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Abstract: 
Specific gene expression regulation strategy using antisense oligonucleotides occupy significant space in recent clinical trials. The 
therapeutical potential of oligos lies in the identification and prediction of accurate oligonucleotides against specific target mRNA. 
In this work we present a computational method that is built on Artificial Neural Network (ANN) which could recognize and 
predict oligonucleotides effectively. In this study first we identified 11 major parameters associated with oligo:mRNA duplex 
linkage. A feed forward multilayer perceptron ANN classifier is trained with a set of experimentally proven feature vectors. The 
classifier gives an exact prediction of the input sequences under 2 classes – oligo or non-oligo. On validation, our tool showed 
comparatively significant accuracy of 92.48% with 91.7% sensitivity and 92.09% specificity. This study was also able to reveal the 
relative impact of individual parameters we considered on antisense oligonucleotide predictions.  
 
 

 
Background: 
Antisense Oligonucleotides (AOs) are short sequences with 7-30 
nucleotides (nt) in length designed to bind a specific region of a 
target messenger RNA (mRNA). Ground theory that highlights 
the concept of antisense strategy is the use of a complementary 
sequence that can inhibit the expression of a specific mRNA. 
The binding of Antisense nucleotides to target mRNA is 
accomplished by standard Watson – Crick base pair interaction. 
When nucleotides pair up, specific gene expression occurs via 
different mechanisms such as RNase-H mediated cleavage, 
interface with splicing, translational arrest and prevention or 
destabilization of the target mRNA. Once target cell receives an 
AO through electroporation or microinjection, this gene 
expression is blocked or disabled through a reversible process 
called gene knock-down. Clinically AOs are proved to have 
immense significance in therapeutical field in the treatment of 
virtual diseases, cancer and inflammation [1]. In addition, this 
helps to exploit the study of gene function and has been 
proposed as a strategy for systematic use in functional 
genomics [2]. Advanced studies on antisense technology as a 
therapeutic agent and as gene expression modulation tool was 
started during late 1960's and 1970's. The report on inhibition of 
prokaryotic gene expression and viral replication using the 

potential of oligodeoxynucleotides blazed the light for such a 
beginning. The far and wide outburst of antisense technology 
was witnessed in the last two decades with the discovery of 
RNA interference (RNAi) mechanism. It enabled deactivation 
or silencing of a specific gene with the advancement in 
automated DNA synthesis and advances in the reel of nucleic 
acid chemistry. Emphasizing on this AO research group, use 
this as a new era technology worldwide in modern drug 
discovery. The antisense approach pioneered the 
transformation of costly and time consuming traditional drug 
designing methods to the present day low cost pharmaceutical 
inventions. Antisense oligonucleotides are finally paving the 
way of functional genomics as the most powerful experimental 
tools in the design of novel pathways and new gene specific 
drugs [3].   
 
One basic question that arises while working with antisense 
oligonucleotides is how to select the exact AO from a cluster 
against a specific target mRNA. Literatures reported various 
experimental and theoretical methods in oligonucleotides 
prediction [4–7]. In most cases the experimental in-vivo AO 
screening time-line and expense stands incomparably high. At 
this point, necessity of computational prediction approaches got 
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intensified and later on scientists were successful in their 
efforts.  
 
Computational approaches eased many tedious works like 
structural predictions of target mRNAs, target pairing regions 
and promising sites for oligo binding [8]. Consequently, while 
the experimental cost and AO testing duration got subdued, the 
efficacy achieved seemed to be significantly fair. 
 
Outline of existing computational methods  
The computational methods for oligonucleotide prediction can 
be classified into mathematical methods, motif discovery and 
machine learning techniques. Among mathematical methods, 
two major ones are statistical studies by sampling secondary 
structures and computational formalization for optimal 
oligonucleotide microarray synthesis. Charles revealed 
mathematical modeling of different cellular mechanistic events 
while an AO associates with its target [9].  Mathematical models 
were created to describe antisense activity under steady state 
and dynamic conditions based on AO mass action kinetics. Itsik 
et al. discussed a polynomial algorithm that reconstructs long 
DNA targets by universal oligonucleotides [10]. A work 
reported that ten sequence motifs have been identified with 
significant correlation coefficient value for oligo activity [11]. 
Discovery of motif sequences incorporated with soft computing 
approaches like artificial neural network enables better 
understanding of factors affecting oligo predictions [12]. Infact 
AOs can be designed and synthesized in laboratories by motif 
discovery [13].  
 
Soft computing approaches like ANN, SVM and HMM are 
popularly good classification approximation and knowledge 
discovery machine learning techniques for efficient AO 
prediction. Gustavo et al. proposed an SVM based AO 
prediction and efficacy analysis using correlation analysis, the 
mutual information feature selection and recursive feature 
elimination [14].  
 
