
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2009, Article ID 352954, 11 pages
doi:10.1155/2009/352954

Research Article

Image Processing Techniques for Assessing Contractility in
Isolated Adult Cardiac Myocytes

Carlos Bazan,1 David Torres Barba,1 Peter Blomgren,2 and Paul Paolini3

1 Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego,
CA 92182-1245, USA

2 Department of Mathematics & Statistics, San Diego State University, 5500 Campanile Drive, San Diego,
CA 92182-7720, USA

3 CardioMyocyte Dynamics Lab, Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego,
CA 92182-4614, USA

Correspondence should be addressed to Carlos Bazan, carlos.bazan@sdsu.edu

Received 24 August 2009; Accepted 21 November 2009

Recommended by Jun Zhao

We describe a computational framework for the comprehensive assessment of contractile responses of enzymatically dissociated
adult cardiac myocytes. The proposed methodology comprises the following stages: digital video recording of the contracting
cell, edge preserving total variation-based image smoothing, segmentation of the smoothed images, contour extraction from the
segmented images, shape representation by Fourier descriptors, and contractility assessment. The different stages are variants
of mathematically sound and computationally robust algorithms very well established in the image processing community. The
physiologic application of the methodology is evaluated by assessing overall contraction in enzymatically dissociated adult rat
cardiocytes. Our results demonstrate the effectiveness of the proposed approach in characterizing the true, two-dimensional,
“shortening” in the contraction process of adult cardiocytes. We compare the performance of the proposed method to that of
a popular edge detection system in the literature. The proposed method not only provides a more comprehensive assessment of
the myocyte contraction process but also can potentially eliminate historical concerns and sources of errors caused by myocyte
rotation or translation during contraction. Furthermore, the versatility of the image processing techniques makes the method
suitable for determining myocyte shortening in cells that usually bend or move during contraction. The proposed method can
be utilized to evaluate changes in contractile behavior resulting from drug intervention, disease modeling, transgeneity, or other
common applications to mammalian cardiocytes.
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1. Introduction

Worldwide, it is estimated that 17.5 million people die of
cardiovascular disease (CVD) every year, with an approx-
imate cost of C310.23 billion (World Heart Federation.
Available at http://www.worldheart.org. Accessed 20090514).
Because CVD remains the main cause of death in the
world, considerable amounts of resources are devoted to
cardiovascular research every year.

The study of cardiocyte contractility has helped unveil
the fundamental processes underlying heart function in
health and disease [1, 2]. The analysis of cardiocyte mechan-
ics has historically proven an excellent tool in providing

relevant information on the excitation-contraction coupling
of the heart. Many inotropic factors modulate the contractile
behavior of the heart, which can be conveniently studied
in enzymatically dissociated (isolated) cardiocytes [2–5].
Researchers commonly measure calcium transient signals,
gene and protein expression, and contractility to assess the
function and state of these isolated cardiocytes in all their
stages [1, 6].

Isolated adult, neonatal, and embryonic cardiocytes from
mammalian hearts are widely used in cardiovascular research
[2–5]. Adult cardiac ventricular myocytes have been used
as analysis tool in cardiovascular research for almost thirty
years, and the popularity of this approach is constantly
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reinforced by the numerous studies published every year [3].
However, during the last decade, the majority of researchers
performing long-term (longer than 1 week) studies have
favored the use of embryonic and neonatal cardiocytes [5].
Yet, changes in expression of ion channels and contractile
protein isoforms during the development of the cardiocytes,
pose a problem when making the extrapolation to the fully
developed adult cardiocyte. These are strong reasons for
researchers to consider using adult cardiocytes when possible
[5].

