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Abstract

Piroplasmosis is a serious debilitating and sometimes fatal disease. Phylogenetic relationships within piroplasmida
are complex and remain unclear. We compared the intron–exon structure and DNA sequences of the RPS8 gene
from Babesia and Theileria spp. isolates in China. Similar to 18S rDNA, the 40S ribosomal protein S8 gene, RPS8,
including both coding and non-coding regions is a useful and novel genetic marker for defining species boundaries
and for inferring phylogenies because it tends to have little intra-specific variation but considerable inter-specific
difference. However, more samples are needed to verify the usefulness of the RPS8 (coding and non-coding regions)
gene as a marker for the phylogenetic position and detection of most Babesia and Theileria species, particularly for
some closely related species.
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Introduction

The piroplasms, comprising mainly the genera Babesia and
Theileria, are tick-transmitted protozoa that are highly
pathogenic to ruminants, horses, pigs, dogs, cats and cattle,
and in some cases, even to humans. In the vertebrate hosts,
the infection usually causes fever, anemia and
haemoglubinuria, and in severe cases, death [1]. Animals that
recover from acute or primary infections naturally remain
persistently infected, and act as reservoirs for infecting ticks.

There are some controversial species placements such as T.
equi and B. microti [2-6]. In the most thorough phylogenetic
examination to date, incongruencies in the phylogenetic
evolution with a taxonomically different dataset were displayed
[6-9]. However, in the complex phylogenetic relationships
between Babesia and Theileria spp., previous studies only
relied on 18S rDNA gene [4]. The rDNA genes possess both
conserved stems and variable loop regions which provide
signals for different levels of phylogenetic inference [10], the
18S rDNA sequences support many piroplasm clades, but,
being a slow-evolving marker it may fail to provide enough
phylogenetic signal to resolve relationships at the species level
such as some closely related Babesia species in China [11].

Internal transcribed spacer 2 (ITS2) may be a more ideal DNA
barcode based on the current database for piroplasma [12],
however, complex and unpredictable evolutionary behavior of
ITS reduces its utility for phylogenetic analysis [11,13].
Information on mitochondrial DNA (mtDNA) from Babesia and
Theileria spp., is limited, which precludes its use despite its
advantage for use as a molecular marker for lower-level
phylogeny [11,14,15]. Genome-wide analysis may aid in
determining the taxonomy of species such as B. microti and T.
equi but its usefulness as an everyday tool to classify
Apicomplexan parasites is limited by availability of complete
genome sequences and requirement for a large number of
permutations [4-6]. It is therefore highly desirable to test other
genes besides the 18S rRNA - to further improve phylogenetic
analysis of Babesia and Theileria species.

Structure and sequence signatures in ribosomal RNA and
proteins are defining characteristics of the three domains of life
and instrumental in constructing the modern phylogeny [16].
Based on the Ribosomal protein S8 and L4, amino acid
sequence alignments of orthologous ribosomal proteins found
in Bacteria, Archaea, and Eukaryota display an unusual
segment or block structure with major evolutionary implications
[17]. A set of 50 informative genes that could be analyzed in a
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broader sampling of Piroplasmida taxa to gain a greater
understanding of the evolutionary relationships of the
piroplasms were revealed in the comparative genomic analysis
of T. equi [5]. Among them, we selected the 40S ribosomal
protein S8 (RPS8) gene locus (including coding and non-
coding regions) as phylogenetic marker to evaluate the merits
and shortcomings of the phylogeny based on the comparative
analysis of the RPS8 and 18S rDNA of Babesia and Theileria
isolates from China for phylogenetic analysis in this study.

