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A toolkit for measurement error
correction, with a focus on
nutritional epidemiology
Ruth H. Keogha*† and Ian R. Whiteb

Exposure measurement error is a problem in many epidemiological studies, including those using biomarkers
and measures of dietary intake. Measurement error typically results in biased estimates of exposure-disease
associations, the severity and nature of the bias depending on the form of the error. To correct for the effects
of measurement error, information additional to the main study data is required. Ideally, this is a validation
sample in which the true exposure is observed. However, in many situations, it is not feasible to observe the
true exposure, but there may be available one or more repeated exposure measurements, for example, blood
pressure or dietary intake recorded at two time points. The aim of this paper is to provide a toolkit for
measurement error correction using repeated measurements. We bring together methods covering classical
measurement error and several departures from classical error: systematic, heteroscedastic and differential
error. The correction methods considered are regression calibration, which is already widely used in the classical
error setting, and moment reconstruction and multiple imputation, which are newer approaches with the ability
to handle differential error. We emphasize practical application of the methods in nutritional epidemiology and
other fields. We primarily consider continuous exposures in the exposure-outcome model, but we also outline
methods for use when continuous exposures are categorized. The methods are illustrated using the data from a
study of the association between fibre intake and colorectal cancer, where fibre intake is measured using a diet
diary and repeated measures are available for a subset. © 2014 The Authors. Statistics in Medicine published by
John Wiley & Sons, Ltd.
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1. Introduction

In epidemiology, many exposures of interest are subject to measurement error. Error arises for a range
of reasons: because of error at the measurement processing stage (e.g. laboratory error), because of
self-reporting, because of limitations of measurement instruments and because of fluctuations in
exposure over time when the exposure of interest is ‘usual’ level and inferences are based on a single
measurement. We focus on exposures measured on a continuous scale. Examples include biological
exposures, such as blood pressure [1] and plasma fibrinogen [2], and measurements of dietary intake in
nutritional epidemiology [3].

Exposure measurement error, which can take a variety of forms, results in bias in estimates of
associations between the exposure and outcomes of interest (e.g. disease status). The severity and nature
of the bias depends on the form of the measurement error. It is important to take account of the effects of
measurement error when drawing inferences in epidemiological studies, and there is now a substantial
literature on methods for error correction: for extensive overviews, see for example Carroll et al. [4] and
Buonaccorsi [5]. In this paper, we bring together what we consider to be the most important methods,
placing an emphasis on their practical application.

aDepartment of Medical Statistics, London School of Hygiene and Tropical Medicine, London, U.K.
bMRC Biostatistics Unit, Cambridge, U.K.
*Correspondence to: Ruth H. Keogh, Department of Medical Statistics, London School of Hygiene and Tropical Medicine,
Keppel Street, London, WC1E 7HT, U.K.

†E-mail: ruth.keogh@lshtm.ac.uk
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly cited.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 2137–2155

2137



R. H. KEOGH AND I. R. WHITE

To make corrections for the effects of measurement error on estimated exposure-outcome associations,
additional information is required on top of the main study data in order to understand the measure-
ment error. Ideally, this is in the form of a validation sample within the main study, in which the true
exposure is observed alongside the error-prone exposure measurement. However, there are many situ-
ations in which it is not feasible to observe the true exposure. An example is when the true exposure
is the underlying usual level of a quantity which varies over time, such as blood pressure or dietary
intake. In this case, there may be available one or more repeated observations of the error-prone expo-
sure measurement, for example, dietary intake recorded at two or more time points. In this paper, we
focus on this situation, though we also comment on the situation where the true exposure is observed for
some individuals.

The aim of this paper is to provide a toolkit for measurement error correction, which covers different
types of error. Our main focus is on using continuous exposures in the exposure-outcome model, in par-
ticular where we assume a linear association, on the appropriate scale. However, we also outline methods
for use when continuous exposures are categorized in the exposure-outcome model, a common practice
in epidemiological analysis. We place an emphasis on measurement error correction in the context of
nutritional epidemiology, where methods for error correction using repeated measures are of growing
importance. However, all methods described also apply in a more general setting.

In Section 2, we describe some of the issues of measurement error which arise in nutritional
epidemiology, which partially motivated this paper. In Section 3, we set the scene by outlining
the exposure-outcome model of interest and by describing different models for measurement error.
Alongside the most commonly assumed classical error model, we also consider systematic error, het-
eroscedastic error and differential error. Both univariate and multivariate exposures are considered.
In Section 4, we outline measurement error correction using regression calibration (RC) under differ-
ent error models. Two more recently described correction methods are then described in Section 5:
moment reconstruction (MR) [6, 7] and multiple imputation (MI) [7, 8]. Unlike RC, these methods can
accommodate differential error. Section 6 focuses on correction for error due to misclassification when
mismeasured continuous exposures are categorized. In Section 7, the methods are illustrated using data
from a study of fibre intake and colorectal cancer [9]. We conclude with a discussion in Section 8.

2. Measurement error in nutritional epidemiology

The exposure of interest in nutritional epidemiology is typically the long term average, or ‘usual’, daily
intake of a given nutrient, food or food group. Studies rely on self-reported measures of intake, which
are subject to error. It is not feasible to observe the true exposure, so studies of measurement error
depend on repeated exposure measurements or comparisons with a superior measure. The main methods
for obtaining self-reported measures of dietary intake are food frequency questionnaires (FFQs) or food
records, which include 24-h recalls and diet diaries [3]. There exist objective biological measurements of
absolute intakes of a very limited number of nutrients (total energy and the nutrients protein, potassium
and possibly sodium) [10–12], though their expense prohibits use in large samples.

Food frequency questionnaires provide a relatively inexpensive method of measuring dietary intake
compared with food records and have been used as the main dietary assessment instrument in most large
prospective studies in nutritional epidemiology to date (e.g. [13, 14]). However, validation studies com-
paring biological and self-reported measurements have found that food record measurements are more
highly correlated with both the biomarker and true intake than FFQs [15–17]. Food records therefore
currently arguably provide the best available self-reported dietary assessment instrument. Food record
measurements have typically been assumed to be subject only to random error. However, there is evi-
dence from comparisons with objective biomarkers that food record measurements are subject to person
specific errors and error that depends on the true level of exposure [15–18].

In this paper, we provide a set of measurement error correction methods which can be applied in stud-
ies where the main exposure measurement is error-prone, but where repeated exposure measurements are
available in a subset of the study population. This work was motivated by the growing use of food records
in epidemiological studies, where repeated measures are often available. In some recent studies, food
records have been used as the main instrument in case–control studies nested within cohorts [19, 20].
One example, the UK Dietary Cohort Consortium, is a collaboration between several UK cohorts, which
have collected diet diaries for all or a subset of participants [9, 21–27]. Repeated measures were avail-
able in a subset. Web-based food records are growing in use and make it feasible to obtain food record
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data, including repeated measures, for large sample populations. One example is the automated self-
administered 24-h recall (ASA24) developed by the National Cancer Institute, US National Institutes of
Health (http://riskfactor.cancer.gov/tools/instruments/asa24/).

