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Abstract: In the present work, the anti-inflammatory and antiasthmatic potential of biseugenol,
isolated as the main component from n-hexane extract from leaves of Nectandra leucantha and
chemically prepared using oxidative coupling from eugenol, was evaluated in an experimental model
of mixed-granulocytic asthma. Initially, in silico studies of biseugenol showed good predictions
for drug-likeness, with adherence to Lipinski’s rules of five (RO5), good Absorption, Distribution,
Metabolism and Excretion (ADME) properties and no alerts for Pan-Assay Interference Compounds
(PAINS), indicating adequate adherence to perform in vivo assays. Biseugenol (20 mg·kg−1) was
thus administered intraperitoneally (four days of treatment) and resulted in a significant reduction
in both eosinophils and neutrophils of bronchoalveolar lavage fluid in ovalbumin-sensitized mice
with no statistical difference from dexamethasone (5 mg·kg−1). As for lung function parameters,
biseugenol (20 mg·kg−1) significantly reduced airway and tissue damping in comparison to ovalbumin
group, with similar efficacy to positive control dexamethasone. Airway hyperresponsiveness to
intravenous methacholine was reduced with biseugenol but was inferior to dexamethasone in
higher doses. In conclusion, biseugenol displayed antiasthmatic effects, as observed through the
reduction of inflammation and airway hyperresponsiveness, with similar effects to dexamethasone,
on mixed-granulocytic ovalbumin-sensitized mice.

Keywords: biseugenol; mixed-granulocytic asthma; airway responsiveness; airway inflammation

1. Introduction

Asthma is a chronic inflammatory condition that affects more than 200 million people around the
globe, according to the World Health Organization [1,2]. The asthma treatment involves achieving
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control of symptoms and reduction of exacerbations; however, a portion of patients does not respond
to regular asthma control therapy, originating a severe asthma phenotype [3]. Oral corticosteroids are
commonly prescribed in severe asthmatic patients, and its chronic use is related to a variety of adverse
events [4], highlighting the need for new anti-inflammatory, yet non-immunosuppressive, therapies.
There are several endotypes of asthma, including mixed-granulocytic, that has high eosinophil and
neutrophil counts, frequently related to a more severe airway obstruction, higher rate of exacerbations
and increased health-related costs [5]. For this type of asthma, there is no specific treatment available;
thus, a therapy gap exists and must be fulfilled [5].

As previously reported [6], a mixture of different herbal extracts, known as Saiboku-To, has been
used in Asia and some regions of Europe for treatment of severe asthma. One of the main active
compounds from this extract, magnolol, acts as an inhibitor of T-lymphocyte proliferation, resulting in
corticosteroid-sparing effects in severe asthmatic patients [7]. This compound possesses high structural
similarity to biseugenol (Figure 1), a neolignan isolated from Brazilian plant Nectandra leucantha.
This plant has traditionally been used, such as other Nectandra species, in South America for the
treatment of several diseases in humans, including lung disorders caused by acute and chronic
airway inflammation [8]. Based on these pieces of evidence and on the results of ADME using an
in silico approach to biseugenol, the evaluation of the antiasthmatic effects of this compound using
an experimental model of mixed-granulocytic asthma, focusing on airway hyperresponsiveness and
inflammation on bronchoalveolar lavage fluid, was performed
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Figure 1. Chemical structures of magnolol and biseugenol. 

 

Figure 1. Chemical structures of magnolol and biseugenol.

2. Results

2.1. Chemical Characterization

1H and 13C NMR (nuclear magnetic resonance) as well as HRESIMS (high resolution electrospray
ionization mass spectrometry) spectra (see Supplementary Materials) of natural product were compared
with those reported in the literature [9], allowing for the identification of biseugenol (Figure 1). Based on
the reduced amounts of natural biseugenol, insufficient to perform the biological assays, the preparation
of this compound was performed using oxidative coupling of eugenol (70% yield). NMR and HRESIMS
data of obtained compound (100% of purity) were identical of isolated natural product. All biological
assays were performed using synthetic biseugenol.