Results and Discussion

RPS8 gene sequence information
The complete sequences of the RPS8 (coding and non-

coding regions) gene were obtained from twenty-three isolates
representing seven Babesia and six Theileria spp. in China
(Table 1). The primers were designed to amplify 561 bp of
coding sequence for Babesia species and 573 bp of coding
sequence for Theileria species, which are known to be
interrupted by an intron in Babesia species and two introns in
Theileria species. The size of the introns varied from 146 bp in
T. sinensis to 282 bp in Babesia sp. Kashi2 and were
specifically located at the conserved position in all the species
(Figure 1). The identity of nucleotide sequences of RPS8
between Babesia and Theileria species varied from 63.5% to
82.9% (interspecific variability), whereas within Babesia and
Theileria species (intraspecific variability) the identity was
approximately 89% to 99.7% respectively (data not shown).
The nucleotide sequences of the RPS8 (coding and non-coding
regions) genes of Babesia and Theileria species in this study
have been deposited in the GenBank database under
accession Nos. JN400408 to JN4004028 and Nos. JX402859
to JX402860. The nucleotide sequences of the 18S rDNA
genes of several Theileria species in this study have been
deposited in the GenBank database under accession Nos.
KF559355 to KF559357. The nucleotide sequences of the
RPS8 (coding and non-coding regions) genes of B. bovis USA
isolate (NW_001820855), B. microti USA isolate (FO082874),
T. annulata Ankara strain (NC_011099), T. parva Muguga
strain (NC_007345), T. orientalis Shintoku strain (AP011947),
T. equi Florida strain (ACOU00000000) were drawn from the
GenBank database.

Interspecific Genetic Distance
The ribosome, with its conserved central role in protein

synthesis, has long constituted a prime subject for phylogenetic
analysis [17]. The coding sequence of the RPS8 gene displays
moderate conservation as a constitutive component of the
ribosome. Compared with the moderate sequence identity seen
in RPS8 coding regions from Babesia and Theileria species,
the RPS8 non-coding regions are highly divergent. Using the
Tamura–Nei model of sequence evolution, d values (Genetic
Distance) were calculated independently across coding and
non-coding region sequences (Data not shown). Across
Babesia and Theileria species, d ranges were 0.07903 -
0.47956 (coding) and 0.12511- 1.14484 (non-coding regions).
The d-values for non-coding regions are on average 2-fold
greater than those for coding regions. Furthermore, the degree

of variation in the RPS8 (coding and non-coding regions)
dataset was considerable when observing pairwise differences
between sequences. Among the eight Babesia and seven
Theielria species sequenced, the average p-distances were
0.45, while for the 18S rDNA the average p-distance is 0.083,
indicating the RPS8 (coding and non-coding regions) being
more variable than the 18S rDNA (Data not shown).

Comparison of the RPS8 (coding and non-coding
regions) gene-based phylogenetic trees and the 18S
rDNA gene-based phylogenetic trees

Phylogenetic trees based on the 18S rDNA and RPS8
(coding and non-coding regions) genes were constructed by
the best-fit model of Bayesian and Maximum likelihood (ML)
analysis (Figure 2 and 3). The Bayesian trees were congruent
with those obtained under the ML criterion. Nodes receiving
≥85% bootstrap (BP) support in the Maximum likelihood
analysis and/or ≥0.98 posterior probability (PP) in the Bayesian
analysis were considered strongly statistically supported, and
nodes receiving <60 BP and /or <0.90 PP were considered
poorly supported, revealing significant levels of genetic
diversity. In the RPS8 tree, the Bayesian and ML analyses
returned nearly identical topologies, however, for Theileria
species, there was less resolution in the ML analysis given that
the RPS8 gene is highly variable. The datasets with significant
heterogeneity result in the long-branch attraction and poor
resolution at relatively deeper nodes when using the ML
approach [18].

Both Babesia and Theileria were polyphyletic with four major
clades being defined (Figure 3). Theileria species were
clustered within clade I expect T. equi, this clade was strongly
supported by both ML and Bayesian analyses (PP > 0.95, BP >
85). Clade II consisted of only three representatives of a single
species, T. equi/B. equi (PP = 1.00, BP = 98-100), for which
the phylogenetic status is controversial [2,3]. In our analysis,
this clade was strongly supported as a separated taxon to other
Theileria spp. in the 18S rDNA tree (PP = 1.00), furthermore,
there are poorly supported as a sister taxon to other Theileria
spp. with ML (BP = 16) analysis of RPS8. However, there was
relatively moderate statistical support for T. equi as a sister
taxon to other Theileria spp. in the Bayesian analysis (PP =
0.91). Its position relative to Clade I and Clade III comprising
the majority of Babesia sp. was unresolved, indicating the
unclear evolutionary position of T. equi [4,14]. In both the trees,
B. microti was placed at the root of piroplasms, thereby,
separating it from the Babesia and Theileria clades (Figure 2,
3), which is consistent with Genome-wide phylogenetic
analyses suggesting a new genus for the B. microti group of
strains [6].

