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Abstract: Sepsis and septic shock are a major public health concern and are still associated with high
rates of morbidity and mortality. Whilst there is growing understanding of different phenotypes and
endotypes of sepsis, all too often treatment strategies still only employ a “one-size-fits-all” approach.
Biomarkers offer a unique opportunity to close this gap to more precise treatment approaches
by providing insight into clinically hidden, yet complex, pathophysiology, or by individualizing
treatment pathways. Predicting and evaluating systemic inflammation, sepsis or septic shock are
essential to improve outcomes for these patients. Besides opportunities to improve patient care,
employing biomarkers offers a unique opportunity to improve clinical research in patients with
sepsis. The high rate of negative clinical trials in this field may partly be explained by a high degree
of heterogeneity in patient cohorts and a lack of understanding of specific endotypes or phenotypes.
Moving forward, biomarkers can support the selection of more homogeneous cohorts, thereby
potentially improving study conditions of clinical trials. This may finally pave the way to a precision
medicine approach to sepsis, septic shock and complication of sepsis in the future.
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1. Introduction

Systemic inflammation, sepsis and septic shock are a complex continuum that is
characterized by an inadequate systemic immune response to an initial stimulus.

Dysregulated systemic inflammation due to an underlying infection may cause the
clinical syndrome of sepsis or septic shock, defined as a “life-threatening organ dysfunction
due to a dysregulated host response to infection” in the Sepsis-3 definition [1]. The exact
epidemiology of sepsis or septic shock remains unclear; however, it is clear that this is
a major public health issue worldwide, with an estimated 31.5 million cases of sepsis
annually and 5.3 million attributed deaths globally per year [2–4]. Large epidemiological
studies in high-income countries suggest a dramatically rising number of patients with
sepsis [5–7]. Severe forms of sepsis can cause shock by dysregulation of macro- and
microvascular hemodynamics through various mechanisms. Organ failure such as acute
kidney injury (AKI) are common complications of sepsis, further increasing complication
rates and mortality [8]. Early diagnosis and treatment of sepsis is therefore essential, as
delayed treatment initiation is associated with an increased risk of mortality [9]. However,
the early detection of patients with sepsis by clinical diagnosis remains difficult and often
delays the timely start of treatment. Finally, the wide range of causes and pathophysiology
of sepsis further complicates clinical judgment.

Given the complexity and severity of sepsis and septic shock, a more precision medicine-
oriented approach is urgently required.

Precision medicine has become a catchphrase and receives much attention. It has widely
replaced the term “personalized medicine” over criticism that this implies that physicians
did not always treat patients in a personalized manner. Specifically, precision medicine
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is about matching treatment approaches as closely as possible to the patients’ unique
individual characteristics, based on biological, genetic, clinical or other patient data, and
to obtain such data as exactly as possible [10,11]. Whilst this is surely not a new concept,
the opportunities for employing this approach have grown significantly in recent years
based on the drastic increase in available data per patient. This is further supported by
innovative methods to easily obtain data with high granularity, for example, by using
point-of-care biomarker measurements, and technology to further analyze these data with
sophisticated methods—for example, employing artificial intelligence and deep-learning-
based phenotyping. Whilst there is no official definition of precision medicine, it may be
defined in several ways:

Firstly, focusing on the treatment approach, precision medicine employs therapies that
are as specific as possible to an identified pathological mechanism of action. As an example,
the availability and use of targeted antibody therapy illustrates this aspect. Secondly,
precision medicine can be defined based on the data used and methods by which these data
were acquired. Innovative methods offer a more detailed understanding of a pathological
process in an individual patient. Extensive profiling of genetic, proteomic or metabolomic
characteristics, as well as the use of specific biomarkers, are only some methods used to
stratify patients in ways that allow for more individualized diagnosis, prognostication or
treatment. Agusti et al. described this approach as the quest to identify “treatable traits” in
contrast to the classic “signs-and-symptoms” approach of clinical medicine [12].