2.2. In Silico Studies

The druggability of biseugenol was performed in silico, using the SwissADME tool to investigate
the physicochemical properties, pharmacokinetics (PK) parameters, and drug-likeness. The obtained
results on the bioavailability radar (Figure 2) indicate good adherence of biseugenol to all evaluated
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parameters (except unsaturation due to the presence of two aromatic rings) but better than those
obtained to related compound magnolol.

Molecules 2020, 25, x FOR PEER REVIEW 3 of 14 

 

2.2. In Silico Studies 

The druggability of biseugenol was performed in silico, using the SwissADME tool to 
investigate the physicochemical properties, pharmacokinetics (PK) parameters, and drug-likeness. 
The obtained results on the bioavailability radar (Figure 2) indicate good adherence of biseugenol to 
all evaluated parameters (except unsaturation due to the presence of two aromatic rings) but better 
than those obtained to related compound magnolol. 

  

Figure 2. Bioavailability radar for drug-likeness using the SwissADME tool to magnolol (left) and 
biseugenol (right) demonstrating better adherence of biseugenol to different physicochemical 
descriptors. The red area represents the optimal range for each property.vb. 

However, according to the physicochemical properties (Table 1) determined to biseugenol and 
magnolol, both compounds exhibited high adherence to BigPharma filters (Ghose, Veber, Egan, and 
Muegge), including no violations to Lipinski’s rules-of-five (RO5). Biseugenol and magnolol 
displayed also moderate solubility in H2O, with log Po/w value of approximately 4.2, an important 
parameter to deliver good lead compounds [10]. Pharmacokinetics analysis indicated high 
gastrointestinal absorption, the ability to permeant the blood–brain barrier and no interactions with 
P-glycoprotein. Furthermore, no alert was evidenced for both compounds for PAINS, indicating that 
similar to magnolol, biseugenol could be considered to perform in vivo assays in order to evaluate 
its anti-inflammatory/antiasthma activity. 

Table 1. Physicochemical properties and ADME predictions [10] for biseugenol and magnolol. 

Physicochemical Properties 
 Biseugenol Magnolol 

Number of heavy atoms 24 20 
Fraction Csp3 0.20 0.11 

Number of rotatable bonds 7 5 
Number of H-bond acceptors 4 2 

Number of H-bond donors 2 2 
Lipophilicity 

Log Po/w 4.22 4.26 
Water Solubility 

Log S −5.70 −5.47 

Solubility 6.5 × 10−4 mg·mL−1 
(2.0 × 10-6 mol·L−1) 

9.1 × 10−4 mg·mL−1 
(3.4 × 10−6 mol·L−1) 

Class Moderately soluble Moderately soluble 
Pharmacokinetics 

GI absorption High High 
BBB permeant Yes Yes 

Figure 2. Bioavailability radar for drug-likeness using the SwissADME tool to magnolol (left) and
biseugenol (right) demonstrating better adherence of biseugenol to different physicochemical descriptors.
The red area represents the optimal range for each property.vb.

However, according to the physicochemical properties (Table 1) determined to biseugenol
and magnolol, both compounds exhibited high adherence to BigPharma filters (Ghose, Veber,
Egan, and Muegge), including no violations to Lipinski’s rules-of-five (RO5). Biseugenol and
magnolol displayed also moderate solubility in H2O, with log Po/w value of approximately 4.2,
an important parameter to deliver good lead compounds [10]. Pharmacokinetics analysis indicated
high gastrointestinal absorption, the ability to permeant the blood–brain barrier and no interactions
with P-glycoprotein. Furthermore, no alert was evidenced for both compounds for PAINS, indicating
that similar to magnolol, biseugenol could be considered to perform in vivo assays in order to evaluate
its anti-inflammatory/antiasthma activity.

2.3. Selection of Dose Regimen of Biseugenol Treatment

The endpoint to select the optimal dose between three different biseugenol regimens was the
reduction of eosinophil and neutrophil counts on bronchoalveolar lavage fluid BALF, as they are
known to be key players in mixed granulocytic asthma inflammation [5]. Based on these parameters,
biseugenol 20 mg·kg−1 for four days (20 mg4d) was the only dose regimen capable of reducing
both eosinophil and neutrophil cell count on BALF in a statistically significant way (p < 0.05),
on ovalbumin-sensitized mice, in comparison to 10 mg·kg−1 during four and eight days of treatment
(Table 2). Thus, the dose of 20 mg·kg−1 for four days was selected for further analysis in lung function
parameters and comparison with a positive control (dexamethasone).