There are several methodologies for assessing the con-
tractility of cardiocytes. The most popular methods include
the ones that use laser diffraction techniques [7] and
photodiode arrays [8], and those that employ the monitoring
of microscopic cell images [9–11]. Among the latter of these
is the edge detection method that employs a raster-line to
detect changes in myocyte length by sensing left and right
cell boundaries using a threshold [10]. This edge detection
method is a widespread approach in research involving adult
cardiocytes [4, 10, 12, 13]. This method presents some
practical difficulties in its implementation. Geometrical and
boundary characteristics of adult cardiocytes are the most
commonly irregular due to gap junction ends (jagged edge
ends), multiple intercalated disks, and variable cell widths,
which can potentially complicate the application of the edge
detection system on the cardiocyte [4]. Cardiocyte motion
can also occur in unexpected directions since cardiocytes will
commonly rotate or move vertically—perpendicular to the
raster line—depending upon the location or absence of adhe-
sion points [4]. These conditions can lead to complications
in the implementation of the edge detection system, and
consequently, can result in an inaccurate analysis [4, 12, 13].

2. Background and Previous Work

The cardiac myocyte is approximately 25 μm in diameter
and about 100 μm in length. It is composed of bundles of
myofibrils that contain myofilaments. Myofibrils have dis-
tinct, repeating microanatomical units, termed sarcomeres,
which are the basic contractile units that make up a myocyte.
The region of myofilament structures between two Z-lines
is defined as a sarcomere. The Z-line’s associated structures
are responsible for the lateral alignment of myofibrils and
the generation of active contraction in cardiac muscles
[14]. The distance between Z-lines—which is equivalent to
the sarcomere length—ranges from about 1.6 to 2.2 μm in
human hearts. The sarcomere is composed of thick and
thin filaments, myosin and actin, respectively. Chemical
and physical interactions between the actin and myosin
cause the sarcomere length to shorten, allowing the myocyte
to contract during the process of excitation-contraction
coupling [15].

Contractility can be defined as the intrinsic ability of
the heart muscle to generate force and to shorten. At the
molecular level, the contractile process originates from the
change in concentrations of calcium (Ca2+) ions in the
myocardial cytosol. Ca2+ ions enter through the calcium
channel that opens in response to the wave of depolarization

that travels along the sarcolemma. These Ca2+ ions trigger
the release of additional calcium from the sarcoplasmic
reticulum, thereby initiating a contraction-relaxation cycle
[16].

The need for an accurate method to assess different
aspects of a myocyte has led researchers to explore several
techniques in order to quantify contractility. Some of these
methods are not very popular due to the expensive equip-
ment required, as in the case of the scanning ion conductance
microscopy method [6]. This method involves using a
distance modulated approach for scanning ion conductance
microscopy. It provides a distance control mechanism to
image surface sections of contracting myocytes. This tech-
nique, combined with laser confocal microscopy, measures
myocyte height and local calcium concentration during
contractility.

Other methods—such as light diffraction techniques—
have been applied to the study of muscle mechanics since
the nineteenth century [17]. The reliability of these studies
is relatively high, although they are highly dependent upon
different factors. These include the temporal resolution
of the detection system, sarcomere periodicity values, and
other optical artifacts [4]. The sarcomere striation pattern
detection method has also been used as a way to quantify
contractility. The method can achieve high temporal res-
olution with the aid of CCD line array detectors and it
provides a measure of average sarcomere periodicity from
the entire cell or cell regions [18]. One drawback is this
method’s vulnerability to errors introduced by cell geometry
and rotational and translational changes which can occur
during contraction [4].

One of the first video-based efforts to measure contrac-
tion was performed with the assistance of a device capable of
capturing the extent and rate of length shortening of isolated
cardiac myocytes [10]. The video-based method uses two
tracking points at each end of the myocyte to track edge
displacement as the myocyte contracts. The distance between
the two edges is measured using edge detection while a record
of the data is stored in a separate file. The method generally
produces satisfactory results and has been an approved and
widely used method for measuring contractile responses of
adult myocytes for over twenty years [4, 12].

Several problems have been identified with the applica-
tion of the video-based edge detection method for measuring
adult myocyte contractility [4]. The method can potentially
introduce errors to the analysis caused by several factors.
The first inconvenience when analyzing myocyte contractility
with this method is the need to have the cell positioned
parallel to the raster-line. The myocyte should be perfectly
positioned in the center of the screen (parallel to the raster-
line), and the proper threshold conditions must be set to
detect the edges and follow them through a contraction.
These threshold conditions are somewhat difficult to set
depending upon the characteristics of the cell. The most
important source of error that can be potentially introduced
during the application of this method is the result of
unexpected myocyte movements. Myocytes will often rotate
sideways or out of the plane of focus depending upon the
presence or absence of adhesion points. The changes in
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myocyte geometry, dynamic torquing, and rotation can lead
to errors in the experiment [2, 4, 12].