Overall topology of the two trees showed similar major
branching orders, beginning with the outgroup Toxoplasma
gondii followed by polyphyletic Theileria and Babesia species.
However, phylogenetic reconstructions show that, although it is
the least variable, the 18S rDNA tree is more resolved than the
RPS8 tree in the nodes of some clades, For example, B.
motasi isolates were clearly separated from the branch
composed of B. ovata and B. bigemina with statistical support
(PP=0.97, BP=64) in the 18S rDNA tree as well as there was
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moderate statistical support (PP=0.92, BP=78) in the RPS8
tree. These data indicate that 18S rDNA and RPS8 reliably
distinguishes the deeper branches among some Babesia
species. Within B. ovata isolates, the phylogenetic relationship
between the B. ovata Zhangjiachuan isolate and the Wenchuan
isolate is reliable in the RPS8 tree (PP=0.99, BP=84) as
showed in the 18S rDNA tree (PP=1.00, BP=83). The RPS8
gene seems to be equal to the 18S rDNA in recognizing close
lineages among some Babesia and Theileria species.

In the 18S rDNA tree, the phylogenetic relationship between
B. bovis and other two Babesia species (Babesia sp.
Xinjiang-2005 and Babesia sp. Kashi2) were poorly statistically
supported (PP=0.87, BP=37) but the latter two Babesia species
are closely related with high statistical support (PP=1.00,
BP=95), which was not reconciled with morphological and
biological data in previous studies (Figure 2) [19-24]. On the
contrary, the phylogeny generated using the RPS8 gene did
provide extremely strong support for the close sister-taxon
relationship between B. bovis and the other two Babesia

 species (Babesia sp. Xinjiang-2005 and Babesia sp. Kashi2)
(PP=1.00, BP=92) and unreliable sister-taxon relationship
between Babesia sp. Xinjiang-2005 and Babesia sp. Kashi2
(PP=0.69, BP=50) (Figure 3). This is probably due to the use of
a small dataset and two markers with different modes of
evolution. Thus, for more accurate definition of certain Babesia
isolates, it may be necessary to incorporate more markers that
have differing evolutionary rates.

For Theileria species, clade I in the 18S rDNA tree was
composed of two subclades, one subclade comprising T.
annulata isolates and T. parva, with the other subclade
consisting of T. uilenbergi, T. luwenshuni, T. sinensis isolates
and T. sergenti. The phylogenetic status of two subclades
resolved with strong statistical support (PP=1.00, BP=96).
Furthermore, T. annulata and T. parva were closely related
with a strong statistical support (PP=1.00, BP=100). T.
luwenshuni formed a separate branch that is distantly related to
T. sergenti and T. sinensis with statistical support (PP=0.76,
BP=84) (Figure 3). T. uilenbergi formed a separate branch with

Table 1. The host, location, vector and RPS8 and 18S rDNA gene sequences for Babesia and Theileria species used in this
study, * indicated that the sequence were drawn from the database.

parasite Host Location Tick vector Intron location Genbank Accession No.