The methods described apply equally well for FFQs, where repeated measures are available. How-
ever, some assumptions will be less plausible for FFQs. For example, some investigators are prepared
to assume that food record measurements are subject only to random error, whereas this would not be
the case for FFQs. One particular contribution of this paper is to outline the use of sensitivity analyses
to investigate the potential impact of non-random errors, which is important in this dietary setting. The
methods we describe are not in general appropriate for use with measurements of mixed types, for exam-
ple, an FFQ measurement plus a food record measurement. There is quite a large literature on methods
for error correction using measurements of mixed types in nutritional epidemiology (see, for example,
[28, 29] for summaries).

3. Setting the scene: notation and models for error

We let Xi denote a vector of true but unobserved continuous exposures for individual i . The vector
of mismeasured exposures for individual i is denoted Wi1, and we assume that this is observed for
all individuals in the study population. As noted earlier, additional observed exposure measurements
are required to perform corrections for the effects of measurement error on exposure-outcome associa-
tions. A vector of repeated observed exposure measurements is denoted Wi2. The error in Wi2 will be
assumed to have the same distribution as that in Wi1. An alternative would be for external information
to be available about the form of the error, for example, from a previous study. We do not consider that
situation here. In some, but not all, of the correction methods which we will describe, assumptions are
required concerning the distribution of Xi . In Sections 4–6, we note the assumptions used in each of the
correction methods.

3.1. The exposure-outcome model

The focus here is on a binary univariate outcome Yi , for example, disease status, and on the use of a
logistic regression to investigate the exposure-outcome association. The focus is on the logistic model
because of its wide use in epidemiology. However, we will also comment in places on other analysis
models, specifically linear regression and proportional hazards regression in survival analysis. Adjust-
ment variables measured without error (categorical or continuous) are summarized in a vector Zi . We
assume the following linear association between true exposure and the outcome on the logistic scale:

log
Pr.Yi D 1jXi ;Zi /

1� Pr.Yi D 1jXi ;Zi /
D ˛C ˇ0Xi C � 0Zi ; (1)

where ˇ is a vector of log odds ratios (ORs), which are assumed to be the parameters of primary inter-
est. Models involving non-linear functions of Xi are discussed in a later section. The naive approach to
estimating ˇ is to use Wi1 in place of Xi , giving the model

log
Pr.Yi D 1jWi1;Zi /

1� Pr.Yi D 1jWi1;Zi /
D ˛�C ˇ�0Wi1C �

�0Zi : (2)

However, if the measurements Wi1 are subject to error, Ǒ� will be a biased estimator for ˇ. The other
parameters estimated under model (2) will also be biased but are of less interest.

3.2. Classical measurement error

First, consider the univariate situation, that is, the situation in which there is one error-prone exposure of
interest. The classical measurement error model is

Wij DXi C �ij ; j D 1; 2: (3)

where the �ij are error terms with mean 0 and constant variance �2� , and where there is zero correlation
between �i1 and �i2. The �ij are independent of Xi , Zi and Yi .

Sometimes, there may be multiple mismeasured exposures of interest. For example, in the context
of nutritional epidemiology, it is common to adjust for total energy intake. We extend the afore-
mentioned definition of classical measurement error to the multivariate situation. The vector of true
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exposures for individual i is Xi D
�
X
.1/
i ; : : : ; X

.K/
i

�0
, and the corresponding vector of observed expo-

sures is Wi1 D
�
W
.1/
i1 ; : : : ; W

.K/
i1

�0
. The aim, in this multivariate case, is to estimate the parameters

ˇ D .ˇ.1/; : : : ; ˇ.K//0 in the exposure-outcome model in (1). Assuming the classical error model for all
exposures, we can write

W
.k/
ij DX

.k/
i C �

.k/
ij ; j D 1; 2I k D 1; : : : ; K; (4)

where all the errors �.k/ij have mean 0 and are independent of each other and of Xi , Zi and Yi .

3.3. Systematic error depending on true exposure

Under the classical error model in (3), the Wij are described as unbiased measures of Xi because the
average over a large number of repeated measurements would provide an estimate of Xi . In some cases,
the classical error model may be unrealistic. For example, in nutritional epidemiology there is evidence
that food record measurements are biased estimates of true intake. Specifically, studies have found evi-
dence that food record measurements are subject to error which depends on the true exposure Xi and
also to person specific errors [15–17], that is, errors which are correlated across repeated measurements
within an individual. A more realistic model for error in food record measurements may therefore be,
using univariate notation,

Wij D  C �Xi C �ij ; j D 1; 2; (5)

where  is a constant shift, � ¤ 1 represents error dependent on true exposure and correlations between
errors may in general be non-zero. We denote the error correlation by corr.�i1; �i2/ D �. It is still
assumed that the �ij have zero mean and constant variance and are independent of Xi , Zi and Yi . This
model reduces to the classical measurement error model when  D 0; � D 1; � D 0. The parameters
f ; �; �g cannot be estimated using repeated measures of W , and in a later section we suggest the use of
sensitivity analyses to incorporate different values for these parameters into corrected estimates of the
exposure-disease association.

3.4. Heteroscedastic error

In the error models described earlier, the error terms �ij had constant variance. An alternative error
model we consider is one in which the error variability depends on Xi , typically increasing with Xi so
that observed values for individuals with higher true exposure are subject to greater measurement error.
Under this assumption, we may express a measurement error model for Wij as (3) or (5) with

E.�ij jXi /D 0; var.�ij jXi /D �
2
� .Xi /: (6)

Note that under this model, the observed exposure measurements are still assumed to be unbiased forXi .
Other formulations are possible, but we do not discuss them here. If there is a subset of the study pop-
ulation in which the true exposure Xi is observed, then it is possible to investigate graphically whether
the variation in W1 changes with X . When Xi is not observed, it is possible to partly test for classical
measurement error if a repeated measure of the exposure Wi1 is available by plotting the standard devi-
ation of fWi1; Wi2g against the mean of fWi1; Wi2g for each individual. This will indicate whether the
error variance depends on the true exposure [4].

In many situations, it may be possible to apply a transformation to the original variable Wij to
obtain values which have the desired property of constant error variance. In the simplest case, a log
transformation may be suitable. More generally, a Box–Cox transformation may be found [30].

