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Initial growth rates of malware 
epidemics fail to predict their reach
Lev Muchnik1,2, Elad Yom‑Tov2, Nir Levy3, Amir Rubin3,4 & Yoram Louzoun5*

Empirical studies show that epidemiological models based on an epidemic’s initial spread rate often 
fail to predict the true scale of that epidemic. Most epidemics with a rapid early rise die out before 
affecting a significant fraction of the population, whereas the early pace of some pandemics is rather 
modest. Recent models suggest that this could be due to the heterogeneity of the target population’s 
susceptibility. We study a computer malware ecosystem exhibiting spread mechanisms resembling 
those of biological systems while offering details unavailable for human epidemics. Rather than 
comparing models, we directly estimate reach from a new and vastly more complete data from a 
parallel domain, that offers superior details and insight as concerns biological outbreaks. We find a 
highly heterogeneous distribution of computer susceptibilities, with nearly all outbreaks initially over‑
affecting the tail of the distribution, then collapsing quickly once this tail is depleted. This mechanism 
restricts the correlation between an epidemic’s initial growth rate and its total reach, thus preventing 
the majority of epidemics, including initially fast‑growing outbreaks, from reaching a macroscopic 
fraction of the population. The few pervasive malwares distinguish themselves early on via the 
following key trait: they avoid infecting the tail, while preferentially targeting computers unaffected 
by typical malware.

A key challenge of epidemiology is the prediction of the expected scale of an epidemic once initial signs of it are 
detected. Considering the vast number of known outbreaks in recent history, the ability to reliably predict which 
of them will evolve into a large-scale pandemic is essential for the deployment of efficient containment  policies1, 
thus limiting the epidemic’s impact on the population and healthcare systems. Only a few of the approximately 
3000 local biological virus outbreaks in human populations reported by the WHO in the past 25  years2 had 
evolved into global pandemics. Given the average rate of one reported outbreak every three days, the ability to 
predict the few that require the global mobilization of resources is critical.

Large differences between the predicted and observed scales of epidemics have been recorded time and again, 
leading to a recognition that projecting infectious disease outbreaks using current mean-field methods was 
unreliable and therefore of limited use. The failure of the existing models to cope with the challenge has been 
recognized by the organizations facing it. For instance, a WHO report states that “forecasting disease outbreaks is 
still in its infancy”3. Another formal report issued by the National Science and Technology Council (US) confirms 
that “public health response to emerging infectious disease threats has often been largely reactive—a response is 
mounted after an outbreak is recognized”4. Several initiatives (e.g. Epidemic Prediction Initiative—https:// predi 
ct. cdc. gov/, FluSight—https:// www. cdc. gov/ flu/ weekly/ flusi ght/ index. html, Dengue Fever Challenge) inspired by 
these and other reports were created to test the out-of-sample prediction capability of the existing models. Such 
attempts to face these real-world challenges have led to an acknowledgment of the failure of existing approaches 
to generate consistent and accurate predictions of outbreak  characteristics5–7. For instance, a multi-year contest 
involving sixteen teams of epidemiologists who competed to produce the most accurate forecast characteristics 
for seasonal dengue fever  outbreaks6 found that the forecast quality varied widely, with particularly inaccurate 
predictions for high-incidence seasons.

One explanation for the gap between reality and the predictions of epidemic models could be the tendency 
for the effective reproduction number to decrease over time. In the case of biological viruses, this decrease can 
stem from multiple factors, including human  intervention8—passive vaccination of the  population9; behavioral 
changes, such as social  distancing10—or  seasonality11 arising from the degree to which a virus’s transmission 
and survival mechanisms depend on environmental  factors12. Still, epidemics often develop at a slower rate than 
 anticipated13,14, having only a limited effect on the population (e.g. recent MERS, ZIKA, several outbreaks of 
 Ebola14, foot-and-mouth  disease13, different variants of influenza, and many  others15,16) and ultimately dying 
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away, even as insufficient measures (or none) are taken to contain them. Thus, even if the measures deployed 
contribute to limiting the spread, other mechanisms are necessarily involved.