However, implementing precision medicine approaches in routine clinical practice will
increase complexity and potentially costs. Furthermore, the lack of data on diverse patient
populations, but also the limited understandings of gender, race or other social determi-
nants of health, limit the generalized implementability of precision medicine approaches.
Translating the results of precision medicine research into routine practice must overcome
these barriers, and precision medicine approaches must ensure an equitable impact on the
target populations [13]. This implies significant ethical considerations and requires special
mindfulness in this regard. Contributing to this issue is the uncertainty of the degree of
required evidence in order to introduce a new precision medicine test or procedure. Determin-
ing required evidence thresholds of estimated benefit, risk for harm, potential disparities in
access or development of precision medicine approaches are therefore warranted to guide
the clinical uptake of these strategies [14]. For example, the case of anticoagulation therapy
illustrates this dilemma: whilst a large body of evidence suggests important pharmacoge-
netic factors and large interindividual variability of treatment response to anticoagulation
drugs such as warfarin, the evidence for precision medicine anticoagulation therapy to im-
prove outcomes remains very controversial [15]. Finally, patients must be empowered
to understand this new paradigm in medical practice and be able to provide or decline
informed consent [16].

2. What Are Biomarkers?

Biomarkers are measurable characteristics that can provide insight into biological or
pathological processes [17]. Biomarkers can be categorized into diagnostic, monitoring,
prognostic and stratification biomarkers [18]. While diagnostic biomarkers support the
early detection, exact diagnosis and eventual identification of underlying pathophysiology
(endotype), monitoring biomarkers can provide information on treatment response and
effect, as well as residual disease activity. Prognostic parameters may allow prognostication
or support prognostic models. Finally, stratification biomarkers allow for subclassifica-
tion or staging of diseases, guided by disease severity, underlying pathophysiological
mechanism or predicted outcome [19].

3. The Role of Biomarkers in precision medicine

To improve this status quo, biomarkers are a promising tool to make precision medicine
a reality in the management of patients with sepsis or septic shock.
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Biomarkers may support caregivers to employ precision medicine in sepsis or septic
shock through various ways (Figure 1). First, to detect sepsis or septic shock before
clinical symptoms or deterioration occurs, and subsequently provide information on the
current state of the systemic inflammation or shock. Second, to differentiate distinct
causes or phenotypes that may respond differently to therapy. Third, to guide treatment
length and intensity. This is important to limit negative side effects, such as antibiotic
resistance due to unnecessary long antibiotic treatment. Fourth, biomarkers can support
physicians by predicting or detecting complications of sepsis. Fifth, biomarkers can improve
prognostication and therefore support clinical management decisions.
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4. Will Biomarkers Pave the Way for precision medicine Sepsis Trials?

Many clinical trials in the field of intensive care medicine have reported negative or
conflicting results. The field of critical care medicine, especially concerning inflammatory
syndromes such as sepsis or ARDS, is afflicted with high numbers of negative trials for
which several possible reasons have been identified [20]. Some of these are the complexity
and multimorbidity of patient cohorts with high rates of mortality as well as the often
unclear pathophysiology. This is aggravated by difficulties in recruiting large numbers
of patients to detect smaller treatment effects as well as difficulties in optimal timing
and end point selection [21,22]. High levels of heterogeneity are of special importance
in critical care and sepsis research [23]. Clinical criteria currently used for the diagnosis
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of sepsis are neither able to adequately delineate patients with different phenotypes nor
to predict who will benefit from specific therapies. Instead of using these unspecific
syndrome groups, more precise and elaborate characterization of patient cohorts in the
clinical research of sepsis or septic shock is required. Recent advances in biotechnology and
artificial intelligence have significantly improved the understanding of clinical, molecular
as well as genetic mechanisms underlying or influencing the development and progress of
sepsis. Furthermore, studies have also demonstrated the different treatment response and
outcomes of distinct phenotypes, such as in sepsis-induced AKI [24].