     RPS8 18S rDNA

Babesia bovis Cattle Shaanxian Rhipicephalus microplus 212-458 JN400408 AY603398*
B. bovis Cattle Lushi R. microplus 212-458 JN400409 JX495403*
B. bovis Cattle USA R. microplus 212-415 NW_001820855* -
B. bigemina Cattle Kunming R. microplus 212-487 JN400410 AY603402*
B. bigemina Cattle Lushi R. microplus 212-487 JN400411 JX495402*
B. major Cattle Yili Haemaphysalis punctata 212-485 JN400412 AY603399*
B. ovata Cattle Lushi H. longicornis 212-486 JN400413 AY603401*
B. ovata Cattle Wenchuan H. longicornis 212-484 JN400414 AY603403*
B. ovata Cattle Zhangjiachuan H. longicornis 212-487 JN400415 AY603400*
Babesia sp. Kashi2 Cattle Kashi Hyalomma spp. 212-493 JN400416 AY726557*
B. motasi sheep Lintan H. qinghaiensis 212-493 JN400417 AY260181*
B. motasi sheep Ningxian H. longicornis 212-491 JX402860 AY260180*
B. motasi sheep Tianzhu H. qinghaiensis 212-493 JX402859 DQ159072*
Babesia sp. Xinjiang-2005 sheep Kashi Hyalomma anatolicum 212-403 JN400418 DQ159073*
B. microti human USA Ixodes scapularis 212-362 FO082874* (2706040.2706769) AF231348*
Theileria annulata Cattle Shanmenxia H. detritum 212-328, 482-512 JN400419 KF559356
T. annulata Cattle Xinjiang H. scupense 212-328, 482-512 JN400420 EU073963*
T. annulata Cattle Ningxia H. detritum 212-328, 482-512 JN400428 EU083800*
T. annulata Cattle Ankara H. detritum 212-328, 482-512 NC_011099* -
T. parva Cattle Muguga Rhipicephalus appendiculatus 212-328, 482-512 NC_007345* HQ895968*
T. sergenti Cattle Lushi H. longicornis 212-331, 485-516 JN400421 AF081137*
T. orientalis Cattle Shintoku (Japan) H. longicornis 212-331, 485-516 AP011947* -
T. sinensis Yak Lintan H. qinghaiensis 212-328, 482-510 JN400422 EU274472*
T. sinensis Yak Weiyuan H. qinghaiensis 212-328, 482-510 JN400423 EU277003*
T. sinensis Cattle Lintao H. qinghaiensis 212-328, 482-510 JN400427 KF559355
T. luwenshuni sheep Ningxian H. qinghaiensis 212-333, 487-515 JN400424 JF719833*
T. uilenbergi sheep Longde H. qinghaiensis 212-329, 483-511 JN400425 JF719835*
T. equi horse Zhaoyuan Demacntor spp. 212-339, 493-528 JN400426 KF559357

T. equi horse Florida (USA)
D. variabilis ; Amblyomma cajennense ; R.

microplus
212-339, 493-528 ACOU00000000* -

doi: 10.1371/journal.pone.0079860.t001
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Figure 1.  The alignment of RPS8 (coding and non-coding regions) sequences from B. bovis and Theileria species.  B. bovis
(GenBank accession no. JN400409); B. microti (GenBank accession no. FO082874); T. annulata (GenBank accession no.
NC_011099); B. bovis (GenBank accession no. NW_001820855) were aligned using the ClustalW2 program. The non-coding
region is marked with gray shading.
doi: 10.1371/journal.pone.0079860.g001
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statistical support (PP=0.89, BP=86). In the RPS8 tree, T.
luwenshuni formed a separate branch with strong statistical
support (PP=0.98, BP=76) [25,26].

In short, 18S rDNA as a slow-evolving marker more reliably
distinguishes deeper branches among some Babesia species
than the RPS8 gene. However, the RPS8 gene seems to be
equal to the 18S rDNA in recognizing lineages among some
closely related Babesia and Theileria species.

Combined analysis
A phylogenetic tree was reconstructed based on the

combined dataset of the two markers. The resulting tree is
presented in Figure 4. It is mostly reconciled with the
phylogenetic trees constructed based on the RPS8 gene and
18S rDNA apart from the phylogenetic relationship of T. equi to
other Theileria spp. The clade of T. equi was strongly
supported as sister taxon to other Theileria spp. with ML
(BP=97) analysis of the combined dataset of the two markers.
However, the phylogenetic tree constructed based on the

Figure 2.  Inferred phylogenetic relationship among
representative Babesia and Theileria species based on 18S
rDNA sequences.  The 18S rDNA sequences were analyzed
utilizing Bayesian analysis (Bayes) and maximum likelihood
(ML), using Toxoplasma gondii as outgroup. The numbers
along branches indicate posterior probability (PP) and
bootstrap probability (BP) values resulting from different
analyses in the order: Bayes/ ML. Highly statistically supported
nodes were BP≥85; PP≥0.98; while poorly statistically
supported nodes were BP<60; PP<0.90.
doi: 10.1371/journal.pone.0079860.g002

combined dataset of the two markers is not reliable with poor
statistical support (Data not shown).