Methodology: 
Dataset preparation 
We collected the data from published literatures [11, 12, 14, 15]. 
We used experimentally validated oligo sequences in the 
training set. We defined a scoring system with a range 0 – 1 to 
measure oligo: target mRNA binding intensity. We fixed '0.5' as 
cut-off score value with the consideration that oligos that fall 
above '0.5' tend to have stable binding and those fall below '0.5' 
show poor binding. We set a score value of '1' for absolute oligo: 
mRNA locking and '0' for no locking. Thus positive dataset 
survived with those successful oligos based on cut-off after 
filtration and classification process. We ignored those oligos 
that fell below cut-off score assuming poor binding.  
 
The required negative dataset was generated after manual cross 
validation of sequences. Since randomly generated sample 
sequences could create ambiguities, they are completely 
avoided from the training set. Target nucleotide positions in the 
target sequences were changed either by insertion or deletion. 
Nearly 1 to 3 position changes of this kind were done per 
sequence in order to generate large negative samples. We then 
aligned all training dataset sequences. The good stand alone 
negative dataset was built up by removing those sequences that 
showed repetition and any kind of matches after sequence 

alignment. Thus we had a total of 423 oligo patterns out of 
which 180 served as positive and 243 served as negative dataset.  
 
Parameter calculation 
Several parameters associated with oligo:mRNA hybridization 
was identified and examined for its behavioral function to the 
duplex formation using Principle Component Analysis (PCA). 
We could find a set of 11 most relevant parameters as the 
outcome of PCA scaling results listed in Table 1 (see 
supplementary material). We categorized these selected 
features under two classes – structural parameters 1 to 7 in 
Table 1 and thermodynamic parameters 8 to 11 in Table 1. 
Structural Parameters show the potency of oligo binding based 
on local secondary structural analysis of the target and 
thermodynamic parameters allow a precise prediction of 
oligonucleotide stability. All these calculations are done using 
nearest neighbour (NN) method. Table 2 (see supplementary 
material) presents the thermodynamic nearest neighbor (NN) 
parameters for Watson- Crick base pairs in 1 M NaCl. 
 
Method for Generating AO 
Sliding Window by Matrix Expansion  
Inorder to generate oligonucleotides, we used a method - 
sliding window by matrix expansion. The method defines a 
window of nucleotides with a predefined constant value 5 as 
window size. When this window is slided across the target 
sequence, oligonucleotide sequences are generated from one 
end to the other end. The exact complementary sequence to the 
mRNA subsequence is generated and is validated against its 
parameter cutoffs. If values are above the cutoff, subsequence is 
considered as an oligonucleotide and subsequently added to the 
oligonucleotide set. The generated oligo sequence is randomly 
changed to produce three oligo nucleotide matrices.  Again, 
each of these oligo is verified against the specified criteria 
described in the parameter selection and resulting sets are 
generated accordingly. 
 
After completing the matrix expansion, window is slides 
toward right to the next position of the target mRNA. 
Validation process is done on each oligo generated and the 
successful ones are added to the set. The whole process is 
repeated and continued till the required oligos are generated or 
end of the mRNA is reached. 
 
Training Network Architecture 
We have trained a multilayer feed forwarded Artificial Neural 
Network (ANN) with error back propagation algorithm for 
validating the generated AOs. The ANN’s input layer has 11 
nodes to feed 11 selected oligo features, hidden layer has 8 
nodes fixed by trial and error method and output layer has 1 
node to measure the desired output as a score of either 0 (low) 
or 1 (high). That means predictor scores 1 for an 'oligo' and 0 for 
'non-oligo'. The ANN is trained with a total of 290 oligo 
sequences consisting of 105 positive dataset having their 
experimentally determined mRNA targeting activities and 185 
negative dataset which are manually verified for its exclusion 
from the positive dataset. Thus, out of 423 patterns obtained 
during dataset preparation, 290 were used as training set and 
rest patterns were kept as testing dataset. The learning rate is 
set as o.2. Increasing sigmoid function is chosen as the 
activation function since these functions are mathematically 
well behaved and enables smooth transition between 0 and 1. 
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Figure 1: ROC Curve of learning rate validation performance. 
 
Results and Discussion: 
Our tool predicts antisense oligonucleotides for a given set of 
input sequence. In order to study the response of the trained 
neural network, we have conducted 2 different levels of cross 
validation examinations. Both validations were done using the 
test dataset of 133 elements composed of 78 positive and 55 
negative samples that were kept aside during ANN training. 
Test examples were carefully verified for its exclusion from the 
training sequences.  
 