Many look at the field of oncology as an example of the advanced application of per-
sonalized medicine, both in research and clinical practice [25]. This personalized approach,
using more granular data and biomarkers for patient selection and treatment allocation,
enables researchers in the field of oncology to select more homogenous patient cohorts that
are more likely to respond to specific treatments. Ideally, biomarkers are used that identify
“treatable traits” such as genetic mutations or pathophysiologic derangements, for which
specific therapies exist.

In sepsis, biomarkers have a key role to identify these specific subgroups and support
evaluation of a patient’s individual and current inflammatory response (Figure 2).
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Clinical trials of sepsis have accordingly taken up biomarker-based “enrichment-
strategies” [26,27]. For example, Meyer et al. developed a genetic classification of vari-
ants of the interleukin-1 receptor antagonist-associated genes, offering a possible enrich-
ment strategy for the use of interleukin-1-receptor antibodies in future clinical trials and
practice [28,29].

Every year, numerous novel biomarkers of sepsis or septic shock are published, but
this number has been slightly declining in recent years [30]. However, of the numerous
studies, only few have investigated the effect of sepsis biomarkers on treatment decisions
or clinical outcomes when these biomarkers are integrated into clinical pathways. In this
review, we will describe three use cases in which biomarkers can make precision medicine a
reality in the field of sepsis: First, we will review the role of biomarkers for the judgment of
inflammatory state and biomarker-guided or -targeted immunomodulatory therapies of
systemic inflammation leading to sepsis. Second, the example of adrenomedullin (ADM)-
guided application of adrecizumab in septic shock will demonstrate how biomarkers can
guide specific therapies that are part of complex and dynamic clinical syndromes such as
septic shock. Third, we illustrate how biomarkers can improve the clinical management
of severe complications of sepsis, using the example of sepsis-associated acute kidney
injury (sAKI).
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5. Three Exemplary Use Cases for Biomarkers in the Context of Sepsis
5.1. Use Case No. 1: Biomarker-Guided Evaluation and Therapy of Patients with Dysregulated
Systemic Inflammation and Sepsis: Implementing a precision medicine Approach

Many clinical trials have investigated therapies that target immune response; however,
most of these trials have been negative trials. Given that most of the trials performed
so far have applied immunomodulatory treatments to rather broad, unselected cohorts
of patients with clinical syndromes—such as systemic inflammatory response syndrome
(SIRS), sepsis, or septic shock—a more precision medicine-oriented approach is urgently
required [31]. For example, broad and undifferentiated immunosuppressive treatment with
corticosteroids remains controversial, and several large-scale clinical trials have reported
conflicting results regarding effects on clinical outcomes [32–34]. Most initial trials inves-
tigating the effectiveness of anti-inflammatory antibodies in broad cohorts of sepsis patients
did not demonstrate significant improvements in clinical outcomes [35,36]. Performing trials
of immunosuppressive treatments on unselected cohorts of patients will likely result in the
application of these treatments to a heterogeneous cohort of patients with both hyper- and
hypoinflammatory states. However, patients in the phase of immunoparalysis will likely have
little or no benefit from further therapeutic immunosuppression, or this may even cause harm.

Despite growing understanding of these pathophysiological immune processes in
sepsis, therapeutic targeting of cytokines and targeted immunosuppression remains a
difficult challenge [37].

Numerous biomarkers have been studied for potential applications in systemic in-
flammation, and Table 1 provides an overview of selected biomarkers for the precision-
medicine-oriented management of sepsis patients.

Table 1. Biomarkers with potential application in sepsis or septic shock.