We propose a complete computational framework-based
on well-established image processing techniques for the
assessment of contractility of isolated cardiac myocytes. The
proposed methodology is a multi-step process that provides
a comprehensive account of the cardiac myocyte contraction
process. The proposed method is discussed in the next
section.

3. Materials and Methods

The proposed computational framework for assessing the
contractility in cardiac myocytes comprises the following
stages: digital video recording of the contracting cell, edge
preserving total variation-based image smoothing, segmen-
tation of the smoothed images, contour extraction from
the segmented images, shape representation by Fourier
descriptors, and contractility assessment.

Previous to the application of the proposed methodology,
the specimen is appropriately prepared as follows. Sprage-
Dawley rats purchased from Harlan (CA, USA) were used for
this study. The cardiocytes were enzymatically dissociated as
described in [19]. After the isolation, the cells remained in
the incuvator at least 12 hours in serum-free Medium 199
(GIBCO 12350, Invitrogen Corporation, Carlsbad, CA, USA)
before any measurements were performed. Once ready for
measurements, the cells were washed twice using serum-free
media. Fresh media was then gently added back to the wells.
Cardiocytes were platted without Laminin to ensure that the
cells were free floating (without adhesion points) in the wells
during the digital video recording.

3.1. Digital Video Recording. To capture the contraction pro-
cess of the isolated cardiac myocytes the following procedure
was employed. Cells were placed in a chamber mounted
on the stage of an inverted microscope (NIKON #ELWD,
Nikon Corporation, Tokyo, Japan). Myocytes with obvious
sarcolemmal blebs or spontaneous contractions were not
used. Only rod-shaped myocytes with clear edges were
selected for recording of mechanical properties. The cells
were field stimulated with a suprathreshold (50%) voltage
at a frequency of 0.33 Hz, for a 3 millisecond duration.
The stimulation was performed using a pair of platinum
wires placed on opposite sides of the chamber connected
to an electrical stimulator (Grass SD9, Grass Technologies,
West Warwick, RI, USA). The polarity of the stimulatory
electrodes was reversed automatically every 10 stimuli to
prevent electrode polarization. Myocyte motion was digitally
recorded with a camera (PULNIX TM-1327, JAI PULNiX
Inc., San Jose, CA, USA) mounted on the microscope, at a
rate of 30 fps. Video files containing the contraction activities
were stored for the analysis.

3.2. Edge Preserving Total Variation-Based Image Smoothing.
We chose a total variation-(TV-)-based method for smooth-
ing isotropic regions while preserving the cell’s edges in
order to facilitate the segmentation step of the computational

framework. Rudin et al. [20] have argued that there are a
number of reasons for preferring TV-based image smoothing
models over their counterparts. TV-based algorithms are
relatively simple to implement and result in minimal ringing
(nonoscillatory) while recovering sharp edges (noninvasive).
In other words, the TV-norm allows piecewise smooth
functions with jumps and is the proper space for the analysis
and recovery of discontinuous functions. Also, the TV-based
formulations make a priori assumptions about the noise,
and therefore they can be tailored to address the specific
image restoration problem at hand. Furthermore, empirical
evidence suggests that “the human vision favors the L1-
norm” [21]. In summary, the TV-based formulations seem
to be a suitable approach for restoring piecewise continuous
functions from noisy and blurry signals. Appendix A pro-
vides a more detailed exposition of the original TV-based
formulation due to Rudin et al. [22] along with some of the
improvements proposed over the years, including the ones by
two of the authors of this paper [23–25].

