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Abstract

The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and
dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain
metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA
methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p,
8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed
genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and
underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained
AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like
tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While
overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with
significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell
migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and
upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis
has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future
therapeutic strategies.
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Introduction

Brain metastasis is the most common intracranial tumor,

occurring in 15–40% of all cancer patients with metastatic disease

[1,2,3]. The incidence of brain metastasis has increased in recent

years, possibly due to prolonged survival of cancer patients

receiving aggressive treatments for their primary or systemic

disease [1,2,3]. Given their overall frequency in the population,

lung and breast cancer are by far the most common tumors to

develop brain metastases [1,2,3].

Epidemiological studies suggest that brain metastases occur with

a frequency of approximately 10–16% in patients with breast

cancer, although large autopsy studies indicate that frequencies

may be as high as 18–30% [2,3,4,5]. Brain metastases occur

rapidly, usually within 2–3 years following diagnosis of systemic

metastatic disease, and the median survival once there is brain

involvement is a stifling 13 months with fewer than 2% of patients

surviving greater than 2 years. Breast cancer involving the brain

(parenchyma or leptomeninges) is considered a feature of late-

stage progressive disease for which few effective treatments exist.

Due to limitations imposed by the blood brain barrier (BBB),

chemotherapy has not generally been used to treat most epithelial

cancers that metastasize to the brain. Whole brain radiation can

provide a survival benefit of 4–5 months, which can be further

extended with stereotactic radiosurgery (SRS). Surgery can also

lead to dramatic improvements in survival if fewer than three

metastases exist and all are treated aggressively with surgery or

SRS.

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e85448



Currently there are few predictive measures for identification of

patients at risk for developing brain metastasis from their primary

cancer. In general, the development of brain metastases from

breast cancer depends on several prognostic factors, including

younger age, ethnicity, hormone receptor negative status, presence

of BRCA1 germ-line mutations, and the expression of the

epidermal growth factor receptor 2 (Her2/neu) proto-oncogene,

all of which contribute to an increased rate of brain metastasis [2].

The overall goal of our study was to utilize array-based

technologies to assemble a compendium of genomic and

epigenomic events in a series of breast cancer brain metastases

to understand the landscape of breast cancer brain metastatic

lesions. The compendium would be interrogated for common and

uncommon abnormalities in order to identify potential new

therapeutic targets to control this fatal manifestation of breast

cancer.

Materials and Methods

Sample Acquisition
Retrospective fresh-frozen samples of breast brain metastases

(BBM) were obtained from The University of Toronto Nervous

System Tissue Bank, University Health Network, Toronto,

Canada (n = 23) and from The Department of Neurosurgery’s

brain tumor bank, University of Iowa Medical Center, Iowa City,

Iowa (n = 12). Non-neoplastic brain samples were also obtained

from the University of Toronto Tissue Bank (n = 2) and from The

Department of Neurosurgery, University of Iowa Medical Center

(n = 8). Ten non-neoplastic breast tissue specimens were purchased

from Asterand (Detroit, MI). A series of 50 early-stage (grade 1

and 2) breast cancer specimens were obtained from the Manitoba

Tumor Bank, Winnipeg, Manitoba. All samples were obtained

under appropriate ethical procedures and informed patient

consent at the respective institutions.

All human biospecimens used in this study were pre-existing

and de-identified before shipment to the Translational Genomics

Research Institute (TGen) for genomic analysis. TGen investiga-

tors did not have access to patient identifiers at any time before or

after completion of the study. TGen investigators and the holder of

patient identifiers entered into an agreement prohibiting the

release of this information to TGen investigators under any

circumstances. Therefore, the biospecimens do not qualify as

human subjects and the study is exempt from Institutional Review

Board, in accordance with the Office of Human Research

Protections (OHRPs) Guidance on Research Involving Coded

Private Information or Biological Specimens.