Immunological Biomarkers

C-reactive protein (CRP)
Indicates acute systemic inflammation [38]

Screening for early onset neonatal sepsis [39]
(Predict survival in patients with sepsis) [40]

Procalcitonin (PCT)

Diagnosis of sepsis [41,42]
Suggest bacterial infection [43]

Monitor treatment response to antibiotics and guide cessation of
antibiotic treatment [44–47]

Presepsin (soluble CD14)

Early detection of sepsis (earlier increase than PCT and CRP) [48]
Monitor host response [49]

Higher in patients with bacterial infection [50]
May be combined with other biomarkers in a panel [51]

No validity in patients with acute kidney injury [52]

Interleukin-6 (IL-6)
Early detection of sepsis [53,54]

Early detection of SIRS [55]
Differentiate infectious from sterile SIRS [56]

Interleukin-8 (IL-8) Diagnosis of sepsis [57]

CD64 expression on neutrophils (nCD64)
Early detection of sepsis [58–64]

(monitoring of sepsis) [63,65]
Prognostic marker of sepsis [66,67]

Soluble programmed death ligand 1 (sPD-L1) Detect immunosuppressed states in sepsis patients [68,69]
Potential therapeutic target [70]

HLA-DR expression on antigen-presenting cells

High HLA-DR expression: Detect hyperinflammatory state [71]
Low HLA-DR expression: Detect immunosuppressed state [72]

Predict poor survival in patients with septic shock [73]
Potential biomarker for enrichment of clinical trials of sepsis [74]

Pentraxin (PTX-3) Assessment of septic shock severity [75,76]
Prediction of mortality in patients with sepsis or septic shock [77]

Complement protein 5a (C5a) Limited utility in sepsis due to both pro- and anti-inflammatory
effects [78,79]
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Table 1. Cont.

Immunological Biomarkers
Lipopolysaccharide-binding protein (LPS-bp) Discriminate sterile from infectious basis of SIRS or sepsis [80]

Pathogen-associated molecular patterns (PAMPs) Early detection of pathogen-based immune stimuli [81–84]
Biomarkers of endothelial or glycocalyx dysfunction

Syndecan-1

Assessment of endothelial barrier dysfunction in sepsis [85]
Predict organ failure due to endothelial dysfunction [86]

Prediction of DIC or coagulatory dysfunction in sepsis-associated
endothelial dysfunction [87–89]

(May be helpful to guide fluid resuscitation in early sepsis) [90]
Adrenomedullin (ADM) s. below (use case no. 2)

Angiopoietin-1, -2 Detect fluid overload and endothelial leakage in sepsis [91,92]
Predict septic shock [93]

Thrombomodulin Predict multi organ failure and DIC in sepsis [94,95]

Heparanase-1 and -2 (Hpa-1, Hpa-2)
May identify septic patients with potential benefit from

therapeutic plasma exchange therapy [96]
Potential therapeutic target [97,98]

Implementing biomarker-guided treatment algorithms could improve response-to-
treatment rates significantly and enable a precision medicine approach, even in complex
circumstances of sepsis or critical illness.

5.2. Use Case No. 2: Specific Biomarkers for Specific Therapies

Antibody-treatments target specific pathophysiologic pathways and offer new tools in
the treatment of critically ill patients with septic shock. However, such antibody therapies
are costly and require careful selection of suitable patients. Specific biomarkers that identify
patients with potential treatment benefits from these therapies are therefore required.

In progressive and severe sepsis, disintegration of the endothelial barrier is a key
pathophysiologic component of septic shock and drives vascular leakage, tissue oedema
and hypotension [99]. In healthy states, peptide hormones such as adrenomedullin (ADM)
stabilize and regulate the endothelial barrier, but are disturbed in sepsis and septic shock.
Therefore, elevated ADM levels in the blood provide insight into the clinical state of patients
with this endotype of septic shock. With increasing damage of the endothelial barrier, ADM
furthermore leaks out of the blood vessels, potentially initiating a circulus vitiosus of further
endothelial damage due to ADM dysbalance.