The edge preserving TV-based image smoothing model
used in our experiments is given by

ut − |∇u|∇ ·
( ∇u
|∇u|

)
+Λ(u− u0) = 0, on Ω× [ 0,∞),

u(x, 0) = u0(x), on Ω,
〈
g · ∇u, n

〉 = 0, on ∂Ω× (0,∞),
(1)

where u and u0 are the filtered and the observed images,
respectively. The dynamic parameter Λ is defined as

Λ = − 1
2σ2

∇uT · (∇u−∇u0), ∀t (2)

with the approximation to the variance of the noise σ2 given
by

var
(
ηt+1) = var

(
ut
)− var

(
Gσ ∗ ut

)
, ∀t, (3)

and the dynamic time step expressed as

δt = ε

5
+
(

1
4
− ε

5

)(
max(|∇u|)− |∇u|

max(|∇u|)
)

, ∀t, (4)

with ε = 1/255. For more details on this model the
reader is referred to [23]. The algorithm to implement
the edge preserving total variation-based image smoothing
model is given in Appendix B. Figure 1 shows an example
of the application of the edge preserving TV-based image
smoothing model to a frame depicting an adult myocyte.

3.3. Segmentation of the Smoothed Images. Segmentation of
an image produces a set of labeled partitions or segments
that represent the different components or features. This
simplified image allows for an easier extraction of the main
contours of the image. In our application this facilitates the
identification of the contours of the cell that will permit
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(a)

(b)

Figure 1: (a) Original image of enzymatically dissociated adult
cardiocyte taken from video depicting contractile activity. Con-
tractile activity was recorded using bright light microscopy, while
the cell was in a field stimulated chamber. (b) Smoothed image
of the same enzymatically dissociated adult cardiocyte during
contractile activity, after applying the edge preserving TV-based
image smoothing algorithm.

(a)

(b)

Figure 2: (a) Segmented image of enzymatically dissociated adult
myocyte taken from video depicting contractile activity. (b) Final
contour extracted from the segmented image of enzymatically
dissociated adult myocyte taken from video depicting contractile
activity.

the assessment of contractility of the cardiac myocyte. Most
segmentation algorithms can be used for this purpose. In
our application, the speed of execution becomes the principal
constraint—because the segmentation of several hundreds of
images is required. Thus, we implemented a fast and robust
segmentation technique-based on the one presented in [26].
Figure 2-Top shows the segmented image of the cell after
applying the segmentation procedure.

3.4. Contour Extraction from the Segmented Images. For the
contour extraction step of the framework we employ the
built-in MATLAB (The MathWorks, Inc., Natick, MA, USA)
function that creates a contour plot of image data. We
convolve the extracted contour with a Gaussian kernel to
eliminate the typical noise produced in the segmentation
procedure. We also resample the contour points in all
the frames so that they will have the same number of
contour points and for this to be equal to 2M , M ∈ N.
This facilitates the implementation of the discrete Fourier
transform algorithm of the next section.

3.5. Shape Representation by Fourier Descriptors. Fourier
descriptors have been extensively proposed for the purpose
of shape recognition, retrieval, classification, and analysis
[27–35]. Among the contour-based shape representation
methods the ones that have proven more promising for our
application are the complex coordinates function and the
centroid distance function. In both methods, the Fourier
transformed coefficients form the Fourier descriptors of
the shape. These Fourier descriptors represent the shape
of the object in the frequency domain. The number of
Fourier coefficients generated from the Fourier transform
is normally large. Nonetheless, the lower frequency Fourier
descriptors are the ones that contain the main information
about the overall features of the shape. The higher frequency
Fourier descriptors, in turn, contain information relative
to the finer details of the shape. Therefore, only a relative
small number of Fourier descriptors are usually employed
to capture the overall features of the shape [36]. For
completeness, we present both methods in the following
subsections.

3.6. Complex Coordinates Function Method. Let p(n) =
(x(n), y(n)), for 0 ≤ n ≤ N − 1, be a discrete function
representing the coordinates of a (closed) contour of an
image’s shape in the Cartesian space, such as the one in
Figure 2(b). In the complex plane, we can define this contour
as a complex coordinates function q, such that

q(n) = x(n) + j y(n). (5)

Then, the Fourier descriptors for the contour of the shape—
described by q—can be computed using the discrete Fourier
transform (DFT) [37]. These Fourier descriptors are the
normalized Fourier coefficients

Q(k) = 1
N

N−1∑
n=0

q(n)e− j2πkn/N , k = 0, . . . ,N − 1, (6)

which represent the discrete contour of the shape in the
frequency domain [38, 39].