2.4. Effects of Biseugenol on Airway Hyperresponsiveness (AHR)

With regards to lung function parameters, the OVA-sensitized animals showed higher airway
hyperresponsiveness to methacholine, as shown by a significant increase in airway resistance and
tissue damping curves (Raw and Gtis, Figure 3A,D, respectively), maximal response values (Figure 3B,E)
and percentage of variation in comparison to baseline values (p < 0.001, Figure 3C,F). The response of
these animals to methacholine was far superior to those seen in traditional Th2 models frequently run
on our research group [11]. There were no changes in elastance (Htis) in any of the groups evaluated.
The animals treated with biseugenol showed reduced AHR as observed by decreased response to
methacholine in Raw (Figure 3A) and Gtis (Figure 3D), in doses up to 300 µg·kg−1, with a significant
reduction in maximal responses (p < 0.05, Figure 3B,E). Dexamethasone showed greater efficacy
reducing AHR to methacholine even in higher doses; however, the difference between maximal Raw

and Gtis values were not statistically significant in comparison to biseugenol (Figure 3B,E).
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Table 1. Physicochemical properties and ADME predictions [10] for biseugenol and magnolol.

Physicochemical Properties

Biseugenol Magnolol

Number of heavy atoms 24 20
Fraction Csp3 0.20 0.11

Number of rotatable bonds 7 5
Number of H-bond acceptors 4 2

Number of H-bond donors 2 2

Lipophilicity

Log Po/w 4.22 4.26

Water Solubility

Log S −5.70 −5.47

Solubility 6.5 × 10−4 mg·mL−1

(2.0 × 10-6 mol·L−1)
9.1 × 10−4 mg·mL−1

(3.4 × 10−6 mol·L−1)
Class Moderately soluble Moderately soluble

Pharmacokinetics

GI absorption High High
BBB permeant Yes Yes
P-gp substrate No No

Log Kp (skin permeation) −4.80 cm·s−1
−4.39 cm·s−1

Druglikenes

Lipinski Yes; 0 violation Yes; 0 violation
Ghose Yes Yes
Veber Yes Yes
Egan Yes Yes

Muegge Yes Yes
Bioavailability Score 0.55 0.55

Medicinal Chemistry

PAINS 0 alert 0 alert
Synthetic accessibility 3.02 2.49

Table 2. Effects of biseugenol on bronchoalveolar lavage fluid (BALF) inflammation.

Cell Count on BALF (×104)

SAL
(n = 11)

OVA
(n = 13)

BIS 20 mg4d
(n = 10)

BIS 10 mg8d
(n = 10)

BIS 10 mg4d
(n = 9)

Total cell count 3.43 ± 0.48 21.9 ± 3.76 * 12.0 ± 1.59 ** 15.0 ± 3.00 12.4 ± 3.16 **
Macrophages 2.84 ± 0.38 8.90 ± 0.84 * 7.63 ± 1.12 8.48 ± 1.40 5.97 ± 1.01
Neutrophils 0.37 ± 0.16 4.23 ± 0.93 * 1.83 ± 0.34 ** 2.07 ± 0.53 ** 2.47 ± 0.91
Eosinophils 0.16 ± 0.06 8.41 ± 2.71 * 2.32 ± 0.56 ** 4.74 ± 1.40 4.07 ± 1.83 **

