuclear p53 protein level, 
which was not statistically significant (Fig. 2). These results 
hint toward the susceptibility of U2OS and Hep3B cells to 
CRM1 inhibition.

Next, we aimed to investigate the effect of Selinexor on 
the subcellular localization of HIF-1α. Therefore, U2OS and 
Hep3B cells were treated with 0.1 or 1.0 µM Selinexor for 
24 h under normoxic and hypoxic conditions. The nuclear con-
centration of HIF-1α was measured by immunoblot analysis 
after separation of cells in cytoplasmic and nuclear fractions. 
Integrity of nuclear and cytoplasmic protein fractionation was 
checked by immunoblot analysis of nuclear markers lamin 
A/C and cytoplasmic marker α-tubulin (Fig. 3). Nuclear and 
cytoplasmic extracts have minimal contamination between 
fractions which represents sufficient purity. Faint bands of 
α-tubulin in nuclear extracts can be explained by the presence 
of α-tubulin at the cytoplasmic site of the nuclear membrane, 
while minimal levels of lamin A/C in cytoplasmic extracts may 
represent minimal levels of lamin cleavage products.

As shown in Fig. 3, inhibition of CRM1 by Selinexor 
decreased the nuclear protein level of HIF-1α in a dose-
dependent manner. In U2OS cells, we demonstrated a decrease 
of approximately 50% and in Hep3B even a drop of more than 
80% after treatment with 1.0 µM Selinexor under hypoxic con-
ditions. These findings indicate that the function of CRM1 is 
critical in the regulation of nuclear transport processes in the 
HIF-signaling pathway.

Inhibition of CRM1 decreases radioresistance 
of osteosarcoma and hepatoma cells

Stroefer et al. could show that knockdown of HIF-1α leads to 
an increased response on radiotherapy in human cancer cell 
models (Strofer et al. 2011). Following this, we supposed that 
the inhibition of CRM1 by Selinexor in U2OS and Hep3B 
cells could lead to an increased radiation response due to 
decreased HIF-1α protein levels. Therefore, cells treated with 
Selinexor for 24 h were irradiated with 2, 4, 6 or 8 Gy and 
clonogenic survival assays were performed.

Survival fractions are presented in Fig. 4 in percent of irra-
diated and Selinexor-treated cells compared to untreated con-
trol cells. We demonstrate a statistically significant reduction 
in the radioresistance in both cell lines after treatment with 
Selinexor.
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Fig. 1   Effect of Selinexor on cell viability. a U2OS and b Hep3B 
cells were treated with concentrations of Selinexor from 0.031 to 
1.000  µM (0.031  µM, 0.063  µM, 0.125  µM, 0.250  µM, 0.500  µM, 
1.000 µM) for 72 h under normoxic and hypoxic conditions. Subse-
quently, cell viability was assayed using the alamarBlue™ Reagent 
(Invitrogen) according to the manufacturer´s protocol. Values are pre-
sented as mean ± SD (n = 5)
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Discussion

Among others, the HIF-signaling pathway seems to be 
important especially in dysplastic tissues. Due to its growth 
and a consequently deficient blood flow, dysplastic tissue 
often develops hypoxic regions. Following this, the HIF-
signaling pathway is activated leading to multiple effects 
such as an increasing neovascularization or an increased 
invasiveness and radioresistance in these tumors (Baumann 
et al. 2016; Terry et al. 2018).

Although classic chemotherapies have been an indis-
pensable component of anti-cancer therapies, new target-
directed therapies become more and more part of daily medi-
cal practice. The idea is simple: in a targeted manner, these 
new pharmaceuticals can inhibit the biomolecular reasons 

for cancer-dependent up- or downregulated enzymes, which 
lead to tumorigenesis.