In order to use the Fourier descriptors as abstract repre-
sentation of image features in each frame, it is customary to
make them invariant to translation, scale, rotation, and their
starting point. (In some cases, retaining the step information
can be advantageous [38].) For our particular application,
we want the Fourier descriptors to change covariantly
with the shape of the cell. In other words, we want the
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Fourier coefficients to capture the contractions of the cell,
disregarding only the translation and rotation of the cell. (We
also want to make the Fourier descriptors independent of
their starting point.)

Translation of the contour function by τ ∈ C results
in a change only to the first Fourier descriptor, Q(0).
Therefore, by setting Q(0) = 0, we move the centroid of the
contour onto 0, and make the Fourier descriptors invariant
to translations. Invariance with respect to the starting point
can be achieved by subtracting the step of the second Fourier
descriptor, ϕ1 = tan−1(ImQ(1)/ReQ(1)), weighted by k,
from the step of all the Fourier descriptors, Q(k)e− jϕ1k.
Rotation of the contour function by an angle θ corresponds
to a constant step shift of θ in the Fourier descriptors.
We can make the Fourier descriptors rotation invariant by
computing the magnitude of the Fourier descriptors, |Q(k)|.
The performance of this method is almost identical that of
the centroid distance function method explained in the next
subsection.

3.7. Centroid Distance Function Method. A shape signature—
a one-dimensional function derived from the shape bound-
ary coordinates p(n) = (x(n), y(n)), for 0 ≤ n ≤ N − 1—
can be used to generate Fourier descriptors of the shape [39].
Fourier descriptors derived from centroid distance function
generally outperform other shape signatures [36, 40]. The
centroid distance function of a shape is expressed by the
distance of the points on the shape’s boundary from the
centroid (xc, yc) of the shape

r(n) =
(

(x(n)− xc)2 +
(
y(n)− yc

)2
)1/2

, (7)

where

xc = 1
N

N−1∑
n=0

x(n), yc = 1
N

N−1∑
n=0

y(n). (8)

Figure 3 shows the centroid distance function of the cell
shape used in the description of these methods. Since
function (7) is real-valued, there are only N/2 distinct
frequencies in the Fourier transform. Thus, only half of the
Fourier descriptors will be necessary to describe the shape.
Also, by construction, the shape signature r(n) is invariant
to translation. Therefore, we only need to make the Fourier
descriptors invariant to rotation and the starting point by
identical procedures as in the case of the complex coordinates
function method. Figure 4 shows two identical cell shapes,
one of which has been translated and rotated with respect
to the other. Along with the two shapes, Figure 4 shows
both of their first 30 Fourier descriptors superimposed.
We observe that both sets of Fourier descriptors match
almost perfectly for the case of translation, rotation, and
starting point invariance. Figure 5 shows two cell shapes of
which one is slightly smaller and has been translated and
rotated with respect to the other. Along with the two shapes,
Figure 5 shows both of their first 30 Fourier descriptors
superimposed. We observe that their Fourier descriptors
are able to capture this change in shape size by making
the Fourier descriptors variant to scale but invariant to
translation, rotation, and starting point.
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Figure 3: Centroid distance function of the cell shape used in our
discussion. The profile of this centroid distance function will be
typical in our application.

(a)

0

20

40

60

80

100

120

0 5 10 15 20 25 30

(b)

Figure 4: (a) Two identical cell shapes in which one of them has
been translated and rotated with respect to the other. (b) first
30 Fourier descriptors for both shapes for the case of translation,
rotation, and starting point invariance.

