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ABSTRACT
Background. Lung adenocarcinoma (ACA) is themost common subtype of non-small-
cell lung cancer. About 70%–80%patients are diagnosed at an advanced stage; therefore,
the survival rate is poor. It is urgent to discover accurate markers that can differentiate
the late stages of lung ACA from the early stages. With the development of biochips,
researchers are able to efficiently screen large amounts of biological analytes formultiple
purposes.
Methods. Our team downloaded GSE75037 and GSE32863 from the Gene Expression
Omnibus (GEO) database. Next, we utilized GEO’s online tool, GEO2R, to analyze the
differentially expressed genes (DEGs) between stage I and stage II–IV lung ACA. The
using the Cytoscape software was used to analyze the DEGs and the protein-protein
interaction (PPI) network was further constructed. The function of the DEGs were
further analyzed by cBioPortal and Gene Expression Profiling Interactive Analysis
(GEPIA) online tools. We validated these results in 72 pairs human samples.
Results. We identified 109 co-DEGs, most of which were involved in either prolifer-
ation, S phase of mitotic cell cycle, regulation of exit from mitosis, DNA replication
initiation, DNA replication, and chromosome segregation. Utilizing cBioPortal and
University of California Santa Cruz databases, we further confirmed 35 hub genes.
Two of these genes, encoding CDC28 protein kinase regulatory subunit 2 (CKS2) and
RecQ-mediated genome instability 2 (RMI2), were upregulated in lung ACA compared
with adjacent normal tissues. The Kaplan–Meier curves revealed upregulation of CKS2
and RMI2 are associated with worse survival. Using CMap analysis, we discovered
10 small molecular compounds that reversed the altered DEGs, the top five are
phenoxybenzamine, adiphenine, resveratrol, and trifluoperazine. We also evaluated
72 pairs resected samples, results revealed that upregulation of CKS2 and RMI2 in lung
ACAwere associated with larger tumor size. Our results allow the deeper recognizing of
themechanisms of the progression of lung ACA, andmay indicate potential therapeutic
strategies for the therapy of lung ACA.

Subjects Bioinformatics, Oncology, Respiratory Medicine, Translational Medicine, Medical
Genetics
Keywords Lung adenocarcinoma, CKS2, RMI2, Prognosis, Bioinformatics

INTRODUCTION
Lung malignant tumor is a significant global health issue. In 2018, 234,030 cases of lung
and bronchus malignant tumor were reported the United States. Globally, the amounts of
deaths from lung malignant tumor exceeds the number of deaths from prostate, colorectal,
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and breast cancer combined (Siegel, Miller & Jemal, 2019). Lung adenocarcinoma (ACA) is
the most frequent histologic subtype and accounts about 40% of all lung cancers (Lawrence
et al., 2013).

Because there are no obvious symptoms of early stage lung ACA, the five-year survival
rate is about 18%. Optimal treatment of lung ACA requires accurate diagnosis and
clinical staging before treatment begins (Shan et al., 2019). The anatomic basis for staging
(tumors, lymph nodes, and metastases, TNM) includes the physical properties of the
tumor and the presence of regional or systemic metastases. However, some shortcomings
are associated with the current staging classification. The greatest limitation of conventional
TNM staging is its inability to accurately distinguish high-risk patients, who are likely to
develop metastasis, from low-risk patients, who will be complete cured after surgery.
Hence, this limitation leads to some patients with metastases losing the opportunity of
early intervention (Yang et al., 2018). One reason that high-risk and low-risk cases are
difficult to distinguish is lung ACA is highly heterogeneous; hence, the morphology-based
pathological stages and classifications are difficult to represent the heterogeneities (Yang
et al., 2018). It is urgent to recognize the mechanisms underlying lung ACA progression,
and search markers that can identify high-risk patients. The biologic basis for staging
(molecular markers prognostic for survival, as well as indicators predictive for response
to treatment) will be incorporated into staging systems in the future. Accurate staging of
lung ACA patients before treatment will be helpful in predicting the prognosis for these
patients.