Recent publications suggest that the failure of existing diffusion models to extrapolate the behavior of future 
epidemics from their early growth rates could be related to these models’ failure to take extreme population 
heterogeneity into  account17–19. The general idea is that pathogens insufficiently contagious to survive and spread 
in the general population may still spread at a very high rate in a heterogeneous population, specifically among 
exceptionally susceptible targets. However, such outbreaks cannot reach their expected spread numbers (as 
predicted by their rapid initial growth rate), since the few outliers (the exceptionally susceptible) are quickly 
removed from the population.

To understand how a target population’s heterogeneity affects its susceptibility (while parsing the implica-
tions of heterogeneity for outbreak dynamics), one would need to have detailed exposure and infection-history 
data for every individual in a study. Although multiple proxies for such heterogeneity have been  developed20, we 
currently command no large-scale data that could confirm the underlying mechanism in a great enough number 
of epidemics and thus support a general claim.

In a world suffused with technology and running on software, computer malware—the bane of individuals 
and businesses alike—presents similarities to pathogens in biological populations, both human and animal. 
Software security teams face challenges analogous to those faced by healthcare systems; early identification of 
the malware likely to affect a large number of computers is essential to the efficient management of a computer 
ecosystem. At the same time, in contrast to the situation with biological pathogens, there exist detailed data for 
a very broad number of malwares, allowing empirical analysis adapted to confirm that extreme heterogeneity of 
the susceptible population is indeed the key factor affecting the spread of the contagious pathogen.

Differences do exist between the propagation mechanisms of biological viruses and computer malware, 
including varying spread mechanisms and, naturally, the clearance mechanism, i.e. individual healing in biologi-
cal systems, in contrast with malwares, which are often cleared through a central antivirus update. Still, the two 
spheres share many common  aspects21. A key advantage of using malware as an analog lies in the detail level 
of the telemetry reports generated by anti-malware software. Recording infection spread at the machine level 
in granular detail, these reports allow researchers to reconstruct the history of infections for each machine and 
characterize in tandem each piece of malware and each infected machine.

Results
To understand why an epidemic’s reach may be limited even as it boasts a rapid initial growth rate, we studied 
anonymized, machine-level data from telemetry reports for the Microsoft Defender Antivirus software (Supp. 
Methods). Integrated into Microsoft Windows and operating on over half a billion computers, which comprise 
over 50% of the machines running the Windows operating system, Defender Antivirus monitors the hard drive 
for malware and produces telemetry reports enabling the tracing of malware propagation. Each report contains 
a unique machine identifier, the infection time and a file fingerprint labeling the malware. Unlike aggregated 
data used by most epidemiological studies to track population dynamics over time, these details show which 
machines were infected by which malware, even retrospectively (i.e. machines will identify the time of infection 
even if a file is only identified as malware later on). These data enable the reconstruction of each machine’s infec-
tion history alongside with the propagation details of every malware. Different malwares utilize different spread 
mechanisms, including e-mail, web, or direct file transfer. Here, we do not focus on the details of the malware 
spread mechanisms, but rather treat all malware spreading among computers as an ecosystem exhibiting certain 
statistical characteristics. We studied nearly 30 M infections observed in the first 72 h of a spread of 139,962 
malware strains detected over twenty-one full months between April 1, 2017 and December 31, 2018, as well as 
the malware’s final reach. These data cover malware affecting over 200 machines.

As demonstrated below, the discrepancy between early predictions and eventual reach may be due to the 
extreme heterogeneity of the susceptible population’s infection probabilities. Computer susceptibility, defined as 
the number of malwares infecting each machine, is indeed very broadly distributed (Fig. 1A). The vast majority 
of the machines reported not a single malware infection during the entire observation period. Among machines 
infected at least once, the susceptibility distribution is scale-free, with a long tail of a few computers infected by a 
very large number of malwares, and most computers infected very rarely (Fig. 1A). To illustrate the heterogeneity: 
10% of all infections are reported by as few as 0.6% of the most frequently infected machines.

Such heterogeneity explains both the rapid initial rise in infection and the failure of predictions to effectively 
extrapolate subsequent epidemic dynamics. In particular, the initially infected population resides on the right-
hand side of the susceptibility distribution. This tiny fraction of the total population is rapidly removed, slashing 
the average susceptibility of the remaining susceptible  population22,23 and leading to the premature collapse of the 
epidemic. In such populations, the rapid initial growth would be followed by a sharp decline in the reproduction 
number and the epidemic’s fast decay, resulting in discordance between the expected reach—based on the initial 
growth—and the observed reach.