gDNA and RNA Isolation
Genomic DNA (gDNA) was isolated from fresh-frozen tissue

using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA)

with the following modifications. Approximately 25 mg frozen

tissue was pulverized after a brief incubation in liquid nitrogen,

then lysed in 180 mL ATL buffer. The sample was further

disrupted using a hand-held tissue homogenizer (VWR, Radnor,

PA) before adding 20 mL proteinase K solution. Lysates were

incubated at 56uC for 72 hours. Following proteinase K

treatment, lysates were centrifuged at 17,0006 g to pellet

particulate material. Genomic DNA was eluted in 100 mL T low

E buffer (Teknova, Hollister, CA) and stored at 4uC. Total RNA,

including small RNA, was isolated using the mirVana miRNA

Isolation Kit (Ambion, Austin, TX) following the manufacturer’s

protocol and stored at 280uC. Genomic DNA and total RNA

yields and purity were assessed using a NanoDrop 2000c (Thermo

Scientific, Waltham, MA). Genomic DNA integrity was confirmed

by agarose gel electrophoresis. Total RNA samples were evaluated

for integrity using the Bioanalyzer RNA 6000 Nano LabChip Kit

(Agilent Technologies, Santa Clara, CA) on a Bioanalyzer 2400

(Agilent Technologies). Only total RNA samples with RNA

integrity number values of at least 7 (RIN$7) were profiled. A

total of 10 samples were dropped due to RIN values lower than 7.

Copy Number Analysis
Array-based comparative genomic hybridization (aCGH) was

performed on 19 BBM samples using the Agilent SurePrint G3

Human CGH Microarray Kit, 161M, which have an average

probe spacing of 2.1 Kb (Agilent Technologies). Briefly, 800 ng of

experimental and normal female reference (Promega, Madison,

WI) gDNA were independently digested with Bovine DNAse I

(Ambion) and directly labeled with Cy5-dUTP and Cy3-dUTP,

respectively, using the BioPrime Array CGH Genomic Labeling

Module (Invitrogen, Carlsbad, CA). Labeled DNA was purified

using Vivaspin 500 columns (Satorius Stedim Biotech, Goettingen,

Germany). Equal amounts of labeled, purified experimental and

reference DNA were hybridized to the microarray in a rotary oven

at 65uC for 40 hr at a rotation speed of 20 rpm. The slides were

washed according to manufacturer’s protocol and images were

captured using an Agilent DNA microarray scanner set at default

settings for array-based comparative genomic hybridization.

Scanner images were extracted using Feature Extraction software

v.10.5.1.1 (Agilent Technologies). Log2 data was imported into

Agilent DNA Analytics 4.0.81 software for visualization and

quality assessment. The aCGH data for 15 of 19 BBM samples,

which passed quality control metrics, were segmented using the

circular binary segmentation (CBS) algorithm [6,7]. Genomic

Identification of Significant Targets in Cancer (GISTIC) was then

used to identify regions of the genome that were significantly

amplified or deleted across the 15 breast brain metastasis samples.

GISTIC calculated a statistic (G-score) for the frequency of

occurrence and the amplitude of the aberration. The statistical

significance of each aberration was computed by comparing the

observed G-score to the results expected by chance. Regions with

false-discovery rate (FDR) q-values less than 0.25 were considered

statistically significant. In addition, copy number variation analysis

was performed using Agilent’s Genomics Workbench 6.5 software.

The Aberration Detection Method 2 (ADM-2) algorithm was used

to flag altered chromosomal regions and breakpoints (ADM-2

threshold of 5.5 within a 5.0 Mb window size containing at least 3

probes and with minimum 0.58 absolute average log ratio for the

region).

mRNA Expression Profiling
RNA from 35 BBM, 10 non-neoplastic brain (NBn) and 10 non-

neoplastic breast (NBr) tissues were profiled using Agilent whole

human genome 4644K mRNA expression microarrays. A quick-

amplification kit (Agilent Technologies) was used to amplify and

label 500 ng target mRNA species into complementary RNA

(cRNA) for oligo microarrays according to the manufacturer’s

protocol. For each two-color array, a commercial universal

reference RNA (Stratagene, La Jolla, CA) was labeled with

cyanine 5-CTP and cyanine-3-CTP (Perkin Elmer, Boston, MA).

Complimentary RNA concentration and labeling efficiency were

measured spectrophotometrically. Approximately 800 ng of both

Cy5-labeled experimental cRNA and Cy3-labeled universal

reference RNA were hybridized to each microarray (adjusting

for labeling efficiency). Images were captured using an Agilent

DNA microarray scanner set at default settings for gene

expression. Scanned images were processed using Feature

Extractor v. 10.5.1.1software by applying a LOWESS (locally
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weighted linear regression) correction for dye bias and background

noise was subtracted from spot intensities. To filter the prepro-

cessed data, genes with a background signal higher than feature

signal were removed.