With the rapid development of high-throughput bioinformatic technologies,
differentially expressed genes (DEGs) can be widely screened and the potential functional
pathways related to the genesis and prognosis of lung ACA can be identified. Our study
identified 523 DEGs and 35 hub genes, and two of these genes (CKS2 and RMI2), are
potential biomarkers for the prognosis of lung ACA. We further validated CKS2 and RMI2
using clinical biopsy samples and demonstrated that higher expression of these two genes
correlates with larger tumor size and poor clinical outcomes. Using CMap analysis, we
discovered 10 small molecular compounds that reversed the altered DEGs.

MATERIAL AND METHODS
Microarray data
The GSE75037 (Girard et al., 2016) and GSE32863 (Selamat et al., 2012) datasets were
downloaded from GEO database, both of them were produced by Illumina HumanWG-
6/Ref-8 v3.0, Expression BeadChip platform. The GSE75037 contains 83 cases of lung ACA
and the GSE32863 contains 58 cases of lung ACA.

Identification of DEGs
The GEO DataSets provide GEO2R, an online tool which can identify DEGs. A p -value of
<0.05 and a logFC (fold change) of >0.5 were set as the cutoff values. Probe sets without
exact gene symbols were excluded.
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KEGG and GO enrichment analyses of DEGs
The Database for Annotation, Visualization, and Integrated Discovery (DAVID, 6.8
version, http://david.ncifcrf.gov) and Kyoto Encyclopedia of Genes and Genomes (KEGG,
https://www.genome.jp/kegg/) were adopted to extract biological information about the
DEGs (Huang et al., 2007). Gene ontology (GO) is widely used in biological research (Le et
al., 2019a; Le, Yapp & Yeh, 2019b).

PPI network construction
We used Search Tool for the Retrieval of Interacting Genes (STRING, version 11.0,
https://string-db.org/) to construct the protein-protein interaction (PPI) network from
the DEGs (Szklarczyk et al., 2017). 0.4 was set as the minimum interaction score. The
DEG molecular interaction network was constructed by Cytoscape (version 3.7.2,
https://cytoscape.org/). The Molecular Complex Detection application was adopted to
search the hub modules in the network. The inclusive parameters are set as follows: score
>5, node score cutoff = 0.2, degree cutoff = 2, node density cutoff = 0.1, max depth =
100, and k-score = 2.

Hub gene screen
Hub genes are those that have a degree >10 of intra-module connectivity. Hub genes were
also screened utilizing Cytoscape software (version 3.7.2) (Dong et al., 2020; Li et al., 2017;
Zhang et al., 2020). The visualization and functional process analysis were performed in
Biological Networks Gene Oncology (BiNGO) (version 3.7.2).

Functional analysis of hub genes in database
cBioPortal (http://www.cbioportal.org) was used to analyze the function of the hub genes
(Cerami et al., 2012). The co-expression network of DEGs and mutations rates were also
created by cBioportal.

University of California Santa Cruz (UCSC) Xena (https://xena.ucsc.edu/) is a functional
genomics browser (Haeussler et al., 2019). The expression levels of the hub genes and the
profiles of CKS2 and RMI2 in stage I–IV lung ACA were obtained from UCSC.

GEPIA is an online tool that provides the RNA sequencing expression data (Tang et
al., 2017). The GEPIA database enables researchers to conduct multiple gene expression
analyses. Relative expression level, Kaplan–Meier curves for overall survival and disease-free
survival of stage I–IV lung ACA with CKS2 and RMI2 were obtained from GEPIA.

Potential therapeutic agents
The Connectivity Map (https://www.broadinstitute.org/connectivity-map-cmap) is an
online tool that analyses transcriptional data to explore the relationships between drugs and
diseases (Lamb et al., 2006). We analyzed the DEGs by CMap to find potential therapeutic
agents. The DEGS were input into the CMap website and the small molecular compound
data were obtained. Screening criteria were set as follows: mean <−0.4 and p< 0.05.