With innovative and precise antibody treatments such as Adrecizumab, a positive
biomarker (in this case ADM) can result in direct therapeutic consequences. Adrecizumab
is a monoclonal antibody that binds directly to intravascular ADM, thereby preventing
ADM leakage into the extravascular space [100]. Additionally, contributing to the desired
effect, this Adrecizumab–ADM-complex results in a longer intravascular half-life of ADM,
with longer functional activity to stabilize the vascular endothelium. Several studies in rats
and murine models suggest a potential survival benefit and decreased vascular leakage and
have resulted in the conduct of first in-human studies of Adrecizumab [101,102]. In a first-
in-human study of experimental endotoxemia in healthy subjects, Adrecizumab effectively
increased the intravascular levels of ADM, and no safety concerns were observed [103].
Following up on these results, Laterre et al. conducted the AdrenOSS-2 phase 2a trial
to investigate a biomarker-guided approach to Adrecizumab treatment in patients with
septic shock and demonstrated a favorable safety profile and tolerability. Whilst the
trial suggested a potential 28-day mortality benefit, these results did not reach statistical
significance [104]. However, this phase 2a study was not powered to assess this outcome.
Further research is required to investigate the effectiveness of such promising biomarker-
guided treatments and their potential impact on clinical outcomes for patients with septic
shock based on this endotype of vascular damage.
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5.3. Use Case No. 3: Biomarker-Guided precision medicine to Treat Sepsis Complications:
Sepsis-Associated Acute Kidney Injury (sAKI)

In our final use case, we argue that biomarkers can introduce a precision medicine
approach to improve clinical trial design and the management of sepsis complications,
such as sepsis-associated acute kidney injury (AKI). AKI is a common and often severe
complication of sepsis and septic shock [105,106]. Different pathophysiological mechanisms,
such as renal hypoperfusion, endothelial leakage, microcirculatory dysfunction, circulating
toxins and other risk factors, are present and lead to sepsis-associated AKI (sAKI) [107–110].
If sAKI occurs, this is associated with excessive rates of morbidity and mortality [111,112].
Still, no causative treatment for sAKI exists; therefore, optimal preventive strategies and
supportive treatments are essential. Biomarkers of AKI can enable clinicians to identify
patients that might benefit from specific interventions and tailor therapy to individual
needs [113].

Several biomarkers of AKI have been studied, and tissue inhibitor of metalloproteinase-
2 and insulin such as growth factor binding protein 7 [TIMP-2]*[IGFBP7] are among the
most established biomarkers [114,115]. [TIMP2] and [IGFBP7] are biomarkers of cell-
cycle arrest that detect subclinical stages of AKI. In non-septic AKI, high-quality evidence
supports a [TIMP-2]*[IGFBP7] biomarker-guided treatment approach. The PrevAKI-trials
have demonstrated in a cardiac surgery cohort that a biomarker-guided patient selection
and treatment initiation effectively reduces the rates and severity of AKI [116,117]. Similarly,
Göcze et al. reported reduced severity of AKI in a single-center study of non-cardiac patients
after major surgery, also using [TIMP-2]*[IGFBP7] to identify patients at high risk for AKI
and to initiate preventive treatments [118]. A definitive, multicenter trial to investigate this
effect in patients after major surgery is currently being performed in Europe [119]. A trial
investigating such a biomarker-guided approach for the treatment of sAKI is on the way.
Putting AKI into the context of sepsis, this and other biomarkers offer great potential to
improve research and clinical care for these patients.