4. Experimental Results

We tested the proposed approach by assessing the contractile
responses in isolated adult rat cardiocytes, and compared
them against the classic raster-line approach [9–11]. We
used a sequence of digitized images obtained as previously
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Figure 5: (a) Two cell shapes in which one of them is larger
than the other. (b) first 30 Fourier descriptors superimposed. We
observe that their Fourier descriptors are able to capture this
change in shape size making the Fourier descriptors variant to
scale but invariant to translation, rotation, and starting point. The
“contraction” of the shape is 8.15% as measured by the Euclidean
distance of the Fourier descriptors.

described for both the proposed method and the raster-
line technique. Our results show good qualitative agreement
between both methods as far as frequency, pacing, and
overall behavior of the contractions are concerned (see
Figure 6). Nonetheless, the raster-line method—being a one-
dimensional technique—is unable to capture the contraction
processes occurring outside its domain of influence. The
proposed method, on the other hand, captures the contrac-
tion of the cell as a two dimensional event over the entire
boundary of the cell. The proposed methodology was also
able to capture a slower recovery period than the raster-
line method (see Figure 7), which can be attributed to the
dimensionality characteristics of both methods. This means
that the proposed method is capable of not only assessing
the myocyte’s length, but also its overall changes in shape
and geometry. In other words, it is capable of assessing
the myocyte’s dimensional changes during contraction while
remaining invariant to rotation, translation and starting
point.

5. Discussion

We presented a complete computational framework for
the comprehensive assessment of contractile responses of
isolated adult cardiac myocytes. The proposed methodology
comprises the following stages: digital video recording
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Figure 6: (a) Contraction record of adult enzymatically dissociated
rat myocyte under electrical stimulation, analyzed using proposed
image analysis-based contractility measuring method. (b) Contrac-
tion record of adult enzymatically dissociated rat myocyte under
electrical stimulation, analyzed using edge detection system.
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Figure 7: Average of four contractions shown in Figure 6 for both
the video-based edge detection system (dashed) and our proposed
image analysis-based contractility measuring method (solid). The
contractile responses were normalized to fit a desired range. Both
records exhibit similar behaviors during the precontraction period,
and the contraction to 90% relaxation period, whereas the records
show a noticeable difference in the late relaxation period that can be
attributed to the two dimensional properties of the proposed image
analysis-based contractility measuring method.

of the contracting cell, edge preserving total variation-
based image smoothing, segmentation of the smoothed
images, contour extraction from the segmented images,
shape representation by Fourier descriptors, and contractility
measurements. These stages are-based on mathematically
sound and computational robust algorithms that are very
well established in the image processing community. This
makes the methodology easy to understand and implement.



International Journal of Biomedical Imaging 7

Table 1

N ⇐ 100 number of iterations (%)

ε ⇐ 1/255 regularization parameter (%)

σ ⇐ 1 Gaussian kernel’s width (%)

d ⇐ 2 dimensionality of problem (%)

u(x, 0) ⇐ u0(x), on Ω set initial condition (%)

∇u0 ⇐ [(u0)x (u0)y]
T estimate gradients (%)

c1 ⇐ corr (u, f ) performance measure (%)

c1 ⇐ corr (u,u0) correlation measure (%)

for i = 1 to N do

uσ = Gσ ∗ u convolve image with Gaussian kernel (%)

σ2 = var(u)− var(uσ) estimate variance of the noise (%)

∇u⇐ [ux uy]
T estimate gradients (%)

|∇u| ⇐
√
u2
x + u2

y magnitude of the gradients (%)

g ⇐ 1√
u2
x + u2

y + ε
diffusivity function (%)

〈g · ∇u, n〉 ⇐ 0, on ∂Ω set boundary conditions (%)

Λ = − 1
2σ2

[ux(ux − (u0)x) + uy(uy − (u0)y)] forcing term parameter (%)

φ = |∇u|∇ · (g · ∇u)−Λ(u− u0) diffusion term (%)

δt(x) = ε

5
+
(

1
2d
− ε

5

)(
max(|∇u|)− |∇u|

max(|∇u|)
)

time-step (%)

u⇐ u + δtφ evolve the image (%)

ci+1 ⇐ corr (u, f ) update performance measure (%)

ci+1 ⇐ corr (u,u0) update correlation measure (%)

ĉi+1 ⇐ ∂2ci+1 stopping criterion (%)

if ∂ĉi+1 ≤ 0 then

v = u save best image if condition is met (%)

end if

end for

Our results show that this approach—being a two-
dimensional technique—is capable of capturing the con-
tractile processes that are otherwise missed by the one-
dimensional techniques. This capability makes the method
suitable for determining myocyte contraction in cells that
usually bend or move during contraction, for example, atrial
myocytes and isolated smooth muscle cells, or in cardiac
myocytes which develop spatially nonuniform oscillatory
contractile activity induced by intracellular calcium fluctu-
ations [10, 41].