Validation in clinical samples
Lung ACA tissues (72 cases) and adjacent normal tissues were obtained from patients
receiving surgery at the First Hospital of China Medical University between February 2013
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and June 2014, the samples were confirmed by two pathologists. All resected tissues were
stored in liquid nitrogen immediately until the RNA extraction was performed. The normal
tissues were defined as three centimeters away from the margin of the tumor. There were
37 male and 35 female in our research, the age ranged from 38 to 75, with a median age of
60 years. The patients who had a history of cancer, chemo or radiotherapy were excluded.
No significant correlation was found between RMI2 and CSK2 expression with age, gender,
smoking history, lymph node metastasis, and distant metastasis.

CKS2 and RMI2 expression was detected using qPCR. We used TRIzol reagent (Invitro-
gen, Carlsbad, CA, USA) to isolate RNA. CKS2 (sense 5′- AGTTGTTGCCTGGGCTGGAC-
3′and reverse, 5′-TCTCCTCCACTCCTCTTCAGACATC-3′) and RMI2 (sense, 5′-
GAAAAACATCAAGATAAAGGACGCC-3′and reverse, 5′- GCAGAAACCCAACATTCAA
AACC-3′) and GAPDH sense, 5′-CAATGACCCCTTCATTGA CC-3′and reverse, 5′-
TGGAAGATGGTGATGGGATT-3′. The reaction was performed for 2 min at 50 ◦C,
10 min at 95 ◦C, 40 cycles at 95 ◦C for 15 s, and 60 ◦C for 30 s. 2–DDCT method was used
to calculate the relative expression of RMI2 and CKS2 to GAPDH (Livak & Schmittgen,
2001). The Ethics Committee of the First Hospital of China Medical University approved
this study (2017-75). Informed consent was obtained from all the included patients.

RESULTS
Identification of DEGs in different stages of lung ACA
There were 50 cases of stage I lung ACA and 33 cases of stage II–IV lung ACA in the
GSE75037 dataset, while the GSE32863 dataset contained 34 cases of stage I lung ACA and
24 cases of stage II–IV lung ACA.

By standardizing the data, there were 523 DEGs were found between stage I and stage
II–IV lungACA (305 inGSE75037 and 327 inGSE32863). AVenn diagramwas constructed,
which showed there were 109 co-DEGs between these two datasets (Fig. 1A).

PPI network construction
A DEG PPI network (Fig. 1B) was created and the most significant genes (Fig. 1B, yellow)
were identified by Cytoscape (Fig. 1B). Each DEG’s degree was calculated using CytoScape
software. The degree indicates the number of connected nodes with each individual node,
so a higher degree indicates a characteristic hub. The hub genes was defined as degree
higher than 10 and thirty-five genes were identified. Similarly, the more central (closeness
centrality) a cycle is, the closer it is to other cycles; so, high closeness centrality represents
the tendency of a cycle to be a hub (Fig. 1B, yellow). The top 10 hub gene symbols, full
names, functions, and degrees are listed in Table 1.

The network of the 35 hub genes and the co-expressed genes were built using cBioPortal
(Fig. 1C). The red and black circled nodes are more important nodes, and we found that
TP53 was present in the network.

Functional analyses of the DEGs
The biological classifications, functions, and pathway enrichment of the DEGs were
researched using the DAVID online tool. The biological processes (BP) of the DEGs was
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Figure 1 Flow-chart, Venn diagram, and interaction of the hub genes of this research. (A) Flow-chart
of this research. (B) Two expression biochips, GSE328863 and GSE75037, were probed. 109 co-DEGs
were identified. (C) Interaction network showing 35 hub genes. (D) Thirty-five hub genes and their co-
expressed genes were built using cBioPortal.

Full-size DOI: 10.7717/peerj.10126/fig-1

analyzed by GO, and they were found to be mainly involved in the regulation of positive
regulation of exit frommitosis, DNA replication initiation, proliferation, S phase of mitotic
cell cycle, mitotic cell cycle transition, and chromosome segregation (Fig. 2A). By analyzing
the cell components, the locations of DEGs were the cell surface, the interstitial matrix, the
cytoplasm, and cell-substrate adherent junctions. DEGs were generally represented in the
cell cycle, oocyte meiosis, and in progesterone-mediated oocyte maturation (Fig. 2B).