Lymphocytes 0.06 ± 0.02 0.39 ± 0.08 0.26 ± 0.05 0.56 ± 0.14 0.41 ± 0.18

SAL: Saline control; OVA: Ovalbumin-sensitized mice treated with placebo; BIS 20 mg4d: Ovalbumin-sensitized
mice treated with biseugenol 20 mg·kg−1 i.p. for 4 days; BIS 10 mg8d: Ovalbumin-sensitized mice treated with
biseugenol 10 mg·kg−1 i.p. for 8 days; BIS 10 mg4d: Ovalbumin-sensitized mice treated with biseugenol 10 mg·kg−1

i.p. for 8 days. Data are presented as mean SE. * p < 0.01 compared with saline control group. ** p < 0.05 compared
with ovalbumin-sensitized group.
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Figure 3. Lung function parameters. (A): Dose response curve of Raw (Airway resistance); (B):
Maximal response of Raw; (C): % of Raw in relation to baseline values; (D): Dose response curve
of Gtis (tissue resistance); (E): Maximal response of Gtis; (F): % of Gtis in relation to baseline values;
(G): Dose response curve of Htis (tissue elastance); (H): Maximal response of Htis; (I): % of Htis in relation
to baseline values. SAL (n = 8): saline control group; OVA (n = 9): ovalbumin-sensitized control group;
BIS (n = 6): ovalbumin-sensitized group treated with biseugenol 20 mg·kg−1 for 4 days; DX (n = 7):
ovalbumin-sensitized group treated with dexamethasone 5 mg·kg−1 i.p. or 4 days. *: p < 0.001;
**: p < 0.05.

2.5. Effects of Biseugenol on Inflammation

After the microscopic cell count of BALF, it was observed that the OVA group presented not
only increased total inflammatory cell count, but also elevated levels of macrophages, eosinophils,
neutrophils, and lymphocytes in comparison to the control group (SAL) (all p < 0.001), as shown in
Table 2. Eosinophils and neutrophils were especially higher, mimetizing a mixed-granulocytic asthma
endotype, as previously aimed (Figure 4B,C). Biseugenol showed efficacy in reducing pulmonary
inflammation, as seen by the reduction in eosinophil (p < 0.05, Figure 4C), neutrophil (p < 0.001,
Figure 4B) and total cell count (p < 0.001, Figure 4A), in comparison to the ovalbumin-sensitized
model. However, there were no changes in macrophage (Figure 4A) and lymphocyte levels (Figure 4E).
Dexamethasone was also effective at suppressing inflammation on BALF, with a statistically significant
reduction in all cell count parameters (p < 0.001, Figure 4A–E). Both biseugenol and dexamethasone
were statistically equivalent on the reduction of eosinophil (p = 0.250, Figure 4C) and neutrophil counts
(p = 0.071, Figure 4B).
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3. Discussion

Asthma is a heterogeneous disease with different endotypes; therefore, it should be treated in an
individualized and personalized way [12]. Among the most common endotypes of asthma, there are
Th2-high (typically eosinophilic) and Th2-low (also known as Th1/Th17, typically neutrophilic or
paucigranulocytic) [13]. Th2-high asthma is usually responsive to treatment with corticosteroids,
as Th2-low or Th1/Th17 asthma has predominance of neutrophil infiltration on airways and can lead
to a corticosteroid-resistant severe asthma [12,14]. There is also the asthmatic endotype characterized
by a high infiltration of both eosinophils and neutrophils on bronchoalveolar lavage fluid, which is
denominated mixed-granulocytic asthma and is usually more severe, with high remodeling and
reduced pulmonary capacity [15].

In this work, we aimed to reproduce an experimental murine model of mixed-granulocytic
asthma [16,17], utilizing ovalbumin grade V with complete Freund adjuvant (containing inactivated
M. tuberculosis), to induce increased inflammation with higher concentrations of both eosinophils
and neutrophils in comparison with traditional Th2 allergic models of asthma commonly used by
our research group [11]. Patients with mixed-granulocytic asthma are commonly more severe, and a
recent publication from the International Severe Asthma Registry indicates that more than 50% of
these patients make regular use of oral corticosteroids worldwide, with some countries even reaching
90% of usage, despite their known side effects [4,18]. Especially for the mixed-granulocytic endotype
of asthma, there is no targeted therapy available [5], and more research around animal models of
this endotype is needed for the better understanding of its physiology and to accelerate research
for new non-steroidal anti-inflammatory therapeutic agents that could substitute corticotherapy in
these patients, as far as they may not respond well to corticosteroid therapy, leading these patients
to unnecessary adverse events without the expected efficacy [14,19]. Even though severe asthmatic
patients represent only around five percent of total asthmatic patients, they are responsible for more
than eighty percent of asthma healthcare costs, as a result of high hospitalization and emergency visits
rates [20].