One of these promising targets is the NPC, a large multi-
meric protein complex of 125 MDa consisting out of approx-
imately 30 different nucleoporins (Pickens and Tripp 2018). 
Its function is critical for the subcellular localization of 
enzymes and other macromolecules that are involved in the 
development of cancer (Fukuda et al. 1997). Attempts are 
made to inhibit parts of the nuclear export mechanisms that 
are involved in the intracellular transport of drug targets and 
tumor suppressors (El-Tanani et al. 2016). In its highly con-
served NES binding site, CRM1 contains a cysteine residue 
on position 528 which is critical for the interaction between 
CRM1 and the NES of a specific cargo (Kosyna 2018). For 
a variety of solid tumors, overexpression of CRM1 has been 
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Fig. 2   Immunoblot analysis of intranuclear p53 protein level. 
a) U2OS and b) Hep3B cells were treated with DMSO, 0.1  µM 
Selinexor or 1.0 µM Selinexor under normoxia for 24 h and fraction-
ated. Hep3B cells are deficient for the tumor suppressor protein p53 

and were transiently transfected with a p53-pcDNA-plasmid. Rela-
tive protein levels of intranuclear p53 protein in % ± SD compared 
to DMSO control are shown. One-way ANOVA with Tukey posttest 
with *p < 0.05 and ***p < 0.001 (n = 3)
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shown. In patients with osteosarcoma and in preclinical 
models of hepatocellular carcinoma cell lines, a correlation 
between the expression of CRM1 and cancer proliferation 
was demonstrated (Yao et al. 2009; Zheng et al. 2014).

In this context the intracellular transport of proteins 
belonging to the family of prolyl hydroxylases is of par-
ticular interest (Depping et al. 2015). PHDs are involved 
in the degradation process of HIFs. Especially for PHD2, it 
has been shown that the hydroxylation of HIF-1α can take 
place in the cytoplasm as well as in the nucleus; whereas, 
the activity of PHD2 is higher in the latter one (Berchner-
Pfannschmidt et al. 2008). Reasonably, it might be assumed, 
that the inhibition of CRM1 may lead to accumulation of 
PHD2 in the nucleus followed by an enhanced degradation 
of HIF-1α.

Over the last decades, attempts have been made to iden-
tify inhibitors of nuclear export. Typically, research on 
nuclear export inhibitors has concentrated on direct inhibi-
tion of CRM1 leading to the development of SINE. The first 
promising pharmaceutical out of this group with effects on 
CRM1 was Leptomycine B (LMB), which was discovered in 
the early eighties in Streptomyces spp and was established as 
a new antifungal pharmaceutical. LMB alkylates a reactive 
cysteine residue (cysteine 528) on CRM1 in a covalent and 
irreversible manner inhibiting CRM1-binding to the NES of 
a cargo protein. However, in a phase I clinical trial LMB was 
found to have severe toxicities and therefore its clinical use 
was discarded (Newlands et al. 1996). Other inhibitors such 
as the aromatic ketone Trans-chalcone (Silva et al. 2018) and 
CBS9106 (Sakakibara et al. 2011) were developed, but none 
of these candidates reached clinical practice so far.

A promising new candidate in the family of SINEs is 
Selinexor, which uses the same target as LMB. It binds spe-
cifically and reversibly (unlike LMB) to the cysteine residue 
528 on CRM1 (Neggers et al. 2015). Up to now, Selinexor 
has been tested in many kinds of cancer being quite well-
tolerated in phase I and II clinical trials. In different stud-
ies, it has been combined with chemotherapeutics and tar-
geted therapies such as platinum or tyrosin kinase inhibitors 
in vitro and in vivo with mainly promising results (Corno 
et al. 2018; Nie et al. 2018). By now, two research groups 
combined Selinexor with radiation in a preclinical model of 
rectal cancer and an in vitro and in vivo study of glioblas-
toma cells and found promising effects (Ferreiro-Neira et al. 
2016; Wahba et al. 2018).