The BP were also analyzed by Cytoscape, the results also indicated the BP are involved in
the cell cycle, S phase ofmitotic cell cycle, regulation of cell budding and inDNA-dependent
DNA replication initiation, these are all important cellular proliferative functions (Fig. 2C).

Clinical significance of CKS2 and RMI2
The hub genes’ genetic mutation rates were analyzed by cBioPortal, the results revealed
that the CKS1B has the highest genetic mutation rates, the CKS2 and RMI2 are 0.6% and
1%, respectively (Fig. 3A). The expression level of the 35 hub genes in primary tumor,
recurrent, and normal lung tissues were also analyzed. Results revealed both the CKS2 and
RMI2 are higher expressed in tumor than normal lung tissues (Fig. 3B).

There are 109 co-DEGs between the GSE75037 and GSE32863 datasets, and CKS2 and
RMI2 had the relative high degrees at 32 and 23 (Table 1), manifesting that these two genes
act a pivotal part in the genesis and progression of tumor. The top 10 hub genes are listed
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Table 1 The summary of top 10 hub genes.

NO Gene symbol Full name Function Degree

1 CDK1 Cyclin Dependent Kinase 1 Plays a key role in the control of the eukaryotic cell cycle by
modulating the centrosome cycle as well as mitotic onset.

45

2 CDC45 Cell Division Cycle 45 An essential protein required to the initiation of DNA
replication.

40

3 CENPF Centromere Protein F CENPF is a component of the nuclear matrix during the G2
phase of interphase.

37

4 TK1 Thymidine Kinase 1 A cytosolic enzyme that catalyzes the addition of a gamma-
phosphate group to thymidine.

36

5 PRC1 Protein Regulator Of Cytokinesis 1 Key regulator of cytokinesis that cross-links antiparrallel
microtubules.

34

6 CKS2 CDC28 Protein Kinase Regulatory Subunit 2 Binds to the catalytic subunit of the cyclin dependent
kinases and is essential for their biological function.

32

7 CDCA3 Cell Division Cycle Associated 3 Acts by participating in E3 ligase complexes that mediate
the ubiquitination and degradation of WEE1 kinase at
G2/M phase.

30

8 ATAD2 ATPase Family AAA Domain Containing 2 A transcriptional coactivator of the nuclear receptor ESR1
required to induce the expression of a subset of estradiol
target genes.

23

9 RMI2 RecQ Mediated Genome Instability 2 A complex that plays an important role in the processing of
homologous recombination intermediates.

23

10 STMN1 Stathmin 1 Involved in the regulation of the microtubule (MT)
filament system by destabilizing microtubules.

11

in Table 1. At present, there are no studies that investigate the relationship between CKS2
and RMI2 and the prognosis of lung ACA.

By querying UCSC data, the expression levels of CKS2 and RMI2 in lung ACA were
found to be higher than those in lung tissues (Fig. 4A). And the mutation status of CKS2
in lung ACA is mainly shallow deletion (Fig. 4B), and that of RMI2 is mainly amplification
(Fig. 4C). Our team further probed the expression levels of CKS2 and RMI2 in different
TNM stages of lung ACA. With the upgrade of T, N, and M stages, expression levels of
CKS2 and RMI2 also increased (Figs. 4D, 4E and 4F).

The expression levels of CKS2 and RMI2 in lung ACAwere investigated using the GEPIA
database. We found that the expression of both CKS2 and RMI2 in lung ACA are higher
than in normal lung tissues (Figs. 5A and 5B). Staging of lung ACA is one of the important
determinants of tumor prognosis. Along with the pathological staging of lung ACA, the
expression levels of CKS2 and RMI2 increased (Figs. 5C and 5D).