3.5. Differential error

In the error models described earlier, the error was assumed independent of the outcome. This is referred
to as non-differential error. The final type of measurement error we consider in this paper is differential
error, in which the error depends in some way on the outcome, that is, on the binary variable Yi in our
situation. This type of error may occur if exposure information is obtained in a different way from cases
and controls or if disease status in some way affects the error (e.g. due to recall bias). Differential error
may feature as an extension to any of the error models described so far. For example, under the classical
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error model in (3), the variability of the errors �ij may differ for Yi D 0; 1. The systematic error model
in (5) may be extended to allow the systematic bias to depend on a binary Yi :

Wij D  Yi C �YiXi C �ij ; j D 1; 2IYi D 0; 1; (7)

with the possibility again that error variances also depend on Y (var.�ij / D �2�y ; Yi D y), and further
that error correlations may depend on Y (corr.�ij ; �ik/D �y ; Yi D y for j ¤ k). Other differential error
models are possible; a simple model in which individuals with Yi D 1 have a mean shift in Wij relative
to Yi D 0 is a special case of (7) and may be written

Wij D  C �Xi C �Yi C �ij ; j D 1; 2IYi D 0; 1: (8)

3.6. Effects of measurement error

We comment briefly here on the impact of measurement error on observed exposure-outcome associa-
tions obtained by fitting model (2).

If there is a linear relationship between a univariate exposure and the outcome, as under model (1) and
similar linear and Cox regression models, then the effect of classical measurement error in a univariate
exposure is to attenuate the exposure-outcome association [4,31]. That is, estimates of exposure-outcome
associations, such as a log OR, a regression coefficient in a linear regression or a log hazard ratio, will be
biased towards the null. A further effect of classical measurement error in linear models is loss of power
to detect exposure-outcome associations.

Classical error in a multivariate exposure setting can result in bias in any direction even in a linear
regression model [4]. Where there are non-linear terms, for example, a quadratic term, in the exposure-
outcome model, classical measurement error has the effect of making the association appear more linear
[32]. Other types of error, such as systematic error, which depends on the true exposure; heteroscedastic
error; and differential error, which depends on the outcome, may in general result in biases of any form,
for example, bias either away from or towards the null [4, 33].

4. Measurement error correction using regression calibration

The overall aim is to obtain an unbiased estimate of the parameter vector ˇ in model (1), which in this
case is a vector of log ORs.

The first method for measurement error correction that we describe is RC, which is probably the most
commonly used approach. Under RC, ˇ is estimated by usingE.Xi jWi1;Zi / in place of Xi in model (1)
[4]. Under a linear regression model for the exposure-outcome model, this procedure results in unbiased
estimates of ˇ. However, it also works approximately under non-linear regression models, including the
logistic model. The approximation required for non-linear analysis models has been found to perform
well under many circumstances for logistic regression [31, 34–36]. RC also extends approximately to
proportional hazards regression [37, 38].

The use of RC relies crucially on the assumption that, conditionally on Xi , Wi1 provides no additional
information about disease risk, that is, the error in Wi1 is non-differential. Error correction methods
which can accommodate differential error are considered in a later section.

In order to perform RC, we need to find the expectation E.Xi jWi1;Zi /. This is outlined in the next
two sections for univariate and multivariate exposures under the assumption of a classical measurement
error model and extended to systematic error and heteroscedastic error in later sections.

4.1. Classical measurement error: univariate exposure

In the case of a univariate exposure measured with error, Wi1, the expectation E.Xi jWi1;Zi / required
to perform RC can be found by using the linear regression relation

Xi D �C 	Wi1C ı
0Zi C ei : (9)

We refer to (9) as the RC model. It is important that any adjustment variables in the exposure-
outcome model, Zi , are included in the RC model. By using the RC model, the expectation is given
by E.Xi jWi1;Zi /D O�C O	Wi1C Oı0Zi , which is then used in place of Xi in (1) to obtain the estimate of
ˇ. This procedure results in an estimate of ˇ, which is exactly equivalent to

Ǒ D Ǒ�= O	: (10)

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 2137–2155
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That is, in the univariate case, there are two ways to estimate ˇ using RC. Both require fitting of the
RC model (9). One is to find E.Xi jWi1;Zi / and use the expected values in the main analysis model (1);
the other is to fit the naive model (2) to obtain Ǒ� and use formula (10). This second method is popular
because of its simplicity. The correction factor 	 is referred to as the attenuation factor or regression
dilution ratio (RDR); we use the latter term in the remainder of the paper.

The RC model can be fitted easily if the true exposure Xi is observed in a subset of individuals within
the study. Here, however, we focus on a situation in which the true exposure cannot be observed. Suppose
that a repeat of the univariate exposure measurement Wi1 is available for at least a subset of the study
population; Wi2. Under the classical measurement error model (3), the parameters in the RC model (9)
can be estimated by a linear regression of Wi2 on Wi1 and Zi :

Wi2 D �C 	Wi1C ıZi C e�i : (11)

The right-hand sides of RC models (9) and (11) differ only by the error term, and it can be seen that
e�i D ei C �i2, where �i2 is the error in Wi2 under the classical error model (3). No assumptions about
the joint distribution of fXi ; Wij ;Zig are required for the methods described in this section to be valid.
The estimate of 	 obtained using (11) is O	D cov.Wi1; Wi2jZi /=var.Wi1jZi /.

When using RC, error in the estimation of the RDR 	 should be carried through when estimating
uncertainty in ˇ. The variance of Ǒ can be found using a second order Taylor approximation (the ‘delta
method’), giving

var
�
Ǒ
�
�

var
�
Ǒ�
�

O	2
C

�
ˇ�

O	2

�2
var. O	/: (12)

Bootstrapping would be an alternative way of estimating var. Ǒ/. We do not go into the details of this,
because the method of bootstrap sampling would depend on the study design.

In many cases, it is likely that the error in estimation of 	will be small relative to the error in estimation
of ˇ, and for this reason, sometimes 	 is assumed to be estimated without error.

An extension to RC, called ‘efficient RC’ [7, 39] has been suggested, which makes more efficient use
of the measurements available for individuals in a validation study or repeated measures available for a
subset. When there is a validation study within which X is observed, the efficient RC estimate of ˇ is an
inverse variance weighted average of the estimate of ˇ within the validation study and the estimate of ˇ
using (10). We do not give the details here.

In the case of a logistic exposure-outcome model, a better approximation to (10) can be found by
using a probit approximation to the logistic function [36]. Under the classical error model (3), it can be
found that

ˇ D

s
ˇ�2

	2 � ˇ�2l2�2e
(13)

where �2e is the variance of the residuals in the RC model (9) and l � 0:59, which stems from the probit
approximation. When �2e ˇ

2 is small, the aforementioned result reduces to (10).