The treatment with biseugenol was capable of reducing both eosinophil and neutrophil
concentrations on BALF, in a statistically significant way, and showed non-inferiority to dexamethasone.
Thus, biseugenol had similar clinical effects to dexamethasone, as a potent regulator of eosinophilia and
neutrophilia, important modulators of this endotype of asthma. As mentioned before, biseugenol is
a structurally related compound of magnolol (Figure 1), which has been reported previously to act
as an inhibitor of T-lymphocyte proliferation resulting in corticosteroid-sparing effects in severe
asthmatic patients [7]. More recent pieces of evidence showed that magnolol promoted reduced
BALF inflammation in ovalbumin-sensitized mice through the reduction in Th2 (IL-4, IL-5, IL-13)
and Th17 (IL-6, IL-17A) cytokines and IgE levels, also leading to improvements in lung function and
the restoration of bronchial tissue architecture, through the modulation of JAK-STAT and Notch 1
signaling pathways [21]. Biseugenol differs to magnolol only by the presence of additional methoxyl
groups in the aromatic rings, suggesting that both compounds could act through similar molecular
pathways in order to promote these pharmacological effects.

Polyphenols also present immunomodulatory effects through its antioxidant properties.
These substances are well known to inhibit enzymes involved in the production of reactive oxygen
species (ROS), like xanthine oxidase and NADPH oxidase (NOX), while upregulating antioxidant
enzymes as superoxide dismutase (SOD), catalase and glutathione peroxidase [22]. Oxidative stress
caused by increased ROS production induces AHR, mucus secretion, epithelial shedding within
respiratory cells, and affects smooth muscle contraction [23].

Biseugenol is a biphenyl compound with anti-inflammatory effects that could be related to its
potential antioxidant properties, reducing levels of ROS and promoting reduced lung inflammation
and AHR. Another possible mechanism by which biseugenol shows anti-inflammatory effects could be
through aryl hydrocarbon receptor binding, a ligand-activated transcription factor that belongs to the
basic region-helix-loop-helix (bHLH) superfamily, that is linked to the upregulation of IL-22 [24], IL-25,
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IL-33, TSLP [25], and ROS production [26] in asthma. Published data on the matter also shows evidence
that an aryl hydrocarbon receptor ligand could suppress Th17 response in allergic processes [27].
Further studies shall be carried by our group in order to understand the mechanisms of action involved
in the anti-inflammatory effects of biseugenol.

The main pulmonary parameters evaluated on this work were central airway resistance,
tissue damping (parameter that reflects the viscoelasticity of lung tissue and possibly the resistance
of small airways and is known to increase with better lung functioning) and tissue elastance,
which reproduces the tissue ability to return to normal state after an inspiration [28]. In both groups
treated with biseugenol and dexamethasone, we observed a reduction in airway hyperresponsiveness.
Biseugenol showed similar efficacy to dexamethasone on the reduction of maximal response of
central airway and tissue damping (Raw and Gtis, respectively) in ovalbumin-sensitized animals and
significant reduced airway hyperresponsiveness to methacholine in all doses ranging from 30 to
300 µg·kg−1, highlighting its potential as a modulator of lung hyperresponsiveness in this model of
asthma. On all groups evaluated, there were no significant differences in tissue elastance. This is
partially expected because asthmatic models do not suffer relevant changes in lung elastance, as, on the
other hand, there are variates on other experimental models with parenchymal tissue destruction
(i.e., emphysema models) [29]. In this protocol, we found positive correlations between Raw and BALF
inflammatory cell parameters, implicating that a reduced inflammation on BALF leads to a reduction
in central airway hyperresponsiveness and better lung function. Reduced lung function, bronchial
remodeling and an inflammatory profile with eosinophilia and neutrophilia are the main characteristics
of severe mixed granulocytic asthma [14].