The relationships between CKS2 and RMI2 and disease-free survival and overall survival
were analyzed utilizing Kaplan–Meier curves. The results showed that lung ACA patients
with relative higher levels of CKS2 and RMI2 expression had worse overall survival rates
(Figs. 5E and 5F), and patients with higher expression levels of CKS2 even had worse
disease-free survival rates (Fig. 5G).
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Figure 2 Functional analysis of the hub genes. (A & B) The functions of the 35 hub genes were analyzed by DAVID, and most of the genes were
found to be implicated in cell apoptosis and cycle regulation. (C) The plugin of Cytoscape, BiNGO, was used to analyze the biological processes of
the hub genes which are mainly involved in regulation of growth and cell cycle.

Full-size DOI: 10.7717/peerj.10126/fig-2

Potential therapeutic agents
Using CMap analysis, we found 10 small molecular compounds that could reverse the
altered DEGs, the top 5 are phenoxybenzamine, adiphenine, resveratrol, trifluoperazine,
(Table 2). These compounds have potential for lung ACA treatment. However, the
mechanism of these drugs to reverse the altered DEGs are still unclear, further researches
are needed.
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Figure 3 The hub genes’ mutation rates and expression levels in lung ACA. (A) The cBioPortal
database shows that the 35 hub genes are known to be mutated in lung ACA. (B) The UCSC database
shows that all hub genes are more highly expressed in both primary tumors and relapse tumors compared
to normal lung tissues.

Full-size DOI: 10.7717/peerj.10126/fig-3

Validation in human samples
Thus far, we have determined that CKS2 and RMI2 are two potential diagnostic markers for
lung ACA. This was determined using a number of applied bioinformatics strategies. We
chose to further validate these results using clinical samples taken from patients with lung
ACA as well as matching adjacent normal tissue. The results from the qPCR aligned with
our bioinformatic results, suggesting that lung ACA samples have higher levels of CKS2
and RMI2 than normal tissue (P<0.05, Figs. 6A and 6E). While there was no significant
difference due to lymphatic metastasis and distant metastasis (Figs. 6C–6D and 6G–6H),
there were differences related to tumor size (P < 0.05, Figs. 6B and 6F). These results
suggest CKS2 and RMI2 are two valuable markers which can be used to assist in the
diagnosis of lung ACA.
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Figure 4 Expression of CKS2 and RMI2 is elevated in lung ACA. (A) The UCSC database showed that
the transcripts of both CKS2 and RMI2 are over-expressed and mutated in lung ACA. (B and C) The mu-
tation status of CKS2 in lung ACA is mainly shallow deletion, and the RMI2 is mainly amplification. With
the upgrade of T (D), N (E), and M (F) staging, the expression levels of CKS2 and RMI2 also increased.

Full-size DOI: 10.7717/peerj.10126/fig-4
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Figure 5 Clinical significance of CKS2 and RMI2 in lung ACA. Both CKS2 (A) and RMI2 (B) in lung
ACA are significantly higher than in normal lung tissues. Along with the pathological staging of lung ACA,
the expression levels of CKS2 (C) and RMI2 (D) also increased. Lung ACA patients with higher levels of
CKS2 (E) and RMI2 (F) expression had worse overall survival rates. Patients with higher levels of CKS2
(G) expression had worse disease-free survival rates; no difference was observed in the RMI2 (H) group.

Full-size DOI: 10.7717/peerj.10126/fig-5
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Table 2 Small molecular compounds to reverse the altered DEGs by CMap analysis.