We directly tested the relationship between the outbreak’s initial growth rate and its reach. Figure 1B demon-
strates each malware’s mean hourly growth rate, averaged for malwares of different sizes. The graph is bimodal. 
Its left side demonstrates that the initial growth rate correlates negatively with the final reach recorded for the 
malware—reaching up to a few thousand machines—in clear contrast with SIR and SIR-like models in homog-
enous populations. Note that this comprises the majority of all observed malwares (see the malware outbreak 
size distribution, Fig. 1C). In contrast, for the few malwares with the largest reach, the correlation is positive, 
hinting at the presence of different spread dynamics for the few very far-reaching malwares. To further demon-
strate the lack of correlation between initial and later growth rates, we computed whether malware attaining at 
least half of its total reach within 72 h of the first occurrence (designated as “fast”) had a faster initial infection 
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rate than malwares attaining less than half of their reach within the first 72 h (“slow”). Figures 1D and Fig. S1 
show distributions in each group of the average hourly growth rates computed over the first 12 h of the spread 
of each malware. Consistent with Fig. 1B, malwares with both low and high initial infection rates reach their 
peak rapidly, while malwares reaching their peak late are over-represented among malwares with mid-range 
initial growth rates.

These results may be understood from the perspective of a random mixing infection model with a distribu-
tion of susceptibility as in Fig. 1A 17, or of network infection models with a similar degree of distribution. For 
the random mixing model, we ran stochastic SIR simulations with each susceptible node having a constant 
yet different probability of being infected as well as a constant probability of infecting others (See Supp. Mat., 
Methods 3 for details, and Melka et all for efficient modelling  platform24). Varying the details of the simulations 
did not impact the results qualitatively.

The results of this modeling exercise demonstrate that (Fig. 2A):

The susceptibility of the infected population is higher than the average susceptibility of the population at large.
The average susceptibility of the infected population decreases over time, as the right-hand side of the dis-
tribution is depleted, causing a rapid decrease in the number of infected computers, which is not correlated 
with the initial growth rate.

These findings imply that the higher the heterogeneity of a population, the larger the susceptibility gap 
between those individuals infected early on and those infected later. In extreme cases, epidemics that might 
start spreading quickly will stop spreading once the few exceptional individuals are infected and removed. The 
opposite example would be the spread of infection in a homogeneous population. In that case, any outbreak will 
continue as long as the density of the remaining susceptible individuals is high enough to sustain the malware’s 
reproduction (i.e. until the herd-immunity threshold is attained). In homogenous populations, a similarly skewed 
distribution of susceptibility could be obtained via a scale-free distribution of the probability of being exposed to 
the threat. Such systems are typically modeled as scale-free  networks25 in which certain highly connected nodes 
(sometimes designated as hubs) are in contact with a macroscopically large fraction of the population. Variation 
of the number of contacts that can lead to disease transfer has been shown to affect network processes, including 
the dynamics of disease  spread26,27. Additionally, network hubs are known to become infected early on in the 

Figure 1.  (A) Probability density function (PDF) of machine susceptibility. The X-axis represents the number 
of distinct malwares found on a specific machine during the observation period. The distribution fits a power 
law with α = 2.8 – a solid line. (see Supp. Mat., Methods 1 for details). (B) Average initial hourly growth rate 
computed over the first 72 h of the spread as a function of the final malware reach. (see Supp. Mat., Methods 
2) (C) Malware reach PDF. The graph represents 139,920 malwares, each with a final reach exceeding 200 
machines. The average malware reach is 914.6 machines, the median is 407, standard deviation is 10,767. (Solid 
line—power-law with α = 2.367 ). (D) PDF of the mean hourly malware growth rate computed over the first 
12 h of the outbreak for two populations: slow (under 50% of their reach in 72 h) and fast (over 50% of their 
final reach achieved in 72 h) spread.
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diffusion  process28. We demonstrate this by executing an SIR simulation in artificially generated networks with 
power-law degree distribution, with α = 2.5 . Uneven exposure to infected individuals results in fast decay in 
the degree of newly infected nodes (Fig. 2B).