The tool efficiency accounts for the measure of overall predictor 
performance expressed in the standard terms, sensitivity and 
specificity. The parameter, accuracy ranks the quality of test 
performance by the predictor. Sensitivity (Sn) is the ratio of true 
positive to sum of true positive and false negative and 
specificity (Sp) is the ratio of true positive to sum of true 
positive and false positive. Accuracy (Acc) accounts for the 
proportion of true data in the total testing data set. Tool 
performance is rated high when both sensitivity and specificity 
measures show high scores. Each term is expressed as shown in 
supplementary material. 
 
Validation with learning rates  
First level validation was carried out for different values of 
learning rate, η. The system performance was analyzed and 
compared during every training period. Table 3 (see 
supplementary material) depicts the test result of five training 
sessions to find ideal oligos against target mRNA. We included 
only those five epochs in the table 3 since they gave significant 
values for the prediction. The test showed enhanced 
performance at lower learning rates from which could conclude 
that our model is an efficient one. These differential effects 
could be best viewed with the help of ROC curves. ROC graph 
plots true positive rate (sensitivity) along y-axis and false 
positive rate (1- specificity) along x-axis. The area under the 
curve corresponds to the measure of model accuracy. When 
plotted, we could find that the maximum area coverage under 
the curve is 92.48%. This is considered as the best prediction 
result with 92.09% specificity and 91.7% sensitivity for a 
threshold 0.92. Figure 1 shows ROC plot of the same. For other 

values of learning rates, ROC area showed decrement but 
promising accuracy.  
 

 
Figure 2: Performance comparison summary of validations (a) 
Blue line indicates the performance when all features are 
included. (b) Green line indicates the performance for one 
feature replacement to ANN input. (c) Red line indicates the 
performance for two parameter replacement to ANN input. 
Area under the curve 
 
Validation on parameter impacts 
Second level testing was performed based on the analysis of 
effects of selected features. The same first test examples were 
used for this analysis. We examined the relative impact of 
individual parameter on the overall system performance on a 10 
x 1 basis. That is, we made changes in the ANN input vectors 
by replacing one known feature out of eleven in the parameter 
set with an unknown feature. Each time the network 
performance was measured with same training and testing 
dataset. Resultant accuracies are compared with the accuracy 
produced while all parameters are in the dataset (92.48%). It is 
seen that accuracy attained during each feature change over is 
notably different. Depending on this relative comparison, we 
ranked the influence of each parameter in the prediction 
process and are listed in Table 4 (see supplementary material). 
It is obvious that thermodynamic parameters show immense 
impact than structural parameters in antisense oligonucleotide 
predictions. We carried out an evaluation to know the response 
of this system when combinations of only two parameters are 
considered. Validation yielded decreasingly varying accuracy 
results depending on parameter combination constrains. The 
summary of various performance outcomes of all validation 
tests are shown in (Figure 2).   
 
Our study started with 2 main objectives related to antisense 
oligo nucleotides. One was to design a computational tool for 
predicting the efficiency of a given antisense oligonucleotide 
and second was to predict antisense oligonucleotide that binds 
to target mRNA with high efficiency. We availed good results 
for both the objectives. Meanwhile, other than these two 
primary objectives, we were able to produce two more results. 
The first is a provision to filter mRNA by specifying the value 
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of each parameter. Another one is to find out the value of each 
parameter corresponding to an oligonucleotide. 
 
Our system performance was compared with the existing 
initiatives in computational AO prediction techniques based on 
Artificial Neural Network. A previous approach using ANN 
classifier generated 92% success rate. When compared with this, 
our work highlights enhanced performance as well as ranking 
of both thermodynamic and structural features associated with 
AO predictions.  
 
Conclusion: 
We have derived an antisense prediction methodology that 
might help to obtain highend systematic knockdown of targets. 
An artificial neural network classifier was trained with 
experimentally validated dataset. Eleven parameters were 
identified and fed to ANN to get optimal output. We obtained 
appreciable system performance in terms of sensitivity (91.7%), 
specificity (92.09%), and accuracy (92.48%). The role and impact 
of some relevant thermodynamic and structural parameters in 
AO predictions are estimated. Our method predicts AO's under 
two categories – low efficacy AO's and high efficacy AO's. Soft 
computing community could implement other classification 
techniques to maximize sensitivity. The computational 
technique used here within could be expanded or coupled to 
identify new and better oligomers to impart better translational 
block depending on individual properties. However, 
experimental validation holds the final statement in digging out 
the hidden potentials of antisense oligonucleotide. We believe 
that our work could be a reference to future researchers in this 

field who tries to bridge the gap between computational and 
experimental strategies of antisense oligonucleotide predictions.  
 