4.2. Classical measurement error: multivariate exposure

Regression calibration can also be used in the multivariate situation, where more than one exposure in
the exposure-outcome model is measured with error. In this case, the vector of log OR parameters ˇ
is estimated by replacing each element of Xi by its expectation conditional on all observed measure-

ments, that is, E
�
X
.k/
i jWi1;Zi

�
; k D 1; : : : ; K. In a direct extension to the univariate procedure, the

expectations can be found by assuming linear regression models

X
.k/
i D �

.k/C 	
.k/
1 W

.1/
i1 C 	

.k/
2 W

.2/
i1 C � � � C 	

.k/
K W

.K/
i1 C ı.k/0Zi C eik; k D 1; : : : ; K: (14)

When Xi cannot be observed in a validation sample, repeated measurements are required for all dietary
exposures for at least a subset of the study population, in order to estimate the parameters in the multi-
variate RC model (14). Under this assumption, model (14) can be fitted by linear regressions ofW .k/

i2 on
Wi1 and Zi , for each dietary exposure k D 1; : : : ; K.
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The simplest way of performing the correction is to obtain the expectations E
�
X
.k/
i jWi1;Zi

�
.k D 1; : : : ; K/ explicitly and use them in place of X .k/i .k D 1; : : : ; K/ in the exposure-outcome
model. Alternatively, a matrix of RDRs can be obtained and applied as a correction to the observed
parameter vector ˇ� [33]. As in the previous section, no assumptions are required here about the joint
distribution of fXi ;Wij ;Zig.

Variability in the estimates of parameter in the RC model (14) should be carried through to the cor-
rected estimates of ˇ. The delta method approach for the univariate situation, as described in Section 4.1,
has been extended to the multivariate case [33]. However, bootstrapping appears to be the simplest
approach in the multivariate case.

4.3. Extension to systematic error

Suppose now that the model for measurement error is of the systematic form given in (5). In the univari-
ate situation, we denote the correlation between the errors �i1 and �i2 by �. In this case, the parameters
f�; 	; ıg of the RC model cannot be estimated using repeated exposure measurements as in model (11).
The RC model in (9) could be fitted if the true exposure were available from a validation study in a
subset of the study population. Alternatively, the RC model could be fitted if an unbiased measure of the
true exposure were available, by using that in place of Xi . For example, in nutritional epidemiology, an
unbiased biomarker could be used in the rare cases where they exist. Here, we assume that such measures
are not available, and we propose using sensitivity analyses to investigate the effects of different values
for the bias parameters f ; �; �g in model (5) using repeated exposure measurements.

Under the error model in (5), we have cov.Xi ; Wi1jZi / D �var.Xi jZi /. Under the assumption that
var.Wi1jXi ;Zi /D var.Wi2jXi ;Zi /, it can be shown that

cov.Xi ; Wi1jZi /D
cov.Wi2; Wi1jZi /� �var.Wij jZi /

� .1� �/
: (15)

It follows that the RDR, parameter 	 in the RC model (9), is estimated by

O	D
O	� � �

� .1� �/
; (16)

where O	� arises from the linear regression of Wi2 on Wi1 and Zi ; Wi2 D �� C 	�Wi1 C ı
�0Zi C 
i .

The log OR of interest, ˇ, can therefore be estimated as in (10). Note that specification of a value for the
measurement error model intercept  is not required. Although the parameters ı in model (9) may not
generally be of interest, they can be estimated by Oı�=� . The intercept � in the RC model (9) cannot be
estimated without specifying  in (5), but we are not typically interested in �.

The variances of the corrected estimates can be estimated using the approximation in (12), replacing
	 by 	�.

The choice of suitable values for parameters f�; �g for use in a sensitivity analysis will be dependent
on the subject matter. In a later section, we discuss choice of suitable values in a study in nutritional
epidemiology.

In the multivariate case, the systematic error model for the kth exposure isW .k/
ij D  

.k/C� .k/X
.k/
i C

�
.k/
ij , where corr.�.k/i1 ; �

.k/
i2 / D �

.k/. Sensitivity analyses could be used to assess the effects on results of
systematic errors. However, this would require a number of parameters to be specified simultaneously,
which soon becomes impractical, and we do not give the details here. It is worth noting that the values
of � .k/ and �.k/ in the measurement error model do not affect the estimate of the ˇ.l/ (when k ¤ l).

4.4. Heteroscedastic error

Correction for heteroscedastic error has received considerably less attention in the literature than clas-
sical error. As noted earlier, constant error variance may be achievable after a transformation of the
error-prone exposure. In the exposure-outcome model, it may be considered appropriate to use the trans-
formed scale measurement as the main exposure, that is, to assume a linear association between the
transformed exposure and outcome. In this case, RC can be applied as in the preceding text, using the
transformed scale measurements. If, on the other hand, it is desirable to use the untransformed expo-
sure in the exposure-outcome model, that is, to assume a linear association between the untransformed
exposure and outcome, then difficulties arise.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 2137–2155
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We focus on the special situation in which a measurement error model with constant variance, �2u , can
be achieved after a log transformation. Suppose first that the error model for Wij is

Wij DXij vij (17)

where vij is a multiplicative error. If Wij is normally distributed on the log scale, and under an
assumption that Wij is unbiased measure of Xi on the original scale, it can be shown that

logWij D��
2
u=2C logXi C uij ; (18)

where uij has a normal distribution with mean 0 and constant variance �2u or equivalently log vij has
a normal distribution with mean ��2u=2 and variance �2u . That is, the log scale exposures follow a
classical error model with a constant shift. We suppose that logWij is normally distributed with mean
�W and variance �2W and that logXi is normally distributed with mean �X and variance �2X , where
�W D �X � �

2
u=2 and �2W D �2X C �2u . In this case, the expectation of interest for use in RC,

E.Xi jWi1;Zi /, can be evaluated exactly [4] and is given by

E.Xi jWi1;Zi /D exp

�
�2u
2
C

log.Wi1/�2X C�W �
2
u

�2W
C
�2X�

2
u

2�2W

�
:

Using E.Xi jWi1;Zi / in place of Xi in the exposure-outcome model is equivalent to fitting

the model with W
�2
X
=�2
W

i1 in place of Xi and then dividing the estimated slope parameter by
exp

˚
�2u=2C �

2
X�

2
u=2�

2
W C�W �

2
u=�

2
W

�
. Note that these results rely on the assumption that logWij

and logXi are jointly normally distributed, whereas the use of RC under the classical error model in (3)
does not require assumptions about normality, as stated in Sections 4.1–4.3.

Extensions to a more general situation in which constant error variance is achieved using a Box–
Cox transformed exposure scale are considerably more complex. No closed form expression for
E.Xi jWi1;Zi / exists in general, and numerical integration methods are required to evaluate the expec-
tation. There has not yet emerged a clear method for handling all types of heteroscedastic error using
RC [40, 41]. However, some authors have found that ignoring heteroscedastic error and treating it as
classical error may give rise to a good correction for error in many circumstances [40].

5. Correction methods allowing differential error

We have focussed so far on using RC to perform corrections for measurement error, and that is, to
our knowledge, the most widely used approach. However, as noted earlier, RC relies on an assumption
that any error is non-differential. In this section, we outline two more recently proposed approaches,
MR and MI, which can accommodate differential error. Both methods explicitly allow for differential
error because they aim to construct imputed values of the true exposure conditionally on all observed
data, including the outcome. For a continuous exposure, Freedman et al. [7] found in simulation studies
that MR and MI gave almost unbiased log OR estimates in a logistic regression using the continuous
exposure.