The discovery of new therapies that could substitute corticosteroid therapy with similar efficacy
and less adverse effects is mandatory. Biseugenol at the dose of 20 mg·kg−1 seems promising in
that matter as far as it showed efficacy in reducing both AHR and lung inflammation in a mouse
model of mixed-granulocytic asthma. Further safety studies must be carried out in order to deeply
evaluate its safety profile; however, previous findings suggest that biseugenol did not induce liver
histopathologies [30] and these preliminary results highlight biseugenol as a potential substitute of
corticosteroid therapy or even as a combination drug to associate with low doses of corticosteroids
to decrease the risk of adverse effects commonly associated with its chronic use [19]. A possible
limitation of this work is that it is not yet possible to translate either the dose of biseugenol or
dexamethasone used in this protocol to mixed-granulocytic asthmatic human patients, as further
data regarding pharmacokinetics, toxicology and physiologic parameters are needed to address this
matter. In conclusion, our results suggest that biseugenol, obtained from a natural source or chemically
prepared from simple procedures and reagents (essential for commercial scale-up), could be used as a
potential antiasthmatic drug to either substitute or be used as combination therapy with corticosteroids
in order to avoid and spare their new metabolic side effects.

4. Materials and Methods

4.1. General Experimental Procedures

Sephadex LH-20 (Sigma-Aldrich, St Louis, MO, USA) and silica gel 60 F254 (Merck, Darmstadt,
Germany) were used for column chromatography (CC) and analytical thin layer chromatography (TLC)
separations, respectively. Analytical-grade solvents were used for every chromatographic procedure
(Labsynth Ltd., Diadema, SP, Brazil). Eugenol was purchased from Sigma-Aldrich (St Louis, MO, USA)
and was used without any further purification. 1H and 13C NMR spectra were recorded on an
Ultrshield 300 Bruker Avance III spectrometer (Billerica, MA, USA) operating at 500 and 125 MHz,
respectively, using CDCl3 (TediaBrazil, Rio de Janeiro, RJ, Brazil) as solvent and TMS as internal
standard. MicroTOF QII Bruker Daltonics (Billerica, MA, USA) spectrometer was used to record mass
spectra (positive mode).
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4.2. Plant Material

Nectandra leucantha leaves were collected in the Atlantic Forest area of Cubatão city, São Paulo State,
Brazil, in March, 2018. The plant material was identified by Prof. MSc. Euder G. A. Martins. A voucher
specimen (EM357) has been deposited in the Herbarium of Institute of Biosciences, University of
São Paulo, SP, Brazil.

4.3. Extraction and Isolation of Biseugenol

N. leucantha leaves (200 g) were dried, powdered and exhaustively extracted with n-hexane at
room temperature in an automatized system ASE 350 (Thermo Fisher Scientific, Waltham, MA, USA).
After evaporation of the solvent at reduced pressure 3.5 g of crude n-hexane extract were obtained.
Part of this material (3 g) was applied to a silica gel column and eluted with a gradient mixture
of EtOAc in n-hexane. A total of 85 fractions (10 mL each) were collected and combined into four
groups (A to D) after TLC analysis. Fraction C (450 mg) was submitted to CC fractionation over
Sephadex LH-20 to afford 78 mg of biseugenol (100% of purity as calculated by high performance
liquid chromatography—HPLC).

4.4. Preparation of Biseugenol

The preparation of biseugenol involved the dimerization of commercial eugenol through an
oxidative coupling reaction, according to the procedure previously reported in the literature [9]. Briefly,
from 1.64 g of K3[Fe(CN)6] and 820 mg of eugenol, 560 mg of biseugenol was obtained (70% yield)
after recrystallization using absolute EtOH.

Dehydrodieugenol. Amorphous white solid, 100% purity by HPLC. 1H NMR (300 MHz, CDCl3):
δ6.74 (d, J = 1.9 Hz, 2H), 6.72 (d, J = 1.9 Hz, 2H), 5.98 (m, 2H), 5.08 (m, 4H), 3.92 (s, 6H), 3.35 (d, J = 6.7 Hz,
4H). 13C NMR (75 MHz, CDCl3): δ147.2 (C), 140.9 (C), 137.7 (CH), 131.9 (C), 124.4 (C), 123.1 (CH),
115.7 (CH2), 110.7 (CH), 56.1 (CH3), 39.9 (CH2). HRESIMS (positive mode) m/z 327.1598 [M + H]+