Materials and Methods

Ethics statement
This study was approved by the Animal Ethics Committee of

the Lanzhou Veterinary Research Institute, Chinese Academy
of Agricultural Sciences. All sheep and calves, were handled in
accordance with good animal practices required by the Animal
Ethics Procedures and Guidelines of the People's Republic of
China.

Figure 3.  Inferred phylogenetic relationship among
representative Babesia and Theileria species based on
RPS8 (coding and non-coding regions) gene
sequences.  The RPS8 (coding and non-coding regions) gene
sequences were analyzed utilizing Bayesian analysis (Bayes)
and maximum likelihood (ML), using Toxoplasma gondii as
outgroup. The numbers along branches indicate posterior
probability (PP) and bootstrap probability (BP) values resulting
from different analyses in the order: Bayes/ ML. The accession
numbers of the isolates used in the phylogenetic tree were
listed in Table 1. High statistically supported nodes had BP≥85;
PP≥0.98; while poorly statistically supported nodes had BP<60;
PP<0.90.
doi: 10.1371/journal.pone.0079860.g003
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Animals
All sheep and calves were purchased from a Babesia and

Theileria-free area and maintained in an isolated stable. All
sheep and calves were splenectomized and treated with
antibiotics to promote the healing of wounds one month before
the study. During this time, blood films were taken weekly from
the ears of the sheep and calves to be examined by Giemsa
stain for the presence of haemoprotozoan parasites. The
experimental animals were tested by PCR with the universal
primers for Babesia and Theileria species based on the 18S
rDNA sequences prior to use to ensure that they were free of
hemoparasites. After collecting blood containing parasites, the
experimental animals were treated with anti-piroplasmosis drug
and they were rehabilitated.

Parasite species
The isolates used in this study are listed in Table 1. Babesia

bovis (Shanxian and Lushi) [27], B. bigemina (Kunming and
Lushi) [28], B. major (Yili) [29], B. ovata (Wenchuan and Lushi
and Zhangjiachuan) [30,31,32], Babesia sp. Kashi2 (Kashi)
[24], B. motasi (Ningxian and Tianzhu and Lintan) [33,34],
Babesia sp Xingjiang-2005 (Kashi) [21], Theileria annulata
(Xingjiang and Ningxia and Shanmenxia) [30,35], T. sergenti
(Lushi) [36], T. sinensis (Weiyuan and Lintan and Lintao)
[37,38], T. uilenbergi (Longde) [26], T. luwenshuni (Ningxian)
[26], T. equi (Zhaoyuan) [39]. The reference parasite species

are as follows: T. annulata (Ankara strain) [40], T. orientalis
(Shintoku strain) [41], T. equi (USDA strain) [5], T. parva
(Muguga strain) [42], B. microti (RI isolate) [6], Toxoplasma
gondii (ME49 strain) [43], B. bovis (T2Bo strain) [44].

DNA extraction
Sheep and calves were infected intravenously with 15 ml of

cryopreserved infected blood stock of these Babesia and
Theileria isolates. Daily post-infection rectal temperatures were
measured to monitor for disease and blood smears were
examined to monitor for presence of piroplasms. When the
parasitemia reached more than 5% of whole blood, blood was
collected into heparinised tubes. Parasite DNA was isolated
using a genomic DNA Purification Kit (Gentra, USA) according
to the manufacturer’s instructions. The amount of DNA isolated
was assessed spectro-photometrically. Control DNA was
isolated from venous blood of uninfected sheep and calves.