We focus on the differential error model in (7), with error variances denoted �2�Y and error correlations
�Y . We do not consider the use of these methods to additionally handle heteroscedastic error. The use of
MI to correct for heteroscedastic error was investigated by Guo and Little [41], though they assumed a
rather specific model for the heteroscedastic error and assumed thatX was observed in some individuals,
that is, they did not consider the repeated measures situation. To our knowledge, MR has not yet been
considered for heteroscedastic error.

In the situation where we have repeated exposure measurements, parameters  Y , �Y , and �Y cannot
be estimated, and sensitivity analyses would have to be used. In some settings, it may be reasonable to
assume  Y D 0, �Y D 1 and �Y D 0, in which case no sensitivity analyses are required in the repeated
measures situation.

To perform MR or MI allowing for differential error, repeated measures must be available for some
individuals with Y D 0 and some with Y D 1. If MI and MR, as described in the succeeding text, are
used when the error is in fact non-differential error, then these methods will in general result in a loss in
efficiency relative to RC [7].
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5.1. Moment reconstruction

Moment reconstruction was proposed by Freedman et al. [6] as a method for correcting for error in
univariate continuous exposures. The idea of this approach is to find values XMR such that the first two
joint moments of XMR with Y are the same as the first two joint moments of X with Y , that is, so that
E.X jY / D E.XMRjY / and var.X jY / D var.XMRjY /. The moment reconstructed value for individual
i , XiMR, is obtained as a function of the mismeasured exposureWi1. It has been shown [6,7] that XiMR
can be obtained using the simple formula

XiMR DE.Xi jYi ;Zi /C .Wi1 �E.Wi1jYi ;Zi //

s
var.Xi jYi ;Zi /
var.Wi1jY;Zi /

: (19)

When the distributions of Xi andWi1 are jointly normal given Yi and Zi , it follows the joint distribution
of XiMR and Yi given Zi is the same as that of Xi and Yi given Zi [6]. This is in contrast to the RC
values, which agree with the true exposure values only in expectation, but higher order moments will be
different. The assumption of a joint normal distribution for Xi and Wi1 given Yi and Zi is not required
to obtain the moment reconstructed values in (19), and this approach has been found to work well under
modest departures from that assumption [6].

The aforementioned MR formula allows both the expectation and variance to potentially depend on
the outcome Y . Calculation of the MR values requires E.Xi jYi ;Zi / and var.Xi jYi ;Zi /. Under an error
model of the form in (7), these can be obtained using

E.Xi jYi ;Zi /D� Yi =�Yi CE.Wi1jYi ;Zi /=�Yi ; (20)

var.Xi jYi ;Zi /D
�Yi .var.Wi1jYi ;Zi /� cov.Wi1; Wi2jYi ;Zi //

�2Yi
.1� �Yi /

: (21)

Note that in a validation study, these quantities can be estimated directly, provided Xi is observed for
some individuals with Yi D 1 and some with Yi D 0.

The valuesXiMR are used directly in place ofXi in the exposure-disease model, and it has been found
that this results in unbiased estimates of linear exposure-disease associations [7]. The parameters  Y ,
�Y and �Y must be specified for each Y .Y D 0; 1/.

Thomas et al. [42] suggested an extension to the MR method proposed by Freedman et al. [6],
called moment-adjusted imputation, which uses more than the first two moments to obtain imputed
values for the true exposure, therefore allowing greater flexibility of the method, for example, for
use with non-normally distributed exposures. MR has not, to our knowledge, been extended to a
multivariate setting.

5.2. Multiple imputation

Multiple imputation was introduced by Rubin [43] and is becoming widely used to handle missing data
in studies of different types. See White et al. [44,45] for recent summaries. Cole et al. [8] and Freedman
et al. [7] proposed using MI to correct for measurement error in continuous exposures, by treating the
true continuous exposure values as missing data. The key idea is that values of the true exposure are
imputed by drawing a random value from the distribution of the true exposure conditional on all observed
data, including the outcome. In the situation considered in this paper, the method therefore requires us
to estimate the distribution of the true exposure X conditionally on W1, Z and Y , and also on W2 for
individuals with a repeated exposure measurement. If we had a validation study within which X was
observed, estimation of this distribution would follow procedures used in a more standard missing data
setting. However, the situation that we focus on using repeated measures is non-standard. In both cases,
to account for the uncertainty in the imputed values for the true exposure, a number of imputed values
are obtained for each missing data point, creating M complete imputed data sets. We denote the mth
imputed value for individual i by X .m/iMI . The exposure-outcome model is then fitted in each imputed

data set, using X .m/iMI in place of Xi , giving rise to M estimates of exposure-disease association, for
example, the log OR in the case of logistic regression. TheM estimates are combined to obtain a pooled
estimate, using the so-called Rubin’s Rules [43], which we outline in the succeeding text.
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The true distribution of the true exposure X conditionally on W1, Z and Y is, in general, and in par-
ticular in the case of logistic regression models, a non-standard distribution. An approximate imputation
model is therefore typically used. The most commonly used imputation model is of the form

Xi D �0C �1Wi1C �
0
2Zi C �3Yi C ei ; (22)

and for individual i the mth imputed true exposure is given by

X
.m/
iMI DE.Xi jWi1; Yi ;Zi /C e

.m/
i

where e.m/i is a random draw from the distribution of the residuals from the regression ofX onW1, Z and
Y , that is from a normal distribution with mean 0 and variance var.X jW1;Z; Y /. To obtain the imputed
values therefore requires the estimation of E.Xi jWi1;Zi ; Yi / and var.Xi jWi1;Zi ; Yi / using only the
observed data. By assuming that X and W1 are jointly normally distributed given Y and Z, it can be
shown, under the measurement error model in (5), that

E.Xi jWi1; Yi ;Zi /DE.Xi jYi ;Zi /C
	
Wi1 � . Yi C �YiE.Xi jYi ;Zi //


 �Yi var.Xi jYi ;Zi /

�2Yi
var.Xi jYi ;Zi /C �2�Yi

var.Xi jWi1; Yi ;Zi /D
�2�Yi

var.Xi jYi ;Zi /

�2Yi
var.Xi jYi ;Zi /C �2�Yi

(23)

where the error variance �2�y .y D 0; 1/ can be estimated by	
cov.Wi1; Wi2jY D y;Zi /� �2yvar.Xi jY D y;Zi /



=�y :

The terms E.Xi jYi ;Zi / and var.Xi jYi ;Zi / can be obtained as described in the previous section. As in
MR, to perform MI therefore requires us to specify values for parameters  Y , �Y and �Y .