(calculated for C20H23O4 327.1596)

4.5. In Silico Studies

The in silico studies of biseugenol were performed using the SwissADME platform (http:
//www.swissadme.ch/) to evaluate pharmacokinetics, drug-likeness and medicinal chemistry
parameters [10]. This computational tool analyzes diverse parameters, such as (i) Absorption,
Distribution, Metabolism and Excretion (ADME); (ii) physicochemical properties (number of
heavy atoms, fraction Csp3, number of rotatable bonds, number of H-bond donors, and H-bond
acceptors); (iii) lipophilicity (log p value), water solubility, pharmacokinetics (gastrointestinal
absorption, blood-brain barrier permeant, P-glycoprotein substrates), and skin permeation (log Kp);
(iv) drug-likeness with filters including Lipinski (Pfizer), Ghose (Amgen), Veber (GlaxoSmithKline),
Egan (Pharmacia), and Muegge (Bayer); (v) alert for pan-assay interference compounds (PAINS); and
vi) synthetic accessibility.

4.6. Animals and Ethics Statement

Male BALB/c mice aged 6–8 weeks (22–27 g) were acquired from the Animal Facility of the
University of São Paulo, São Paulo, Brazil and were housed under controlled light (12 h light/12 h
dark; lights on at 8 am) and temperature conditions (23 ± 1 ◦C), with free access to water and food.
All animal care and experimental procedures were conducted in compliance with the rules of the
British Pharmacological Society’s Ethics Committee and of the guidelines of the National Council of
Animal Experimentation that regulates animal research according to Brazilian Federal Law (Report no.
111/10/03, 2013). All experimental protocols were approved by the internal ethical committee of both
the University of São Paulo (#920/2017) and the Federal University of São Paulo (#3025110417).

http://www.swissadme.ch/
http://www.swissadme.ch/
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4.7. Study Design, Immunization and Challenge Protocol

Immunization, challenge and treatment protocol were followed as indicated in Figure 6.
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Mice were divided at random into six groups: (a) SAL (submitted to saline protocol and
intraperitoneally treated with saline solution); (b) OVA (ovalbumin, submitted to the OVA sensitization
and intraperitoneally treated with saline solution); (c) 10 mg8d (submitted to the OVA sensitization
and intraperitoneally treated with biseugenol 10 mg·kg−1 for eight days); c) 10 mg4d (submitted to the
OVA sensitization and intraperitoneally treated with biseugenol 10 mg·kg−1 for four days); c) 20 mg4d
(submitted to the OVA sensitization and intraperitoneally treated with biseugenol 20 mg·kg−1 for four
days); (d) DX (submitted to the OVA sensitization and intraperitoneally treated with dexamethasone
5 mg·kg–1, for four days) [11,30,31]. Treated animals subjected to OVA sensitization received daily
biseugenol i.p., since day 21 (if treated for four days) or since day 17 (if treated for eight days) until
the end of protocol. Biseugenol was diluted in DMSO (Sigma-Aldrich, St. Louis, MO, USA) (1:4).
OVA animals were immunized using OVA (30.0 µg) (grade V, Sigma-Aldrich, St. Louis, MO, USA)
dissolved in 25.0 µL saline solution, in the presence of 75.0 µL of Freund’s Complete Adjuvant
(Sigma-Aldrich, St. Louis, MO, USA), administered subcutaneously, on day one of protocol. Challenges
were carried on days 21, 22 and 23 after the immunization, with 10 µL intranasal of a 400 µg·mL−1

solution containing OVA grade II (Sigma-Aldrich, St. Louis, MO, USA) dissolved in phosphate buffered
saline (PBS). Control animals were subjected to saline injections at the same time points as the active
control groups. A dose–response analysis was carried out with biseugenol at 10 mg8d, 10 mg4d and
20 mg4d in order to find the most efficacious dose regimen based on inflammatory cell parameters of
BALF. The chosen biseugenol dose (20 mg4d) was then compared to the DX group as a positive control.