PCR, cloning, and DNA sequencing
The partial RPS8 gene was amplified from the genomic DNA

extracted from each sample except Babesia microti by
conventional PCR using forward primer 5’- ATGGGTATT(A/
C)TCA(G/T/)C(A)GT(C/G)GAC(T)AG-3’ and reverse primer 5’-
GCGTTTCTTCTTA(G)TCCATACG -3’. The reaction mixture
consisted of 10×PCR buffer, 1.5 mM MgCl2, 200 mM each
deoxynucleotide triphosphate, 40 pmol each primer, 1.5 U of

Figure 4.  Inferred phylogenetic relationship among representative Babesia and Theileria species based on the combined
data of 18S rDNA and RPS8 (coding and non-coding regions) gene sequences.  The combined data of 18S rDNA and RPS8
(coding and non-coding regions) gene sequences were analyzed utilizing maximum likelihood (ML), using Toxoplasma gondii as
outgroup. The numbers along branches indicate bootstrap probability (BP) values. The accession numbers of the isolates used in
the phylogenetic tree were listed in Table 1. High statistically supported nodes had BP≥85; while poorly statistically supported nodes
had BP<60.
doi: 10.1371/journal.pone.0079860.g004
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Taq polymerase (Takara) and approximately 10 ng of DNA, in
a final volume of 50 ml. Each PCR consisted of 35 cycles of
denaturation at 94°C for 45 s, annealing at 52°C for 60 s, and
extension at 72°C for 60 s; an initial denaturation step
consisting of incubation at 94°C for 5 min and a final extension
step consisting of incubation at 72°C for 10 min was also
included. After PCR amplification, the PCR fragment was
cloned into the pGEM-T Easy vector (Promega) according to
the manufacturer’s recommendations, At least two positive
clones from each sample were sequenced by using ABI
PRISMTM 377XL DNA sequencer (TaKaRa). All new data has
been deposited in GenBank.

Bioinformatic study of genetic distances and
phylogenetic analysis

Both ML and Bayesian approaches were used to evaluate
each of the individual loci separately. The outgroup taxon
Toxoplasma gondii was used for all loci. ML analyses were
conducted with PhyML [45] as implemented within Geneious
[46], using the best-fit models of nucleotide substitution
detected by jModelTest. Support for nodes was estimated by
analyzing 1000 bootstrap pseudoreplicates for each locus.
Bayesian phylogenetic analysis was conducted on the total
dataset using MrBayes v3.1.2 [47]. Akaike information criterion
was used to identify the most appropriate model of nucleotide
substitution for the Bayesian analysis in the program
MrModeltest v2.2, and the best-fit model determined by
jModelTest for 18S and RPS8 was GTR with both a proportion
of invariable sites (I) and variation among sites (G). The
Bayesian analysis was run for 15,000,000 generations with
phylogenies sampled every 1,000 generations, and values for
the substitution model parameters were not defined a priori, but
were treated as unknown variables with uniform priors.
Resulting burn-in values (the point at which the model
parameters and tree scores reached stationarity) were
determined empirically by evaluating likelihood scores. The
nucleotide distance matrices were created under a ML

correction in MEGA 4.0. The extent of sequence disparity
between specimens was calculated by averaging pairwise
comparisons of sequence differences across all specimens
[48].

The sequence data were also examined using Maximum
likelihood analyses in PhyML [45]. The combined data of 18S
rDNA and RPS8 (coding and non-coding regions) gene
sequences from Toxoplasma gondii was used as an outlier
group. The phylogenetic trees were constructed based on the
combined data of 18S rDNA and RPS8 (coding and non-coding
regions) gene sequences from Theileria and Babesia species
determined in our laboratory or obtained from the GenBank
database.

The program Genescan for predicting the locations and
exon-intron structures of genes in genomic sequences from a
variety of organisms (http://genes.mit.edu/GENSCAN.html).
The RPS8 deduced amino acid sequence was analyzed with
the Expert Protein Analysis System (http://us.expasy.org/).
Theoretical molecular weights and isoelectric point (pI) were
determined using Peptide-Mass (http://us.expasy.org/tools/
peptide-mass.html), and prediction of potential phosphorylation
sites was carried out at the NetPhos website. Identification of
other motifs was conducted using the Motif scan program
(http://hits.isb-sib.ch/cgi-bin/PFSCAN).
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