Intrinsic Subtype Classification of Breast Brain Metastasis
The PAM50 gene expression classifier is a supervised, centroid-

based prediction method to classify breast cancers into intrinsic

molecular subtypes (Luminal A, Luminal B, HER2-enriched,

basal-like, and normal-like) using a 50-gene signature. We applied

this classifier to samples analyzed on the Agilent 4644K mRNA

expression platform. Normal samples were used as controls. The

log ratio values of the probes were collapsed to gene level by taking

the median of all probes matching to same gene.

DNA Methylation Analysis
A total of 1 mg of DNA from 32 BBM, 12 NBr, 15 NBn samples

and 48 early-stage primary breast cancer samples was bisulfite

converted with the EZ DNA methylation kit (Zymo Research,

Irvine, CA) and subsequently processed for hybridization onto the

Infinium HumanMethylation27 BeadArray (Illumina, San Diego,

CA) according to manufacturers’ protocols. This array interro-

gates 27,578 CpG dinucleotides encompassing 14,495 genes.

Bisulfite-treated DNA was subsequently amplified, fragmented and

hybridized to locus-specific oligonucleotides on the BeadArray.

Image processing and intensity data extraction were performed

using an Illumina BeadArray Reader. The GenomeStudio

Methylation software from Illumina was used for data assembly

and acquisition. Methylated (M) and unmethylated (U) alleles were

detected by fluorescence signal from single-nucleotide extension of

the DNA fragments. Results were interpreted as a methylation

ratio (b-value) of methylated signal (M) to the sum of methylated

and unmethylated signal (M+U) for each locus. The average b
value reports a methylation signal ranging from 0 to 1 spanning

completely unmethylated to completely methylated, respectively.

A differentially methylated locus was defined by having a

statistically significant (p-value#0.05 after computing a Mann

Whitney non-parametric test) average b difference of at least |0.2|

between groups.

Data Deposition in Public Portals
The raw Agilent gene expression array data discussed in this

publication have been deposited in NCBI’s Gene Expression

Omnibus and are accessible through GEO Series accession

number GSE52604 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc = GSE52604). The aCGH (http://dx.doi.org/10.

6084/m9.figshare.862978) and DNA methylation (http://dx.doi.

org/10.6084/m9.figshare.855629) data are available online at

Figshare.com.

Pathway Analysis
Gene lists of interest were uploaded into IPA (IngenuityH

Systems, Redwood City, CA) and the Core Analysis workflow was

run with default parameters. The Core Analysis provides an

assessment of significantly altered pathways, molecular networks

and biological processes represented in the samples’ gene list.

Quantitative Reverse-Transcriptase (RT)-PCR and Copy
Number PCR Assays

Complimentary (cDNA) was synthesized using 100 ng of total

RNA in a 20 ml reaction volume. The SuperscriptH III First

Strand synthesis system (Life Technologies, Carlsbad, CA) was

used with the following conditions: 10 minutes at 25uC, 30 min-

utes at 50uC, 5 minutes at 85uC and 20 minutes at 37uC with

RNase H. SYBR green fluorescence was used for the detection of

amplification after each cycle using the LightCycler 480 SYBR

Green I Mastermix (Roche Applied Science, Indianapolis, IN).

Quantitative PCR (qPCR) was subsequently performed on cDNA

in a final volume of 25 ml using the LightCycler 480 instrument

(Roche Applied Science). The qPCR cycling conditions were as

follows: 5 minutes at 95uC for activation of PlatinumH Taq DNA

polymerase, 10 seconds at 95uC, 20 seconds at 59uC, and

30 seconds at 72uC for 45 cycles. Quantification was based on

the number of cycles necessary to produce a detectable amount of

product above background. The following primer pairs were used:

AURKB: Forward- 59-ATTGCTGACTTCGGCTGG T-39,

Reverse: 59-GTCCAGGGTGCCACA CAT-39; FOXM1: for-

ward: 59-TGGCGATCTGCGAGATTT-3, Reverse: 59-

CCTCCTCAGCTA GCAGCACT-39; ATAD2-forward: 59-

CCTGCAAGACCAAGATACCG-39, Reverse: 59-

TTTCCTCCGCCTCTCAAAGT-39; cMYC: forward: 59-

CTTCTCTCCGTCCTCGGATTCT-39, reverse: 59-GAAGGT-

GATCCAGACTCTGACCTT-39; The b-actin, Histone and

GAPDH genes were used as an internal reference control:

Histone: forward: 59-CCACTGAACTTCTGATTCGC-39,

and reverse: 59-GCGTGCTAGCTGGATGTCTT-39; GAPDH:

forward: 59-CTGCACCACCAACTGCTTAG-39 and reverse: 59-

GTCTTCTGGGTGGCAGTGAT-39.