The exposure-outcome association estimates Ǒ.m/MI ; m D 1; : : : ;M for each imputed dataset are

combined to give a pooled estimate ǑMI , and corresponding variance, using the formulae

Ǒ
MI D

1

M

MX
mD1

Ǒ.m/
MI ; var. ǑMI /D AC

�
1C

1

M

�
B (24)

where A and B represent the within-imputation and between-imputation variance components, respec-
tively. We have A D .1=M/

PM
mD1Am, where Am is the estimated variance of Ǒ.m/MI , and B D

.1=.M � 1//
PM
mD1

�
Ǒ.m/
MI �

Ǒ
MI

�2
. This variance estimate does not incorporate the variability due

to estimation of the error model parameters and will tend to underestimate the true variance. Bootstrap-
ping of the whole procedure of estimating the error model parameters and then ˇ is probably the simplest
approach to obtaining ‘correct’ standard errors.

For individuals with repeated exposure measurements, the imputation model in (22) can be extended
to include a term in Wi2, and imputed values are obtained using X .m/iMI D E.Xi jWi1; Wi2; Yi ;Zi / C

e
.m/
i , where e

.m/
i is a random draw from a normal distribution with mean 0 and variance

var.Xi jWi1; Wi2; Yi ;Zi /. By assuming fXi ; Wi1; Wi2g are jointly normally distributed given Yi and Zi ,
it can be shown that

E.Xi jWi1;Wi2; Yi ;Zi/DE.Xi jYi ;Zi/CfWi1CWi2�2. YiC�YiE.Xi jYi ;Zi//g
�Yi var.Xi jYi ;Zi/

2�2Yi var.Xi jYi ;Zi/C�2�Yi.1��Yi /

var.Xi jWi1;Wi2; Yi ;Zi/D
�2�Yi

.1C �Yi /

2�2Yi var.Xi jYi ;Zi/C �2�Yi .1C �Yi /
: (25)

Multiple imputation extends to the multivariate setting by the use of chained equations, in which impu-
tation models for each error-prone exposure conditional on all others, plus the other adjustment variables,
are fitted iteratively [46, 47], or by using an assumption such as a multivariate normal distribution for
the full collection of true and observed exposures. If a validation study were available in which the true
exposure X was observed, then standard software could be used to perform MI by chained equations.
However, this is not possible in the situation where we have only repeated measures and extensions to
the results in (23) and (25) would be required.
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6. Correction methods for use when a continuous exposure is categorized

The focus so far has been on correction for the effects of error on parameters associated with the effects
of a continuous exposure. In epidemiological analysis, exposures are commonly divided into categories,
often quantiles, and the exposure-outcome association within each category is estimated relative to a
reference category. We refer to this as a categorized exposure analysis. Although this approach has
been criticized in the statistical literature [48], it is often used to assess possible non-linearity in the
exposure-outcome model without having to specify a non-linear model for the continuous exposure. It
also provides a convenient way of presenting results.

Measurement error in a continuous exposure can result in some individuals being misclassified when
the exposure is categorized, resulting in biased estimates of relative associations between the exposure
groups and disease risk. Flexible methods have not yet been developed for correcting for measurement
error when continuous exposures are categorized. For a continuous exposure measured with error, indi-
viduals close to the category boundaries are more likely to be misclassified; hence, the classification
according to the mismeasured exposure may provide additional information about disease risk beyond
that in the categorized true exposure, and the misclassification error becomes dependent on the outcome.
This means that even if error in the continuous exposure Wij is non-differential, when it is categorized
the misclassification will be differential [49].

Below we outline three methods for correcting for error in estimates associated with quantiles of a
single dietary exposure. The methods implicitly assume the exposure-outcome association is linear: if
not, they are biased towards linearity, but may nevertheless be useful in indicating strong departures
from linearity.

6.1. A graphical method

MacMahon et al. [1] proposed a graphical method to obtain corrected parameter estimates within
exposure categories from a categorized exposure analysis when the exposure is subject to classical
measurement error and applied it in a study of diastolic blood pressure and risk of stroke and coro-
nary heart disease. They noted that when using an exposure measured with error in a categorized
exposure analysis, the lowest/highest category will include disproportionately many individuals whose
single exposure measurement happened to be lower/higher than their ‘usual’ exposure. In the proposed
correction method, the estimated OR (in the case of a logistic regression) within each exposure cate-
gory is plotted against an unbiased estimate of the mean ‘usual’ exposure in that category. The means
of repeated measurements within exposure categories defined by the original exposure measurements
provide unbiased estimates of mean usual exposure within categories.

Although it has been fairly widely used, MacMahon’s method does not work in general for non-
linear associations; however, it has been found to perform well for quadratic associations [50]. Also, this
method assumes classical measurement error and does not account for multivariate measurement error.

6.2. Using imputation-based methods

Keogh et al. [50] recently investigated alternative approaches to correcting for the effects of measure-
ment error in the categorized exposures situation. An attractive approach first obtains imputed values
for the underlying continuous exposure Xi and then categorizes these in whatever way is of interest
(fixed cutpoints or quantiles) for use in a categorized exposure analysis. The use of MR or MI to obtain
imputed values of the true exposure, followed by categorization, has been found to work well for linear
associations [50]. Further investigations, not yet published, suggest that this approach may also extend
to non-linear associations.

6.3. A method using regression calibration

We assume in this section that the exposure is to be categorized into quantiles and outline a method
for estimating the association with the outcome of a 1-quantile increase in the dietary exposure. This
provides an estimate of the trend in disease risk across quantiles of intake under the assumption of the
trend being linear. We show in the succeeding text that this can provide a useful ‘trick’ for investigating
the amount of correction required for measurement error in linear models.

We focus on a univariate exposure. For individual i , let XGi and W G
i1 denote the true and observed

quantiles of the continuous variables Xi andWi1, taking values in f1; 2; : : : ;Qg, whereQ is the number
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of quantiles. Treating XGi as a continuous variable, the exposure-outcome model of interest is now

log
Pr.Yi D 1jXGi ;Zi /

1� Pr.Yi D 1jXGi ;Zi /
D ˛G C ˇGXGi C ı

G0Zi : (26)

The corresponding naive model is

log
Pr.Yi D 1jWG

i1;Zi /

1� Pr.Yi D 1jWG
i1;Zi /

D ˛G�C ˇG�W G
i1 C ı

G�0Zi : (27)

First, consider the case where the underlying continuous measurement Wi1 follows the classical error
model in (3). Under this error model, and assumingXi andWi1 are normally distributed, it can be shown
that ˇG can be approximated by

ǑG D ǑG�=
p
	; (28)

where, as before, 	 is the RDR in model (9) and can be estimated by the regression coefficient for Wi1
in a linear regression of Wi2 on Wi1 and Zi . Compare this with the result in (10), where the correction
for a continuous exposure is Ǒ D Ǒ�=	. That is, the degree of correction for measurement error required
under model (26) is smaller than that required under the continuous exposure-outcome model (1).

If the underlying continuous measurement Wi1 has the systematic error model in (5), the result
in (28) becomes

ǑG D ǑG� �

p
1� �p
	� �

: (29)

The results in (28) and (29) rely on the exposure categories being based on quantiles. It does not apply
if the categories are based on fixed cutpoints. This method also holds if XGi is replaced by the exposure
on the standard deviation scale, that is, if the interest is in the effect of a standard deviation change in
the exposure.