Our future work entails the application of the proposed
method to analyzing the contractility of myocytes that have
been exposed to a drug over a given period of time. We
have been investigating one category of the mechanisms that
may be responsible for the observed effects on heart cells
from a synthetic antidiabetic drug, rosiglitazone (AVANDIA,
GlaxoSmithKline, Brentford, UK) of the thiazolidinedione
(TZD) family of insulin-sensitizing compounds used in
the treatment of type II diabetes. We are anticipating that
the proposed method will be an essential tool in that it
will complement the analysis of our drug studies, which
have been also performed using microarray, Ca2+ transient,
gene and protein expression measurements. Furthermore,

we are in the process of deploying a more sophisticated
image acquisition technology that includes a high-speed
camera. This will allow for a more in-depth analysis of the
contraction process undergone by the cardiac myocyte.

Appendices

A. Total Variation-Based Models in
Image Processing

Rudin et al. [22] proposed removing noise from images
by minimizing the TV norm of the estimated solution.
They derived a constrained minimization algorithm as a
time-dependent nonlinear PDE, where the constraints are
determined by the noise statistics. They stated that the space
of bounded (total) variation (BV) is the proper class for
many basic image processing tasks. Thus, given a noisy image
u0 = f + η, where the true image f has been perturbed
by additive white noise η, the restored image u ≈ f is the
solution of

min
u∈BV(Ω)

TV(u) = min
u∈BV(Ω)

∫
Ω
|∇u|dx, (A.1)
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subject to the following constraints involving the noise:

1
2

∫
Ω

(u− u0)2dx = 1
2
|Ω|σ2,

1
|Ω|

∫
Ω
u0 dx

1
|Ω|

∫
Ω
udx,

(A.2)

where |Ω| represents the area of the image. The first con-
straint uses a priori information that the standard deviation
of the noise is σ , while the second constraint assumes that
the noise has zero mean. (It can also be shown that (A.1)
and (A.2) imply that the noise is normally distributed [42].)
The TV-norm does not penalize discontinuities in u, and;
therefore, it allows the recovery of the edges in the observed
image u0.

To solve this minimization problem we would usually
solve its associated Euler-Lagrange equation, namely,

−∇ ·
( ∇u
|∇u|

)
+ λ(u− u0) = 0, (A.3)

on a closed domain Ω, and subject to homogeneous
Neumann boundary conditions on the boundary ∂Ω. The
solution procedure proposed in [22] employs a parabolic
equation with time as an evolution (scale) parameter, or
equivalently, the gradient descent method, that is,

ut −∇ ·
( ∇u
|∇u|

)
+ λ(u− u0) = 0, (A.4)

for t > 0, on a closed domain Ω, with the observed image
as initial condition, u(x, 0) = u0(x), and homogeneous
Neumann boundary conditions, 〈g · ∇u, n〉 = 0, on the
boundary ∂Ω. For the parameter λ, they suggested a dynamic
value λ(t) estimated by Rosen’s gradient-projection method,
which as t −→ ∞ converges to

λ = − 1
2|Ω|σ2

∫
Ω

[
|∇u| − ∇u

T
0∇u

|∇u|

]
dx. (A.5)

Existence and uniqueness results for this nonlinear PDE
have been obtained by Lions et al. [43]. Other successful
implementations of this minimization problem include the
second order cone programming [44], convex programming
[45], duality [46], and a fast and exact minimization
method-based on graph cuts [47, 48].

Nonetheless, the Rudin-Osher-Fatemi model, in its orig-
inal form, presents several practical challenges [49]. This
evolution scheme is not trivial to implement since it is
highly nonlinear and not well-posed [50]. When the scheme
converges it does so at a linear rate. It can also run into
trouble when |∇u| → 0 beyond machine accuracy. In
practice, it is very common to use a slightly modified version
of the TV-norm [49]:

∫
Ω

(
|∇u|2 + ε

)1/2
dx, (A.6)

where ε is a small positive number which “smoothes out the
corner” at |∇u| = 0. The two other practical (observable)
limitations presented by the Rudin-Osher-Fatemi original

model are the loss of contrast [51, 52] and the “staircase”
effect, that is, a strong preference for piecewise constant
patches [53, 54]. The Rudin-Osher-Fatemi model has been
extensively studied and improved upon by many scientists
[20, 49–52, 54–65].