For each sample, the delta Ct value was calculated as the

difference between the target gene Ct value and the Ct value of the

geometric mean of the internal reference controls. The quantity of

expression was calculated relative to the average of expression

obtained from NBr and NBn samples (n = 6). The equation used

for relative fold-change was 22DDCT.

Copy number validation was completed with the qBiomarker

Copy Number PCR Assays (Qiagen) for ATAD2 (Assay ID

28855976), and cMYC (Assay ID 28877687). Samples were

analyzed with the qBiomarker SYBR ROX Mastermix (Qiagen).

A multi-copy reference assay, the qBiomarker Multicopy Refer-

ence Copy Number PCR Assay (MRef, Assay ID 30773761) was

performed for each sample and served as the internal reference

control. Data were analyzed with qBiomarker Copy Number PCR

Assay Data Analysis Software.

All PCR reactions were run in triplicate, and melting curve

analysis was performed to ensure specificity of the PCR product.

Negative (no template) controls were run in parallel to confirm the

absence of nonspecific fluorescence in samples.

Results

Copy Number Analysis
Somatic copy number analysis (SCNAs) was conducted using

the one-million feature aCGH platform in 15 breast brain

metastases genomes to identify regions of gain or loss. GISTIC

analysis identified 18 focal amplifications (Figure 1) and 4 regions

of broad amplifications involving 1q, 5p, 8q, 11q, and 20q

(Figure 1). Among the genes amplified in the focal regions were a

cluster of HOX genes (HOXA7, HOXA9, HOXA10, HOXA11)

on 7p15, AKT1 (14q32.33), IGF1R (15q26.3), ERBB2 and

NEUROD2 (17q12), all of which have been reported in primary

breast cancers (Table S1a, File S1). GISTIC also identified 37

focal deletions involving CDKN2A, CDKN2B, and DMRTA1

(Figure 1, Table S1b, File S1). Four regions of broad deletions

included 8p, 17p, 21p and Xq (Figure 1).
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mRNA Expression
Gene expression profiling was performed using Agilent whole

human genome 4644K mRNA expression microarrays to identify

differentially expressed genes (DEG) in BBM samples and an

independent set of non-neoplastic hyperplastic breast samples

(NBr) and non-neoplastic brain samples (NBn). DEG were selected

if differential expression was evident between tumor samples and

NBn; between tumor samples and NBr but not between NBn and

NBr. In addition, DEG were selected based on p-values#0.05 and

a fold-change $2 or#22. This comparison identified 863

differentially expressed genes (Table S2, File S1). A heatmap

was generated in GeneSpring v12.1 to visualize the DEG list,

which also shows a clear separation of tumor and non-neoplastic

samples (Figure 2A). In order to identify biological concepts

altered in the differentially regulated BBM gene list we submitted

the gene list to IPA (IngenuityH Systems) and applied the Core

Analysis workflow. The functional analysis portion of the workflow

identified biological functions and/or diseases most significantly

Figure 1. DNA Copy Number Analysis of Breast Brain Metastasis. GISTIC analysis was conducted on Agilent SurePrint G3 Human CGH
Microarray data for 15 breast brain metastases. Significant false discovery rates (Q-values) for amplified (red) and deleted (blue) regions are plotted
genome-wide. Annotations for a few of the significant regions are shown. Focal amplifications and deletions are annotated in boldface, and broad
amplifications and deletions are annotated in non-boldface. Q-values for deleted and amplified genes are displayed along the x-axis on top and
bottom of the figure, respectively.
doi:10.1371/journal.pone.0085448.g001
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altered in our DEG list. Significant categories were sorted based

on activation/inhibition z-scores to identify the most significant

distinguishing categories with respect to up-regulated and down-

regulated genes. Fourteen specific functions had increased

activation states as evidenced by z-scores $2 (Table S3a, File
S1). Five of the fourteen functional annotations mapped to the

‘Cell Cycle’ category. The genes defining the five categories and

their relationships were visualized as a network in (Figure 2B).