Rank CMap name Mean n Enrichment p Specificity Percent non-null

1 phenoxybenzamine −0.775 4 −0.955 0 0.0091 100
2 adiphenine 0.746 5 0.946 0 0 100
3 resveratrol −0.756 9 −0.887 0 0 100
4 trifluoperazine −0.513 16 −0.552 0 0.0577 75
5 prochlorperazine −0.543 16 −0.549 0 0.0377 93
6 trichostatin A −0.412 182 −0.33 0 0.4654 73
7 estradiol 0.218 37 0.375 0.00004 0.044 51
8 acepromazine −0.744 4 −0.916 0.0001 0 100
9 pentoxifylline 0.632 5 0.852 0.00018 0 100
10 medrysone −0.714 6 −0.784 0.00018 0.0108 100

DISCUSSION
Lung ACA is the most common subtype of non-small cell lung cancer which is featured by
distinct molecular characteristics. Lung ACA is often advanced by the time it is diagnosed
(Lawrence et al., 2013). Moreover, lung ACA is highly heterogeneous at multiple levels.
Traditional TNM staging alone is challenging to predict how the disease will behave (Yang
et al., 2018). Early lung cancer has a satisfactory prognosis; however, in some patients lung
ACA usually returns within three years in distant locations after receiving surgery, even
though the tumors are not big. In order to reduce the risk of recurrence, in addition to
surgery, closer follow-up and adjuvant therapy are needed for these high-risk patients. It is
therefore important to identify aggressive tumors before treatment and after surgery.

In an era of increasingly complex treatment options (sometimes for molecular events
that lead to cancer) and the need to obtain maximum information fromminimally invasive
samples, assistive technologies have been developed to improve the specificity of diagnosis.
(Yang et al., 2018). According to cell-specific antigen expression and genetic information
changes, the diagnosis and prognosis of the disease can be predicted. (Oellerich et al., 2017).

In our research, two mRNA microarray datasets were downloaded and analyzed to
acquire co-DEGs between stage I lung ACA and stage II–IV lung ACA. KEGG and GO
enrichment analyses were used to probe the functions of these DEGs. The co-DEGs were
found to bemainly take part in the positive regulation of exit frommitosis, DNA replication
initiation, proliferation, S phase of mitotic cell cycle, mitotic cell cycle transition, cellular
component assembly, and chromosome segregation. These pathways are closely associated
with tumor genesis and progression (Blackford & Stucki, 2020; Venuto & Merla, 2019).
Hence, there finding are consistent with previous studies and theories.

In this research, the degree shows the number of nodes connected with the individual
node, 35 genes with degrees of at least 10 were deemed as hub genes. Therefore, a higher
degree indicates a characteristic hub and also a critical role in the genesis and progression
of lung ACA.

To confirm the critical roles of 35 hub genes in the genesis and progression of lung
ACA, the expression levels of these genes were further investigated using the UCSC online
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Figure 6 Validation in human samples. CKS2 and RMI2 were validated by 72 pairs of clinical biopsy
specimens. qPCR was used to determine the correlation between CKS2 (A) and RMI2 (E) expression and
tumor presence, tumor size (B and F), lymph metastasis (C and G), and distant metastasis (D and H).
∗p< 0.05.

Full-size DOI: 10.7717/peerj.10126/fig-6

Xiao et al. (2020), PeerJ, DOI 10.7717/peerj.10126 12/18

https://peerj.com
https://doi.org/10.7717/peerj.10126/fig-6
http://dx.doi.org/10.7717/peerj.10126


tool. The results revealed that all of these genes were higher expressed in both primary and
recurrent tumors than normal lung tissues. The relative expression levels of the DEGs in
primary tumors were lower than in recurrent tumors which suggests that these genes can be
used as indicators to monitor tumor recurrence. The results indicate that these genes play
a critical role in the occurrence and development of lung ACA. These genes may therefore
be regarded as early biomarkers to monitor tumor recurrence.

The relationship between CKS2 and RMI2 and lung cancer has not yet been reported.
Therefore, we further studied the relationship between these two genes and lung ACA in
order to find novel tumor markers related to the prognosis of lung ACA.