We have tested these predictions against the observed malware spread. Indeed, the decrease in malware 
infectivity over time empirically illustrates predictions made by SIR simulations (Fig. 2C and Supp. Mat. 4). This 
phenomenon results in an overestimation of the epidemic’s reproduction number and its reach from inception 
on. The initially observed infectivity is not characteristic of the entire population, rather decreasing gradually 
as the epidemic grows.

And yet, scale-free networks that facilitate the spread of infections cannot explain the dynamics observed in 
the real world. Per the mechanism detailed above, one would expect all epidemics to die out before affecting a 

Figure 2.  Mean susceptibility of the infected individuals for the SIR simulation run for (A) scale-free 
distribution of susceptibility with α = 2.5 and α = 1.5 . Dashed line represents mean population susceptibility 
and (B) The average degree of infected individuals in a scale-free network with homogenous susceptibility and 
power-law degree distribution, with α = 2.5 . The network was created using the configuration model. (C) shows 
the ratio of the susceptibility of newly infected machines for each malware as it spreads, to the susceptibility of 
the machines infected by the same malware, with their infection times shuffled. This plot shows the average ratio 
over all malwares that reach 85% of their final spread in the first 72 h.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11750  | https://doi.org/10.1038/s41598-021-91321-0

www.nature.com/scientificreports/

large fraction of the population. All epidemics spreading on scale-free networks are destined to start in the tail 
of the highly connected nodes and terminate as they reach the bulk of the less susceptible population. At the 
same time, the data reveal that some malwares do reach a large fraction of certain populations. Such pandemics 
may have a different spread mechanism. A clear differentiating factor between high-reach computer pandemics 
and the vast majority of malware epidemics is the low average infectivity of the former (Fig. 3A) along with their 
high initial growth rate (Fig. 1B). These two phenomena suggest that large pandemics do not get large merely 
on the back of their high infectivity. In fact, they do so primarily by avoiding typically infected machines and 
excessively spreading among the populations usually left unaffected. By selectively targeting the main body of 
the low-susceptibility population, such an agent gains a much wider reach than others.

We verified this hypothesis by analyzing the properties of the computers infected by epidemics of different 
scales. While all malware tends to infect more low-susceptibility than high-susceptibility computers (i.e. since 
the vast majority of computers have a very low susceptibility, Fig. 1A) in the first 72 h, the balance in high-reach 
malware is shifted toward low-susceptibility computers.

This is clear from the susceptibility distributions of the machines infected by malwares, ranked by their reach 
(Fig. 3B). The distribution steepness drops with malware rank, revealing that the share of frequently infected 
machines in the large outbreaks drops significantly. The plots in Fig. 3B are all ordered by their total reach, 
demonstrating that larger malware outbreaks correspond to the distributions with a very small share of highly 
susceptible machines. Essentially, malwares that will eventually evolve into large pandemics are characterized 
by the relative homogeneity (by susceptibility) of their target populations (Fig S2). To demonstrate that this is 
not a circular argument, we simulated the spread of each malware while preserving the susceptibility of every 
machine and the reach of the malware (Table S1). In this null model, all malwares have similar properties, and 
in each infection event a machine is selected based on its susceptibility (See Supp. Mat. for null model details). 
In such a simulation, the infected machine’s susceptibility is not associated with the malware’s reach (Fig. 3C). 
An important result of the initial concentration on low-susceptibility targets is the possibility of predicting a 
malware’s reach early. In contrast with the initial slope of the epidemic’s growth (Fig. 1B), the characteristic 
susceptibility of the affected machines is an excellent classifier of high-reach epidemics.