‘DNA repair’ was another noteworthy enriched category. The

genes that mapped to this category were also visualized as a

network (Figure 2C). Enrichment analysis was performed to

annotate further the genes in this category. Two DNA repair

processes, ‘double-stranded DNA break repair’ (CDCA5, FGF2,

NR4A1, PRKDC, RAD54L, KPNA2) and ‘homologous recom-

bination repair’ (HUS1, PRKDC, RAD54L and RAD54B) were

identified and highlighted in Figure 2C. The functional

annotation categories for down-regulated genes converged mostly

on categories associated with ‘tissue morphology’ and ‘develop-

ment’ (Table S3b, File S1).

To identify potential transcriptional regulators among the DEG

we used the results of the upstream regulator analysis. This part of

the Core Analysis workflow connects transcriptional regulators in

the IPA database to the differentially expressed genes. Over-

connected regulators are scored with a p-value, for gene

enrichment, and z-score for degree of activation based on

direction of regulation in database and concordance with direction

of regulation in DEG. The list of upstream regulators was filtered

for ‘transcription regulators’ upregulated (z-score $2) and

downregulated (z-score#2). Five specific transcription factors

were identified as active and six were identified as inhibited

(Table S4a, File S1). One of the inhibited transcription factors

was TP53, implying that TP53 signaling is defective in BBM.

Among the activated transcription factors, IRF1 and IRF7 seemed

to be connected preferentially to genes involved in immune

response such as ‘antiviral response’ and ‘antimicrobial response.’

This may indicate a possible infiltration of immune cells in the

samples or could reflect an immunogenic response by the tumor

cells. Two interesting transcriptional regulators highly scored were

FOXM1 and TBX2 that had three commonly regulated genes.

We constructed a combined network illustrating the downstream

transcriptional functional targets for both transcription factors

(Figure S1, File S1). A functional enrichment was performed on

the resultant network indicating that the these two transcription

factors control the expression of genes enriched for processes such

as ‘cell cycle progression’ (p-value 4.1E-15), mitosis (p-value 4.97E-

13) and ‘cytokinesis’ (p-value 1.98E-10, Table S4b, File S1). This

observation, coupled with the above functional enrichment on the

whole gene list suggests that breast cancer brain metastasis gene

expression is associated with cell cycle/mitosis and may be driven

by FOXM1 and TBX2.

Next, we used gene set enrichment analysis (GSEA) to identify

sets of genes that are coordinately regulated in the BBM samples.

The GSEA algorithm identifies gene sets enriched at the top

(breast brain metastases) or bottom (non-neoplastic samples) of the

ranked list of DEG. We conducted the GSEA analysis using only

the c5 gene set library (GSEA | MSigDB), which contains only

gene ontology gene sets. There were 109 gene sets significant at a

FDR,50% and p-value of #0.05 that were upregulated in the

breast brain metastases and only one gene set downregulated (full

GSEA results can be found in Table S5a–b, File S1). We

visualized the above-referenced gene sets using the Enrichment

Map plug-in for cytoscape [8]. The enrichment map portrays the

GSEA results as a network of gene sets (nodes) connected by edges

representing overlapping genes. The enrichment map improves

interpretation of GSEA results by allowing for the identification of

functional groupings of the enriched gene sets. We manually

inspected the resultant clusters and assigned summary labels to

individual subnetworks of interest. Some interesting subnetworks

enriched in the BBM samples include ‘Cell Cycle/Mitosis’, ‘DNA

repair’, ‘Vesicle Processes’, ‘Protein Localization’ and ‘RNA

processing’. The only category associated with the non-neoplastic

samples was extracellular matrix (Figure 2D). We experimentally

validated the expression of FOXM1 and AURKB in 42 breast

brain metastasis samples (which included those used in the

expression arrays) and in a series of 50 primary breast cancer

samples by qRT-PCR. Both FOXM1 and AURKB were

significantly upregulated in brain metastasis samples compared

to primary breast cancer samples and non-neoplastic samples

(Figure 2E).

Breast Cancer Intrinsic Subtype Analysis of Breast Brain
Metastasis

We used the PAM50 gene expression classifier to divide the

breast brain metastatic samples into the common intrinsic subtypes

known for breast cancer. From this analysis we identified the

following subtypes in our sample cohort: 2 (5.7%) Luminal A, 12

(34.2%) Luminal B, 8 (22.8%) Her2+/ER2, 11(31.4%) basal-like,

and 2 (5.7%) Normal-like tumors. An unsupervised clustering

analysis of the 863 DEG failed to discriminate between the

different subtypes (Figure 2A). Therefore, we performed an

analysis of variance (ANOVA) to identify DEG between Luminal

B, Her2+/ER2 and basal-like tumors. A Post-hoc Tukey test and

a Benjamini Hochberg multiple correction test were applied to the

data. Differences with fold-change ,2 were excluded. We

excluded tumors classified as Luminal A and normal-like due to

a very small sample size. There were 733 DEG between Luminal

B and basal-like tumors; 492 DEG between Her2+/ER2 and

basal-like and 223 DEG between Luminal B and Her2+/ER2

(Table S6a–b, File S1). The union of the differentially expressed

genes between groups consisted of 774 unique genes (Table S7,
File S1) or 886 probesets. Hierarchical clustering using this gene