7. Illustration: fibre intake and colorectal cancer

We illustrate the methods outlined earlier using data from a matched case–control study of the asso-
ciation between fibre intake and colorectal cancer. The case–control study was sampled within the
European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort, and the results
have been presented elsewhere [9]. Measures of dietary intake have been obtained for the case–control
sample from a 7-day diary completed at least 12 months prior to diagnosis. Repeated 7-day diary mea-
surements are available for a subset of participants. The repeated measurements were obtained from
diaries collected approximately 4 years after the first diary was collected. The individuals for whom
a repeated measure is available are not part of a random sample. The repeated measures have instead
arisen in a fairly ad hoc way due to diaries being processed for other studies nested within the cohort.
We use conditional logistic regression to estimate ORs for fibre intake in grams per day. The afore-
mentioned methods extend to the setting of a conditional logistic regression provided the matching
variables are included in Z when the correction procedures are performed. In this example, the match-
ing is based on sex and age within 3 years, and we also adjust for non-dietary variables assumed to
be measured without error: exact age, height, weight, social class, education level, smoking status and
level of physical activity. The vector Z includes all adjustment variables and matching variables. For the
purposes of this illustration, we restrict the analyses to 305 cases and 1222 controls with complete
information for the adjustment variables, of whom 399 (26%) have a repeated diet diary measure-
ment, although in practice, individuals with incomplete information should be included, for example,
using MI.

Figure 1 shows plots of the two fibre measurements on the original scale and on the log scale. By using
the original scale measurements, there appears to be an increase in error variance as the measurements
increase. On the log scale, the error variance appears constant. We therefore use the log-transformed
measurements as the main exposure in our exposure-outcome analyses. In a secondary analysis, we
consider the use of original scale measurements as the main exposure in our exposure-outcome analyses,
while allowing for the error heterogeneity.
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Figure 1. Results from a case–control study within the EPIC-Norfolk cohort. Plots of 7-day diary measurements
of fibre intake on the original and log-transformed scales.

Table I. Results from a case–control study within the EPIC-Norfolk cohort; log odds ratio estimates (in units
of 0.36 log scale grams per day, i.e. for an approximate 40% increase in fibre intake) from a naive analysis
and using three methods for measurement error correction.

Method Ǒ SE. Ǒ/ (a) 95% CI (a) SE. Ǒ/ (b) 95% CI (b)

Naive analysis �0.193 0.070 (�0.330,�0.057) NA NA
Regression calibration �0.286 0.103 (�0.488,�0.085) 0.104 (�0.490,�0.082)
Moment reconstruction �0.311 0.088 (�0.484,�0.138) 0.145 (�0.595,�0.027)
Multiple imputation �0.313 0.108 (�0.524,�0.102) 0.140 (�0.588,�0.038)

We show standard errors (SE) and 95% confidence intervals (CI) (a) without allowing for the additional uncertainty in
the measurement error estimation and (b) allowing for the additional uncertainty in the measurement error estimation.
All methods were implemented using repeated measures in a subset of the study population.

We focus here on a univariate dietary exposure as adjustment for energy intake has little impact on
the estimates. We make the assumption of non-differential error because the food records were obtained
prospectively.

All of the analyses were performed using R, and the code used is given in full in the Supporting
Information.

7.1. Assuming classical measurement error

We first apply correction methods under the assumption of classical error on the log scale. The results
from using RC, MR and MI are shown in Table I, alongside the naive results. The error correction
methods all give similar results. As we expect, the correction for error results in a stronger estimated
association between fibre intake and colorectal cancer risk compared with the naive approach. The stan-
dard errors using MR and MI are larger than that found using RC. We expect this because MR and MI
allow differential error, while RC assumes non-differential error.

We also applied the correction methods for categorized exposures, described in Section 6. Figure 2
shows the results from a naive analysis using quintiles of exposure, from MacMahon’s method, and by
imputing the underlying continuous exposure (on the log scale here) and categorizing that for use in the
exposure-outcome analysis. In the uncorrected plot, there is some suggestion of a non-linear association.
The results using the correction methods suggest a more non-linear relationship compared with the naive
analysis, which is what we would expect [50].

7.2. Using sensitivity analyses to assess impact of systematic error

In this section, we extend the aforementioned results to incorporate sensitivity analyses to assess the
potential impact of systematic errors, as under the error model in (5). We take plausible values for the
sensitivity analyses from a study within a subset of the EPIC-Norfolk cohort described by Day et al.
[15] in which they estimated measurement error models for 7-day diet diary measurements of protein,
potassium and sodium using objective biomarkers for each nutrient from 24-h urine samples, enabling
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Figure 2. Results from a case–control study within the EPIC-Norfolk cohort. Log odds ratio estimates within
quintiles of exposure: (i) naive method: naive log odds ratios within quintiles of observed log scale fibre intake
plotted against mean observed exposure within quintile, (ii) MacMahon’s method: naive log odds ratios are plot-
ted against estimated usual intake within observed quintiles and (iii) moment reconstruction: log odds ratios
within quintiles of true exposure (estimated using moment reconstruction) are plotted against mean estimated

true exposure with those quintiles. Bars give 95% confidence intervals relative to the lowest quintile.

Table II. Results from a case–control study within the EPIC-Norfolk cohort;
regression calibration with sensitivity analyses: log odds ratio estimates (95%
CI) for log scale fibre intake (in units of 0.36 log scale grams per day) for
different values of � and �.

�D 0 �D 0:5

� D 1 �0.286 (�0.490,�0.082) �0.549 (�1.000,�0.097)
� D 0:75 �0.215 (�0.368,�0.062) �0.411 (�0.750,�0.073)
� D 0:5 �0.143 (�0.245,�0.041) �0.274 (�0.500,�0.049)

Confidence intervals were obtained using corrected standard errors.

estimation of � and � in (5). For the nutrients protein, potassium and sodium, the estimates of � were,
respectively, 0.81, 0.69 and 0.47, and the estimates of error correlations � were, respectively, 0.52, 0.58
and 0.52. The low estimate of � D 0:47 for sodium is not unexpected because it is known that sodium
intake is difficult to measure using this instrument. The higher estimates for � for protein and potassium
may therefore be more transferable to other nutrients. A small number of other studies have made similar
estimates of systematic errors in 24-h recall measurements [16–18]

In our sensitivity analyses, we considered values for � of 1, 0.75 and 0.5 and values for � of 0 and
0.5. The results are shown in Table II. As the value of � moves away from 1, the strength of the error-
corrected association is reduced, that is, it moves closer to the null. Correlation between the errors in the
repeated measurements results in estimates showing a strengthening of the association, that is, a move
away from the null. The significance of the association is approximately unchanged in these analyses.