Moving even one step further, combining biomarker-based endotyping with clinical
subphenotyping, Bhatraju et al. employed latent class analysis methodology and parsi-
monious classification models to investigate distinct subphenotypes of sAKI [120]. They
identified two distinct subphenotypes of sAKI that were associated with significantly
different survival rates and renal recovery. These distinct sAKI subphenotypes did not
differ in epidemiological characteristics, but did significantly differ in clinical phenotype,
markers of endothelial dysfunction as well as inflammatory markers. Interestingly, the
plasma ratio between Ang-2/Ang-1 and sTNFR-1 adequately differentiated the two sub-
phenotypes. Endothelial growth factors, such as Ang-1 and Ang-2, regulate endothelial
integrity and safeguard the physiologic balance between stability and renewal of vascu-
lar endothelium. A dysbalanced ratio of these opposing factors may represent an AKI
endotype in which endothelial dysfunction may play a major role. In this study, this was
associated with significantly worse outcomes in patients with sepsis and AKI [121,122]. In
a final part of this study, the authors applied this biomarker-driven classification model to
an external replication cohort of the Vasopressin and Septic Shock Trial (VASST) with an
astonishing result: patients in one subphenotype had a strong benefit from early addition
of vasopressin to norepinephrine, but patients in the other subphenotype did not have this
benefit [123]. This study demonstrated an example of how a precision medicine approach by
use of biomarkers can help identify treatment responders. Such approaches could pave the
way to avoid the vast majority of negative sepsis trials, given the imprecise application of
study interventions to undefined study populations.

6. Outlook: The Coming Era of—Omics Technology?

Moving forward, adding further genetic, as well as proteomic, metabolomic or tran-
scriptomic information, could theoretically lead to even better prognostication or the choice
of more adequate treatments; however, this requires demonstration of improved clinical
outcomes in further clinical studies [124,125]. The recent developments in omics technol-
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ogy yield further hope for a more detailed understanding of disease pathophysiology in
individual patients. This could further drive precision medicine in sepsis and could support
biomarker development and validation [126,127]. Additionally, more agnostic tissue inter-
rogation approaches, such as single-cell or single-nuclei RNA sequencing technology, could
further support these biomarker-driven approaches by providing further insight into the
injury mechanism and localization of injury [128]. These approaches could bring the granu-
larity needed for a true precision medicine treatment approach to sepsis complications, such
as AKI. Finally, genetic information may also play a bigger role in the future. For example,
Davenport et al. used whole genome expression profiling for septic shock endotyping and
reported that the genomic landscape had significant implications for the individual host
response and clinical outcomes [127].

Several studies suggested that a more sophisticated characterization of a patient’s
individual genetic, transcriptomic, immune and clinical profile is predictive of response
to treatment [129–131]. Using omics technology, Sweeney et al. identified and externally
validated three very distinct subtypes of sepsis in a large multicenter dataset. These
subtypes of sepsis were labelled as “Inflammopathic”, “Coagulopathic” and “Adaptive”.
However, any omics technology also faces limitations, such as interference of human DNA,
amplification biases and the need for the effective lysis of all target microbes. Finally, they
are still often costly and require expert personnel for their conduction. These technologies
currently remain rather experimental and are not yet ready to replace blood tests and
biomarkers of sepsis. The value of genetic profiling and ways to integrate this into clinical
management strategies requires further evaluation with regard to precision medicine in the
context of sepsis.

7. Conclusions

Sepsis and septic shock are heterogeneous clinical syndromes, and multiple immuno-
logical and pathophysiological endotypes exist. Hence, a precision medicine approach is
urgently required to move the care of patients with sepsis and septic shock to the next
level—moving away from a “one-size-fits-all” approach. Rather, individual assessment of
distinct endotypes and phenotypes is necessary to guide specific therapies and the manage-
ment of sepsis complications. Biomarkers are a key tool to achieve this goal. Biomarkers
can detect sepsis early and provide information on the current state of the dysregulated
systemic inflammation. Furthermore, biomarkers can differentiate endotypes or pheno-
types that may even respond differently to therapy and can guide such treatment. Finally,
biomarkers can predict or detect sepsis complications, as well as improve prognostication
and therefore support clinical management decisions. Further translational and clinical
research is required that investigates how the integration of biomarkers into treatment
pathways can improve patient outcomes in sepsis or septic shock and complications of such.
Biomarkers will enable remarkably improved patient selection in clinical trials, allowing
for the recruitment of more homogenous patient cohorts.
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