list was able to clearly distinguish the subtypes and six distinct gene

clusters were identified (Figure 3, Table S8a–f, File S1).

The genes in each cluster were analyzed using ToppGene suite

and data are presented in tables and as summary word clouds for

enriched processes and signatures (Table S9a–f, Figure S2, File
S1). Cluster 1, 2 and 6 contained genes upregulated in both the

Her2+/ER2 and Luminal B subtypes. However, expression was

generally highest in the Luminal B brain metastases. Enrichment

analysis of genes in clusters 1, 2 and 6 using the ToppFun module

of the ToppGene suite reveals genes previously associated with

breast cancer signatures [9]. Specifically, those signatures were

associated with luminal subtypes and estrogen receptor(ER)-

positive breast cancer. Additionally, cluster 1 has overexpression

of RET, and ERBB3, which represent possible actionable

therapeutic targets. Cluster 2, similar to clusters 1 and 6, contained

genes also upregulated across the Her2+/ER2 and Luminal B

samples. This cluster contained GATA3, which is an ESR1 target

gene, but was only expressed in the Luminal B tumors. Of note, in

cluster 6, ESR1 was most highly expressed in Luminal B tumors,

coincidentally with AR. Basal-like tumors had a negative

expression value for ESR1 and AR. We also note highest

expression of FLT3 and FOXA1 genes in Luminal B tumors.

Expressed highly in both Her2+/ER2 and Luminal tumors were

the TFF3 and LRRC6. Genes in cluster 3 and 5 were, in general,

were preferentially upregulated in the basal-like samples. The gene

lists were consistent with known basal-like breast cancer genes and

are also known to be lowly expressed in Luminal breast cancer.
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For example, Keratin 5, 6 and 14, as well as, CDH3 were present

in cluster 5. In addition, FOXC1 and CHST3 in cluster 3 and

UGT8, and CHODL genes in cluster 5 were among the highly

expressed genes in basal-like tumors. Cluster 4 is unique in that it

has a number of genes downregulated across the three subtypes,

however, there was a more pronounced downregulation in the

Her2+/ER2 and Luminal B subtypes. Interestingly, this cluster

contained a number of proliferation-associated genes, but they

were relatively underexpressed. The basal cell marker gene,

Keratin 17, is overexpressed in the basal samples across this

cluster. WNT pathway members, FZD7 (C3), WNT6 (C4),

WNT11 (C5) and FZD9 (4) were all preferentially expressed in

basal-like tumors suggesting novel therapeutic opportunities for

basal-like breast cancer brain metastases. Her2+/ER2 tumors

were associated with overexpression of TMEM45b, very reminis-

cent of a Her2 subtype. While these samples had some commonly

expressed genes with the basal-like tumors, such as CLDN8, they

were most similar to the Luminal B tumors. They also had the

highest expression of TML5, CYP4F8, and PAX9 when compared

to the other subtypes.

DNA Methylation Analysis
In order to identify alterations in DNA methylation we used the

HumanMethylation27 BeadChip array. We compared BBM to

NBn and NBr tissue and identified 425 differentially methylated

loci (DML, Figure 4A, Table S10, File S1). The median

methylation values were 0.4, 0.2 and 0.15 for breast brain

metastasis, NBn and NBr respectively, indicating that breast brain

metastasis was associated with hypermethylation (Figure 4B). Of

the 425 loci, 117 were hypomethylated compared with non-

neoplastic tissue and 308 were hypermethylated (Table S10).