7.3. Allowing for heteroscedastic error

In the preceding text, we assumed a linear association between the log-transformed exposure and the
outcome on a logistic scale. This was because the log scale measurements were approximately normally
distributed and displayed approximately constant error variance (Figure 1). Suppose instead that interest
was in an assumed linear association between the untransformed exposure and the outcome on a logistic
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Table III. Results from a case–control study within the EPIC-Norfolk cohort; log odds ratios for a 6 grams
per day increase in fibre intake estimated using a naive analysis, using regression calibration assuming classi-
cal error in the untransformed measurements and using regression calibration allowing for the heteroscedastic
error.

Method Ǒ SE. Ǒ/ (a) 95% CI (a) SE. Ǒ/ (b) 95% CI (b)

Naive �0.200 0.081 (�0.360,�0.041) NA NA
RC—assuming classical error �0.309 0.125 (�0.555,�0.063) �0.127 (�0.558,�0.061)
RC—heteroscedastic approach �0.319 0.124 (�0.561,�0.076) 0.153 (�0.620,�0.018)

We show standard errors (SE) and 95% confidence intervals (CI) (a) without allowing for the additional uncertainty in
the measurement error estimation and (b) allowing for the additional uncertainty in the measurement error estimation.
In (b), the standard errors were obtained using Equation (12) for regression calibration (RC) assuming classical error
and using bootstrapping for the heteroscedastic approach.

scale. In this situation, we apply the special RC methods outlined for this situation in Section 4.4. We
also apply standard RC, assuming classical error in the untransformed measurements, even though this
appears not to be the case. The results are shown in Table III. The results from the two RC approaches
are similar, suggesting that in this case assuming classical error to perform the RC was reasonable.

The scale on which the exposure is used in the exposure-outcome model is a subject matter choice. In
this example, either the original scale or the log scale may be reasonable. Figure 2 gives little evidence
to choose between a linear association on the transformed or untransformed scale.

8. Discussion

The aim of this paper has been to provide in one place a toolkit of methods for correcting for the effects
of exposure measurement error on exposure-outcome associations. The focus was on making such cor-
rections by utilizing repeated measures of the error-prone exposure. We were motivated by the need for
such correction methods in nutritional epidemiology, where some studies are now using repeated food
records to measure dietary intake. Food records have often been assumed to be subject only to random
errors, but there is good evidence to the contrary, and one aspect of this paper was to outline methods for
sensitivity analysis to assess the impact of systematic errors. Again, our methods apply equally for FFQ
measurements. The broader aim was to cover a range of types of error and methods, which are relevant
in a broader context.

Table IV provides an overview of the methods considered and the measurement error settings in
which they may be used, based on established developments to date. It is probable that MI and MR can
be extended for use in a wider range of circumstances in future work.

We emphasized the use of RC to make corrections for measurement error, this being the most
popular approach in practice. We also showed how RC can be extended to incorporate sensitivity anal-
yses to investigate the potential impact of departures from classical error on corrected estimates of
exposure-outcome associations. The use of sensitivity analyses such as these is important in nutritional
epidemiology, where there is evidence of systematic errors in dietary measurements, but few unbiased
measures with which to make comparisons. If a validation study is available, in which the true exposure
is observed, then no sensitivity analyses are necessary.

Regression calibration does not apply when exposure measurement error is differential. We
summarized two correction methods for use in this situation: MR and MI. Both are relatively new, in
the context of measurement error correction, and have not yet to our knowledge been used extensively.
Both methods are reasonably straightforward to implement when repeated error-prone exposure mea-
surements are available, and even more so if the true exposure can be observed in a validation study. If
it is considered appropriate to assume non-differential error, then RC is likely to be the most efficient
approach. Depending on the form of the differential error, if only repeated exposure measurements are
available, then some parameters may have to be specified and used in sensitivity analyses. If there is a
validation study, then the form of the differential error can be estimated, and no sensitivity analyses are
required, provided the validation sample contains both cases and controls.

Heteroscedastic measurement error is likely to occur quite commonly. If a transformation can be made
under which the errors have constant variance, then exposure-outcome associations can be studied using
the transformed exposure, applying any correction methods on the transformed scale. However, this
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may not always be appropriate. Some approaches have been recently suggested for correcting for het-
eroscedastic error when it is desirable to use the untransformed exposure in the main analysis [40, 41],
but a general method is still lacking. Note that if there is a validation study, the form of the heteroscedas-
tic error could be investigated directly; however, this is not possible when we must use repeated exposure
measurements, where more general methods are required to deal with non-constant error variance. It is
possible that MR and MI could be extended for use with this type of error, and this is an area for further
work. It is also quite possible that RC assuming classical error works adequately in many circumstances
where the error is in fact heteroscedastic [40].

We also presented three approaches to correcting for error in estimates obtained in an analysis
based on a categorization of the continuous exposure. When the exposure-outcome association is linear,
MacMahon’s method for categorized exposures gives a way of showing graphically the corrected asso-
ciation. However, this method assumes linearity and, moreover, gives purely graphical results. Devel-
opment of measurement error correction methods for general use in grouped exposure analyses based
on categorized continuous exposures is an important area for future work. No method has yet been
developed for categorized exposures, which allows for underlying non-linearity in the exposure-disease
association or non-classical measurement error. Instead, we outlined a method for investigating the
degree of measurement error correction required under an assumption of a linear association across
quantiles. As in any setting, categorization of exposures should be used with caution.

There are many methods for error correction that we have not covered in this paper. These include
full likelihood approaches [4] and simulation extrapolation [51]. Although we considered categorized
exposure methods, we did not consider methods for correcting for measurement error under non-linear
models for the exposure-outcome association. RC has been extended to the non-linear situation. A simple
method for investigating non-linearity in exposure-outcome associations is to include a quadratic term
for the main exposure in the exposure-outcome model. By using RC, the parameters associated with lin-
ear and quadratic terms are estimated by replacing X and X2 with E.X jW1;Z/ and E.X2jW1;Z/. The
second term can be computed by assuming a particular distribution for X jW1;Z. More flexible methods
for investigating non-linearity include modelling the exposure using penalized splines or fractional poly-
nomials. The idea of RC has been developed for use with splines [52], as has simulation extrapolation
[52, 53]. One issue specifically relevant to the use of repeated food records in nutritional epidemiology
is the potential for zero-inflated measurements, which can occur when some individuals do not report
eating the food in question during the period of the food record. Special models have been developed
for use in this situation [54, 55]. Some of the other error correction methods described in the succeeding
text, in particular those for use in non-linear models, are complex, and software for implementing them
has not yet become available. For this reason, these methods have not been widely used in practical
applications in epidemiology.

In summary, we have presented a collection of methods for error correction, which can be applied to
deal with error of different types when repeated error-prone exposure measurements are available. We
have provided guidance for practical application of the methods. All of the methods we described can
be applied using familiar methods in standard software, and an example code using R software is given
in the Supporting Information. Their application involves calculation of expectations and variances and
using linear regression models.
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