In line with these reports, we could recently show that 
Selinexor inhibits transcriptional-HIF activity, HIF-target 
gene expression and 3D spheroid growth of cancer cells 
(Depping et al. 2019). In this follow-up study, we could dem-
onstrate that the inhibition of CRM1 by Selinexor decreases 
the intranuclear HIF-1α protein level in human osteosar-
coma and human hepatocellular carcinoma cells accompa-
nied by an enhanced radiation response in both cell lines. 
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Fig. 3   Immunoblot analysis of intranuclear HIF-1α protein levels a 
U2OS and b Hep3B cells were treated with DMSO, 0.1 µM Selinexor 
or 1.0 µM Selinexor under normoxia or hypoxia for 24 h and fraction-
ated. Representative immunoblot images of n = 3 independent experi-
ments are shown. Specific signals were quantified densitometrically 
and normalized to hypoxic DMSO-treated control cells. Values are 
presented as mean ± SD with *p < 0.05, **p < 0.01 and ***p < 0.001 
(n = 3)
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Since it has been shown that PHD2 is a CRM1 cargo protein 
and the hydroxylase activity of PHD2 strongly depends on 
its subcellular localization, it can be assumed that PHD2 
accumulates in the nucleus after CRM1 inhibition (Stein-
hoff et al. 2009; Pientka et al. 2012). By this, decreased 
nuclear HIF-1α protein levels after Selinexor treatment may 
be explained.

Ströfer et al. showed, that there is a link between the 
degradation or knockout of HIF-1α and the viability and 
radiosensitivity of cancer cells in vitro (Strofer et al. 2011). 
In addition, Mucha-Malecka et al. showed in a long-term ret-
rospective study in cancer patients, that low levels of hemo-
globin are associated with poor prognosis (Mucha-Malecka 
et al. 2019). The underlying causes are manifold (Tang et al. 
2018), but as we know, that lower hemoglobin levels lead to 
relative hypoxia in peripheral tissue, we can assume that this 
leads to higher HIF-1α levels and potential tumorigenesis.

Apart from the effect of Selinexor on radiosensitivity of 
cancer cells mediated by the HIF-signaling pathway several 
studies showed the potential of Selinexor to diminish DNA 

repair after damage. For example, Ranganathan et al. could 
show that Selinexor combined with Topoisomerase II inhibi-
tors leads to a prolonged survival in the AML mouse model 
(Ranganathan et al. 2016).

The findings of this study clearly demonstrate that the 
CRM1 inhibition leads to an increased radiation response. 
This can be explained by different molecular mechanisms 
discussed above. In future studies, the importance of the 
intracellular localization for the regulation of different signal-
ing pathways should be investigated with special emphasis on 
HIF-1α depleted cells. Moreover, the significance of inhibition 
of DNA damage repair in cells treated with Selinexor has to 
be elucidated to understand the underlying mechanisms on 
irradiated cells.

Fig. 4   Irradiation of Selinexor-
treated tumor cells. a U2OS and 
b Hep3B cells were incubated 
with Selinexor or DMSO 
followed by X-ray irradiation 
and incubation for further 
9 days. Afterwards, colonies 
were stained with crystal violet 
and counted and compared to 
untreated control cells. Values 
are presented as mean ± SD 
with *p < 0.05, **p < 0.01 and 
***p < 0.001 (n = 6)
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Materials and methods

Antibodies, chemicals and cell culture

Antibodies used were anti-HIF-1α (1:1000, R&D Systems, 
Minneapolis, MN, USA), anti-p53 (1:1000, Abcam, Cam-
bridge, UK), anti-Lamin A/C (1:1000) and anti-α-Tubulin 
(1:5000, both Santa Cruz Biochtechnology, Dallas, TX, 
USA).

Cell lines were purchased by the German Collection of 
Microorganisms and Cell Cultures GmbH (DMSZ, Braun-
schweig, GER). They were routinely tested for myco-
plasma contamination with a PCR-based assay.

The human cell lines U2OS (human osteosarcoma, 
doubling time 50–60 h) and Hep3B (human hepatoma, 
doubling time 40–50 h) were grown in DMEM and RPMI-
1640 culture medium (Gibco, Darmstadt, GER), respec-
tively, containing 10% fetal calf serum (FCS, Gibco, 
Grand Island, NY, USA) and 100 IU/ml penicillin/100 µg/
ml streptomycin (PAA Laboratories, Pasching, AUT) at 
37 °C in a humidified 5% CO2 incubator. To study hypoxic 
conditions, cells were placed in a humidified atmosphere 
containing 3% O2, 5% CO2 and balanced N2 (Heracell 
Vios 160i Co2-Incubator, Thermo scientific, Waltham, 
MA, USA).