Only 23 of the hypo-methylated loci were associated with CpG

islands, compared to 294 hyper-methylated loci, which occurred in

CpG islands (Table S10). The 425 DML failed to discriminate

between the molecular subtypes (Figure 4A), so we performed an

ANOVA analysis to identify differentially methylated loci between

the subtypes. A Post-hoc Tukey test and Benjamini Hochberg

multiple correction were applied to the data. Differences with b
values less than |0.2| were excluded. Due to small numbers of

samples, we excluded tumors classified as Luminal A and normal-

like. There were 95 DML between Luminal B and basal-like

tumors; 71 DML between Her2+/ER2 and basal-like tumors;

and 13 DML between Luminal B and Her2+/ER2 (Table
S11a–c, File S1). The union of these loci resulted in 90 unique

DML that discriminated between the subtypes (Figure 4C,

Table S11d, File S1). When the union of these loci were

examined, basal-like tumors had the lowest median methylation

(0.32) compared with Her2+/ER2 and Luminal B subtypes (0.61

and 0.68 respectively, Figure 4D), including non-neoplastic tissue

Figure 2. Analysis of Differentially Expressed Genes in Breast Brain Metastasis. A) Hierarchical clustering of 863 genes distinguishing
breast brain metastases (BBM, orange ticks) from non-neoplastic breast (NBr, red ticks) and non-neoplastic brain tissue (NBn, blue ticks); B) Cell Cycle
Gene Network. Genes that mapped to the ‘Cell Cycle’ categories were used to construct a direct interaction network; C) DNA Repair Network. Genes
that mapped to the ‘DNA Repair’ category were used to construct a direct interaction network. Two DNA repair processes are highlighted and
connected to genes annotated to those processes. For Figure 2B and 2C, the gene nodes are shaded red in proportion to the degree of upregulation.
Gene nodes shaded in green are downregulated. Log2 ratios are listed under the individual nodes. Direct physical interaction relationships are
represented by solid lines. Dotted lines represent indirect physical interactions; D) GSEA Enrichment Map. The results from the GSEA analysis
comparing 35 breast cancer brain metastases to 10 non-neoplastic brain and 10 non-neoplastic breast were visualized using Cytoscape and
Enrichment Map plug-in. The significant gene sets from the C5 gene ontology library are represented with a p-value of #0.05 and false discovery rate
(Q) of ,0.5. Each individual node represents one gene set with the size of node proportional to number of genes in the set and color intensity relates
to degree of enrichment (red = up in tumor; blue = down in tumor). The relative overlap of the number of genes shared by individual nodes is
represented by the thickness of the connecting edges. Interesting subgroups in the network are circled and manually annotated; E) Vertical scatter
plots showing FOXM1 and AURKB overexpression by qRT-PCR in breast brain metastasis (BBM, n = 42) compared to early-stage primary breast tumors
(n = 50). Fold expression was relative to expression in non-neoplastic breast or brain samples (n = 10).
doi:10.1371/journal.pone.0085448.g002

Figure 3. Hierarchical Clustering of Genes that Differentiated
Brain Metastases Based on Their Breast Cancer Intrinsic
Subtype Status. Six distinct clusters were identified and their
respective genes further analyzed.
doi:10.1371/journal.pone.0085448.g003
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examined. From these DML we identified a subset of 15 DML

that were most hypomethylated in basal-like tumors compared to

the other subtypes (Figure 4E–F, Table S12, File S1). This

signature represents a potential CpG island hypomethylator

phenotype (CIHMP) for basal-like breast brain metastasis and

includes ALDH1A3, FANCG, TRIM29 and HOXA11 (Table
S12, File S1).

Combined aCGH and Gene Expression Analysis on Single
Tumors

Next, we undertook a single-tumor-level analysis to identify a

tumor specific, n = 1, investigation into altered biological concepts

specific to single samples. A combined copy number and gene

expression based analysis was conducted on 11 individual BBM

samples. In brief, the ADM2 gene-level data were matched to

gene-level mRNA expression data. Each sample was compared

against non-neoplastic tissue as described above. Genes were

filtered to include only those with a log2 ratio $2 or #22. For

copy number data, a filter was applied to the ADM2 log2 ratio to

include only those genes with values $0.5 or #20.8. The

remaining data were then filtered for congruency to ensure

consistency in direction of combined data, i.e., genes needed to be

amplified/overexpressed or deleted/underexpressed. The com-

bined aCGH and mRNA expression lists for each sample were

uploaded into MetaCore software (Thomson Reuters, New York,

New York) for functional ontology enrichment, pathway mapping

and knowledge mining. Each sample was interrogated with this

workflow to identify biological concepts and observations which

include single-gene alterations as well as pathway-based alter-

ations. Expert review of data was conducted to identify and

prioritize important biology and concepts for each sample (Table
S13, File S1). Below we describe the top concepts identified in

our samples.