Discussion
Classical epidemiological models frequently fail to predict the reach of diseases based on the initial rise in the 
number of those infected. Even for the same pathogen, the reach has varied dramatically between countries and 
even areas of the same  country29–31. A recent survey of the measles reproduction  number32 collected 58 reported 
values, with most located in the 4–18 range but demonstrating a long tail reaching a value of 770.38, set by 
Wallinga et al.33. Similarly, a large difference between districts was reported for the 2014–2015 Ebola outbreak 
in Western  Africa13. The lack of correlation between the epidemics’ early spread rates and their later dynamics 
was systematically confirmed by several out-of-sample studies and has been a source of concern for the relevant 
authorities. This variability in the epidemics’ spread dynamics may be due to the extreme sensitivity of the con-
tagion to the volume of the susceptibility-distribution  tail17–19.

While the specific results we have shown stem from an analysis of malware spread, they are a direct con-
sequence and a characteristic example of heterogeneity and are therefore widely applicable. The conclusions 
may be extensible to other contact processes, such as the spread of products, pathogen-driven epidemics, and 

Figure 3.  (A) The mean susceptibility of the machines affected by malware during the first 72 h as a function 
of final reach. The orange line is the mean simulated susceptibility of a random equal number of machines. For 
each malware, the simulation “infects” computers randomly, with the probability proportional to their observed 
susceptibility, until the observed reach of the malware is obtained. (B) Distribution of machine susceptibility 
for the machines affected by malware, grouped by their reach. The black line represents all malware. The legend 
shows the mean epidemic’s reach for each group. See Table S1 for the details of group composition. (C) Same 
distribution and grouping as in (B), but these results are generated by a simulation that randomly assigns 
machines to malwares according to each machine’s suceptibility and the malware size. The black line represents 
the PDF of the actual distribution of susceptibility for the entire population. As may be clearly seen in 3C, the 
machine’s susceptibility precisely follows the PDF and is not associated with the reach.
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information  cascades34. It should be noted that our analysis became possible due to the availability of exhaus-
tive historical records on an individual machine’s propensity to become infected by the spreading agent. Such 
data are rarely available for biological pathogens. Several studies performed meticulous contact tracing to find 
extreme individual heterogeneity of infectivity and relate this heterogeneity to a variation of the disease repro-
duction  number20, confirming dynamics similar to the one we report for malware. At the same time, even if a 
significant effort were to be invested in monitoring epidemics, much of the necessary information would still 
go unobserved. For instance, less than 10% of the estimated fatalities during the 2009–2010 influenza H1N1 
pandemic were laboratory-confirmed35. The fraction of confirmed COVID-19 patients is still debated and could 
vary significantly by region, but is estimated by some studies as hovering between 4 and 14 percent of all  cases36,37, 
suggesting that the true dynamics of the disease spread are seldom observed. Furthermore, even when the infec-
tion status of most patients is known, the detailed medical records necessary to assess the patients’ characteristic 
susceptibility to infectious diseases are rarely available. The reconstruction of machine-level infection history for 
the entire ecosystem (feasible through the availability of Microsoft Defender telemetry reports) greatly facilitates 
a comprehensive analysis of how a variety of malware interacts with the computer population. The primary 
insight arising from this analysis is the surprising fact that the malware with the largest reach affects the tail of 
the susceptibility distribution significantly less than the majority of malware strains. By spreading in a relatively 
homogenous population, such malware is characterized by a lower variation of the reproductive number. Its 
subsequent trajectory is therefore easier to predict.

The testing and application of our findings to other domains would require collecting similarly detailed data 
for the corresponding systems. We have not studied here what property of the malware determines the differ-
ential targeting patterns. Understanding this factor may be key to fighting epidemics with a very wide reach, 
or, inversely, to developing a successful product or promoting social change. These results point to an effective 
intervention policy. Instead of looking at the effect on R0 (or on the infection probability matrix, when the 
population is segregated into subgroups), one should analyze the composition of the infected population. As 
with strategies developed for scale-free networks, targeting the tail would be a very effective way of combating 
the vast majority of (small-scale)  malwares38–40.

Still, such a strategy is inefficient for preventing very large outbreaks. Small-scale actions targeting the highly 
susceptible population would slash the effective R0 and terminate the epidemic at its inception. Conversely, 
reducing the susceptibility of each potential target via broader intervention would prolong the epidemic, since 
the spread could still be sustained in the tail. To apply such models meaningfully to biological viruses, models 
for the susceptibility of each potential target based on its demographics and behavior must be developed, with 
detailed data collected to fine-tune such models.
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