Selinexor (KPT-330) was kindly provided by Karyop-
harm Therapeutics (Newton, MA, USA). Selinexor was 
dissolved in dimethyl sulfoxide (DMSO, Sigma Aldrich, St. 
Louis, MO, USA) to a concentration of 10 mmol.

Transient transfection

Hep3B cells are deficient for the tumor suppressor protein 
p53. To use p53 as control for Selinexor treatment, Hep3B 
cells were transiently transfected with p53–pcDNA–plas-
mid using Genejuice transfection reagent (Merck Millipore, 
Burlington, MA, USA). Cells were grown to 80% confluency 
on 10 cm Petri dishes before transfection according to the 
manufacturer’s protocol.

Cell viability assay

U2OS and Hep3B cells were seeded in 96-well plates 
at a density of 1 × 104 cells per well. The next day, cells 
were treated with concentrations of Selinexor from 0.031 
to 1.000 µM (0.031 µM, 0.063 µM, 0.125 µM, 0.250 µM, 
0.500 µM, 1.000 µM) and subjected to hypoxic or normoxic 
conditions for 72 h. Each condition was assayed in four tech-
nical replicates. Subsequently, cell viability was determined 
using the alamarBlue™ Cell Viability Reagent (Invitrogen, 
Darmstadt, GE) according to the manufacturer’s protocol 

(590 nm, Mithras LB 940, Berthold Technologies GmbH & 
Co. KG, Bad Wildbad, Germany).

Immunoblot analysis

Following transfection and treatment with Selinexor for 
24 h, cells were incubated under normoxic or hypoxic (3% 
O2) conditions for 24 h. Cells were washed with ice-cold 
PBS and separated into nuclear and cytoplasmic fractions 
using the NE-PER Nuclear and Cytoplasmic extraction rea-
gents purchased by Thermo Fisher (Waltham, MA, USA) 
according to the manufacturer’s protocol.

Protein concentration was determined using Bio-Rad DC 
Protein Assay (Bio-Rad, Hercules, CA, USA). Proteins were 
separated by SDS-Page and transferred onto polyvinylidene 
difluoride membrane (PVDF, Merck Millipore, Burling-
ton, MA, USA) by semi-dry electroblotting. The blots were 
incubated with primary antibodies for 24 h and with HRP-
conjugated secondary antibodies (Dako Denmark, Glostrup, 
DNK) in a concentration of 1:1000 up to 1:5000for 1 h and 
finally detected by electrochemiluminescence (ECL, Bio-
Rad, Hercules, CA, USA).

Clonogenic survival assay

For clonogenic assays, cells were seeded onto 24-well plates, 
incubated overnight and treated with Selinexor in a concen-
tration of 0.1 or 1.0 µM for 24 h. After irradiation with doses 
of up to 8 Gy (Varian Clinac DHX 5024, Palo Alto, CA, 
USA), cells were harvested using Accutase (Thermo Fisher, 
Waltham, MA, USA) and counted using trypan-blue staining 
and measurement using the Cellometer™ Auto T4 (Nexcel-
com Bioscience LTD, Lawrence, MA, USA). 400–800 living 
cells were seeded in 6-well culture dishes in triplicates. After 
incubation for 9 days, colonies were fixed with crystal violet 
and dried. Colonies out of six independent experiments were 
counted randomized and blind and the clonogenic survival 
was calculated in comparison to untreated control cells.

Statistics

Statistical analysis was performed using GraphPad Prism 
Software (GraphPad Software, La Jolla, CA, USA). To 
compare two treatment groups the One-way ANOVA with 
Tukey post hoc test was performed. Graphs are shown as 
mean ± standard deviation (SD). Immunoblot experiments 
were performed three times (n = 3) and experiments of clo-
nogenic survival at least six times (n = 6).
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