References:  
[1] Opalinska JB & Gewirtz AM, Nat Rev Drug Discov. 2002 1: 

503 [PMID: 12120257] 
[2] Dean NM, Curr Opin Biotechnol. 2001 12: 622 [PMID: 

11849945] 
[3] Huber LC et al. Adv Drug Deliv Rev. 2006 58: 285 [PMID: 

16574269] 
[4] Allawi H et al. RNA. 2001 7: 314 [PMID: 11233988] 
[5] Ho SP et al. Nucleic Acids Res. 1996 24: 1901 [PMID: 8657572] 
[6] Ho SP et al. Nat Biotechnol. 1998 16: 59 [PMID: 9447595] 
[7] Milner N et al. Nat Biotechnol. 1997 15: 537 [PMID: 9181575] 
[8] Chandra V et al. BMC Bioinformatics. 2010 11 Suppl 1: S2 

[PMID: 20122191] 
[9] Roth CM, Biophys J. 2005 89: 2286 [PMID: 16055530] 
[10] Pe'er I et al. Proc Natl Acad Sci U S A. 2002 99: 15492 [PMID: 

12429861] 
[11] Matveeva OV et al. Nucleic Acids Res. 2000 28: 2862 [PMID: 

10908347] 
[12] Giddings MC et al. Nucleic Acids Res. 2002 30: 4295 [PMID: 

12364609] 
[13] Adams AM et al. BMC Mol Biol. 2007 8: 57 [PMID: 

17601349] 
[14] Gustavo CV et al. BMC Bioinformatics. 2004 5: 135 [PMID: 

15383156] 
[15] Xiaochen BO et al. Nucleic Acids Res. 2006 34: D664 
 

Edited by P Kangueane 
Citation: Anusha & Chandra, Bioinformation 8(23): 1162-1166 (2012) 

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, 
for non-commercial purposes, provided the original author and source are credited 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



BIOINFORMATION open access 
 

ISSN 0973-2063 (online) 0973-8894 (print)   
Bioinformation 8(23): 1162-1166 (2012) 1166  © 2012 Biomedical Informatics 
 

Supplementary material: 
 
Term used in discussion:  
Sensitivity (Sn)= TP

(TP+FN )  

Specificity (Sp)= TP
(TP+FP)  

Accuracy (Acc)= (TP+TN )
(TP+TN+FP+FN )  

Table 1: Selected parameters for oligo validation. Structural parameters (Numbered 1 to 7) and thermodynamic parameters (Numbered 8 to 11) 
No Parameter Parameter Description 
1 Length Sequence length of oligonucleotide 
2 GC Content Percentage of guanine or cytosine residues in oligo sequence 
3 AU Content Percentage of Adenine or Uracil (Thymine) in oligo sequence 
4 Molecular Weight Sum of molecular weights of each of the nucleotides 
5 Seed Score Sum of pair scores in the seed region 
6 GC Pairs Proportion of total G:C pairs in oligo sequence 
7 AU Pairs Proportion of total A:U pairs in oligo sequence 
8 Enthalpy (∆H) Change in enthalpy of oligo base stacking interactions adjusted for helix initiation factors in kcal/mol 

9 Entropy (∆S) Change in entropy of oligo base stacking adjusted for helix initiation factors and for the contributions of salts to the entropy 
of the system in kcal K-1 mol-1 of interaction 

10 Free Energy (∆G) Minimum free energy called Gibbs free energy of the sequence 
11 Melting Temperatures Temperature at which 50% of the oligonucleotide and its perfect complements are in duplex 

 
Table 2: Thermodynamic parameters for nearest-neighbour melting temperature 

Propagation Sequence ∆H° (kcal/mol) ∆S° (e.u.) ∆G° (kcal/mol) 
AA/TT -7.6 -21.3 -1.00 
AT/TA -7.2 -20.4 -0.88 
TA/AT -7.2 -21.3 -0.58 
CA/GT -8.5 -22.7 -1.45 
GT/CA -8.4 -22.4 -1.44 
CT/GA -7.8 -21.0 -1.28 
GA/CT -8.2 -22.2 -1.30 
CG/GC -10.6 -27.2 -2.17 
GC/CG -9.8 -24.4 -2.24 
GG/CC -8.0 -19.9 -1.84 
Initiation +0.2 -5.7 +1.96 
Terminal AT penalty +2.2 +6.9 +0.05 
Symmetry correction 0.0 -1.4 +0.43 

 
Table 3: Prediction performance with respect to learning rates 

Learning rate, η   Sensitivity (Sn) (%)  Specificity (Sp)(%) 
 0.30 40.08 96.50 
 0.24 69.01 96.03 
 0.15  81.00 95.01 
0.11 82.90 94.00 
0.01 85.10 93.20 
0.005 83.84 93.95 

 
Table 4: Ranking of parameters 

Rank Selected Parameters 
1 Gibbs free energy 
2 G:C content 
3 Entropy 
4 Melting Temperature 
5 Seed Score 
6 Enthalpy 
7 G:C pair 
8 A:U pair 
9 A:U content 
10 Molecular weight 
11 Length 

 