The CKS2 protein binds to the catalytic subunit of cyclin dependent kinases and is
dispensable for the function. In HeLa cells, different patterns of the mRNA is discovered
throughout the cell cycle, indicating an essential part for the encoded protein (Nebreda &
Ferby, 2000). The high expression of CKS2 is related with the progression of bladder cancer
and hepatocellular carcinoma (Kawakami et al., 2006; Shen et al., 2010). In our research,
CKS2 interacts with maternal embryonic leucine zipper kinase and Forkhead Box M1
(FOXM1), which are closely related with malignant tumors, indicating that CKS2 plays an
important role in lung ACA. Our study also revealed the expression level of CKS2 in lung
ACA is higher than in healthy lung tissue. Moreover, as the T stage of lung ACA escalates,
the expression of CKS2 also increases. The same results were also seen in the association
between N and M staging and CKS2 expression levels. The survival rate and disease-free
survival rate of lung ACA with higher expression of CKS2 are significantly lower than that
of lung ACA with lower expression of CKS2 (Figs. 5E and 5G).

RMI2 is a eukaryotic family of OB3, oligo-nucleotide-binding proteins. It is an
dispensable component of the RMI complex and plays a vital part in the producing of
homologous recombination intermediates in order to control DNA-crossover-formation
in cells (Wang et al., 2010). The mutation of RMI2 is associated with Bloom syndrome,
a recessive human genetic disease with features of and predisposition to cancer (Xu et
al., 2008). In our research RMI2 interacts with cell division cycle-associated protein 3
(CDCA3) and cyclin B2 (CCNB2), which are also related with malignant tumors. CDCA3
and CCNB2 function as regulatory proteins and interact with other proteins at some vital
phases in the cell cycle that play a role in tumorigenesis. At present, no researches reported
the relationship between RMI2 and cancer. Our results show that the expression level of
RMI2 in lung ACA is higher than that in healthy lung tissue. Moreover, as the T, N and
M stage of lung ACA escalates, the expression of RMI2 also increases. The survival rates
of lung ACA with higher expressions of RMI2 are significantly lower than that of lung
ACA with lower expression of RMI2, but there is no difference in the fields of disease-free
survival between these two groups. We inferred that the higher RMI2 group is not sensitive
to further treatment once recurrence occurs, although the underlying mechanism is not
clear. We chose to further validate these results using clinical samples taken from patients
with lung ACA and compared them to matching adjacent normal tissue, and the results
confirmed the bioinformatics conclusions.

The carcinoembryonic antigen (CEA) had been used as biomarker of lung
adenocarcinoma for many years. Tevfk’s research reveals carcinoembryonic antigen (CEA)
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can get high concentrations in the pleural fluid and blood (Akcam et al., 2017). However,
there is no specific biomarker for lung adenocarcinoma currently. Different with previous
study, with development of biochip, more biomarkers can be found. We hope to discover
a specific lung adenocarcinoma biomarker to predict the prognosis.

Next, we conducted a clinical translational study based on the DEG results. In
this research, 10 small molecular compounds were found to reverse the altered
DEGs, and therefore could potentially be used for the treatment of lung ACA. These
compounds included phenoxybenzamine, adiphenine, resveratrol, trifluoperazine, and
prochlorperazine. The antitumor effects of resveratrol have already been reported for several
malignant diseases, including lung cancer (Rauf et al., 2018). Rasheduzzaman’s research
revealed that resveratrol sensitizes NSCLC cells to TNF-related apoptosis-inducing ligand
via p53-independent signaling and the inhibition of Akt/NF-κB pathway (Rasheduzzaman,
Jeong & Park, 2018). Another study reported that resveratrol generates protective autophagy
in NSCLC via suppression of Akt/mTOR signaling and activation of p38-MAPK pathway
(Wang et al., 2018). The above articles support the results of our research. The inhibitory
effects of other drugs on lung cancer have not yet been reported and require further
research.

CONCLUSIONS
The goal of this research was to screen novel biomarkers of lung ACA, which may become
valuable prognostic and therapeutic targets. We also evaluated two unique microarrays
fromGEO and identified 35 highly connected DEGs that were discovered to be upregulated
in the stage II–IV lung ACA. Through functional analysis, we focused on CSK2 and RMI2
as previously under-represented markers of lung ACA. Further study is desired to clarify
the underlying molecular mechanisms behind the alteration in expression of CKS2 and
RMI2 in lung ACA and their biological functions.
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