4.8. Evaluation of Respiratory Mechanics

On 24th day, after 30 min of the last dose of biseugenol, dexamethasone or saline treatment,
all mice were anaesthetized (120 mg·kg−1 ketamine + 12.0 mg·kg−1 xilazine i.p.), tracheostomized
and connected to a rodent ventilator (FlexiVent; SCIREQ, Montreal, Canada) with the tidal volume at
10 mL·kg−1, a respiratory frequency of 150 bpm and 3 cmH2O PEEP. The jugular vein was cannulated for
later injection of PBS and acetyl-β-methyl-choline chloride (MCh, Sigma-Aldrich, St. Louis, MO, USA).
Neuromuscular blockage was made by intraperitoneal injection of pancuronium bromide (1 mg·kg−1).
Oscillatory lung mechanics was performed by producing flow oscillations at different prime frequencies
(from 0.25 to 19.625 Hz) for 3 s. Pressure and flow data were obtained and airway impedance was
calculated at each frequency [32]. Airway resistance (Raw), tissue viscance (Gtis) and tissue elastance



Molecules 2020, 25, 5384 11 of 13

(Htis) parameters were obtained by applying the constant phase model after intravenous injection
of PBS and MCh (30, 100 and 300 µg·kg-1). The data used were the mean of the points after the
PBS injection and the peak response after the injection of MCh 30, 100 and 300 µg·kg−1. Still under
anesthesia, animals were exsanguinated by vena cava dissection, and BALF was collected.

4.9. Cells Counting in BALF

The collection of BALF was performed by introducing 0.5 mL of sterile saline into the mice
lungs via a tracheal cannula and withdrawing the fluid into a test tube on ice. This procedure
was repeated three times. The fluid collected was centrifuged at 1000 rpm, for 20 min, at 4 ◦C,
and the cell pellet was re-suspended in 300 µL of a solution containing PBS. Total cells were counted
using a Neubauer hemocytometer chamber and an optical microscope with a magnification of 40X.
BALF differential cell counts were performed using cytocentrifuge slides at 450 rpm for 6 min
(Cytospin 2, Shandon Scientific, Pittsburgh, PA, USA). These slides were stained by differential quick
stain (Instant-Prov, New-Prov, Paraná, Brazil), and differential counts of at least 300 cells were made
according to standard morphologic criteria.

4.10. Correlations

A Spearman rank order correlation analysis was performed in order to evaluate the presence
of correlations between BALF cell count and lung mechanics parameters for all animals evaluated
that were included in both analyses (n = 27). A correlation coefficient of r ≥ 0.7 was considered to
be significant.

4.11. Statistical Analysis

Normality was evaluated by using the Shapiro–Wilk test, and data were expressed as means SE.
The parametric data were analyzed by one-way ANOVA followed by the Student–Newman–Keul’s
post hoc test, using Sigma Stat software version 11 (CA). The significance level was adjusted to p < 0.05.

5. Conclusions

In conclusion, this study demonstrated that biseugenol, a metabolite structurally related
to anti-inflammatory/antiasthmatic magnolol but displaying better physicochemical and ADME
properties, exhibited an expressive anti-inflammatory activity in an experimental model of
mixed-granulocytic ovalbumin-sensitized mice at the dose of 20 mg·kg−1, as observed through
the reduction of both eosinophil and neutrophil counts on bronchoalveolar lavage fluid and by the
decrease in lung airway hyperresponsiveness, with similar efficacy to dexamethasone. Biseugenol was
isolated from the leaves of N. leucantha and easily prepared using a simple procedure (oxidative
coupling) and low-cost reagents (eugenol and potassium ferricyanide) in high purity (100%) and yield
(70%), Therefore, our results suggest that biseugenol, obtained from a natural source or chemically
prepared from simple procedures and reagents (essential for commercial scale-up), could be considered
a candidate for further studies related to asthma treatment to either substitute or be used as combination
therapy with corticosteroids in order to avoid and spare their new metabolic side effects.

Supplementary Materials: The following are available online, Figure S1: 1H-NMR spectrum of biseugenol,
Figure S2: 13C-NMR spectrum of biseugenol, Figure S3: HRESIMS spectrum of biseugenol.
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