Marquina and Osher [54] proposed a different version
of the transient parabolic equation that helps speed up
the convergence of the time-marching scheme. The new
evolution equation is

ut − |∇u|∇ ·
( ∇u
|∇u|

)
+ |∇u|λGσ ∗ (Gσ ∗ u− u0) = 0,

(A.7)

for t > 0, on a closed domain Ω, with the observed image
as initial condition, u(x, 0) = u0(x), and homogeneous
Neumann boundary conditions, 〈g · ∇u, n〉 = 0, on the
boundary ∂Ω, and whereGσ is a blurring operator (Gaussian
kernel). This approach fixes the staircase problem of the
original scheme and is used for the removal of both blur and
noise.

Bazán and Blomgren [24] implemented a variation of
the Blomgren et al. [55] version of the Rudin [22] Euler-
Lagrange equation as modified by Marquina and Osher
[54]. They referred to this approach as Parameter-Free
Adaptive Total Variation-Based Noise Removal and Edge
Strengthening Model. For our current application, we will
use this method for estimating the unknown noise level and
their pixel-wise definition for the parameter λ. Given the
assumption that the image has been perturbed by additive
white noise, u0 = f + η, and that this noise is independent
from the signal, the variance of the noisy image must be equal
to the sum of the variance of the true image and the variance
of the noise, that is, var(u0) = var(Gσ∗u0)+var(η). Here, the
variance of the (unknown) true image is approximated by the
variance of the convolved noisy image with a Gaussian kernel
of width σ = 1. This parameter will be updated at every
iteration which provides a positive effect. For the parameter
λ they proposed a variation of the method suggested in [22].
Instead of integrating (or summing) over the domainΩ, they
assumed a pixel-wise parameter as

Λ ≡ |∇u|λ = − 1
2σ2

[
ux(ux − (u0)x) + uy

(
uy − (u0)y

)]
.

(A.8)

For a detailed explanation of the attributes of the dynamic
parameter Λ, the reader can consult [23].

Due to the high nonlinearity of the TV-based models, to
ensure stability, the required time step is very small. Song
[50] has shown that the CFL condition for the Rudin-Osher-
Fatemi model is δt/δx2 � c|∇u|, with c > 0. He has
also shown that the CFL condition for the Marquina-Osher
model is δt/δx2 � c, with c > 0. As a rule of thumb, Gilboa
[66] has suggested (assuming δx = 1) setting the value of
δt = ε/5, where ε is the regularization constant used in (A.6).
Weickert et al. [67] have shown that for explicit discretization
schemes, the stability condition for the Perona-Malik-type
models (assuming δx = 1 and for all s : g(s) � 1) is
δt < 1/2d, with d being the number of dimensions of the
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data. In his dissertation, Bazán [23] argued that since the
explicit discretization schemes used in the TV-based models
produce updates of the following form:

ut+1 = ut + δtF
(
ut,∇ut,u0,∇u0, λ

)
, (A.9)

then, in practice, the smaller the time-step, the slower the
restoration process. He used the aforementioned findings to
devise an “adaptive time-step” δt(x, t), which does not only
make the TV-based schemes more stable (smooth), but also
speeds up the restoration process. The proposed adaptive
time-step is

δt(x) = ε

5
+
(

1
2d
− ε

5

)(
max(|∇u|)− |∇u|

max(|∇u|)
)

, ∀t,
(A.10)

where, as before, ε is the regularization constant used in
(A.6), and d is the number of dimensions of the data. For
a detailed description of the characteristics of the adaptive
time-step the reader is referred to [23].

B. Numerical Implementation of the Edge
Preserving Total Variation-Based Image
Smoothing

The algorithm to implement the parameter-free adaptive TV-
based noise removal and edge strengthening model is in
Table 1.
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