We were able to identify at least one specific pathway/concept

aberrantly operative in each sample. There were three samples

that had alterations, which would predict interference with the

‘autophagy’ pathway. One sample had amplifications in two

genes, eiF2AK3 and ATF6, which are crucial members of the

‘endoplasmic stress’ pathway. Multiple alterations were observed

in one sample in the ‘WNT signaling’ pathway. Additionally, two

samples had multiple alterations in the ‘chromosome condensa-

tion’ pathway. Lastly, six samples had amplifications and coupled

overexpression of a histone gene cluster involving the genes HF3A

and HF3B.

We also note a number of interesting genes (number of samples

in parentheses) that were amplified and overexpressed: AKT1 (2),

ATAD2 (7), AURKA (2), BRAF (3), DERL1 (6), DNMTRB (3),

ESR2 (1), FASN (3), TNFRSF12A (2), PSENEN (4), HIF1A (2),

IGF1R (1), NEK2A (6), MCL1 (1), PPFIA1 (1), RAF1 (2), PRL (1),

RXRA (1), SRD5A2 (1), SUMO2 (1), TYMS (2), UBA1 (1),

VEGFA (1), WNT3A (2) and WNT9A (2). Genes of interest (and

number of samples) that were deleted and underexpressed were:

CTNNA3 (2), ATM (4), TCF4(1), CDKN2A (1), CDKN2B (2),

MSH6 (1), RB1 (1) and RPS6KA3 (2), CRYAB (4), HSPB2 (4).

We selected the ATAD2 gene for copy number and gene

expression validation by qRT-PCR and copy number qPCR

assays due to its high frequency of alteration shown by aCGH and

gene expression arrays. In addition, its position on 8q24, a known

hotspot locus in breast cancer, further suggests the potential

importance of this gene. Here we examined 42 breast brain

metastases and 50 primary breast cancer samples. The BBM

samples included all samples analyzed by aCGH and the gene

expression array platform as well as additional samples. These

data demonstrate that both metastatic and primary samples had a

comparable increase in both copy number and expression of

ATAD2 compared to non-neoplastic samples (Figure 5). The

copy number data for the cMYC gene, which is also positioned on

8q24, demonstrate gene amplification in 10/15 samples by

aCGH, but this was not accompanied by an increase in gene

expression. Quantitative PCR for copy number determination in

conjunction with qRT-PCR for expression analysis yielded similar

findings where there was a noticeable, but similar cMYC

amplification in both brain metastasis and primary breast cancer

samples without any evidence of gene expression (Figure 5).

Combined Gene Expression and DNA Methylation
Analysis on Single Tumors

Similarly, a combined gene expression and methylation analysis

was conducted on a sample-by-sample basis for 11 samples in our

cohort. Gene expression and methylation data for each sample

were compared against non-neoplastic tissue. Differentially

expressed genes with log2 fold-changes $2 or #2 and which

had a corresponding methylation change with delta beta values

.|0.2| were used for further analysis. The resultant gene lists

were uploaded into IPA and the Core Analysis workflow was run

with default parameters. Analysis of Molecular Functions demon-

strated (sample number in parentheses) defects in ‘Cellular Growth

and Proliferation’ (7), ‘Cellular Development’ (7), ‘Cellular

Movement’ (7) and ‘Cell-Cell Signaling Interactions’ (8). Three

samples had predicted decreased activity of cell movement and

invasion of tumor cells. Two samples had predicted decrease in the

motility of hematological cells such as leukocytes and granulocytes

and one sample had predicted decreased activity in cell

chemotaxis. Hyper-methylated and down-regulated genes most

frequently contributing to cell motility and adhesion included:

VAV1 (2), PENK (6), EDN3 (6), EDNRB (4), RELN (5) and

ITGAM (4). Other genes affecting cell growth and proliferation

which were frequently hypermethylated and downregulated

included: CDKN1C (6), CDKN2B (3), CCND2 (4) and BANK1

(7). Other genes of interest include USP44 (6), and CRYAB (4),

HSPB2 (1). In eight samples, KRT8 (affecting adhesion and

permeability of tight junctions) was found to be hypomethylated

and upregulated. We used receiver operator characteristic (ROC)

analysis to compare the methylation status of BANK1 and

CDKN1C in breast brain metastasis samples to a series of 48

early-stage primary breast cancer samples. The areas under the

ROC curves were statistically significant for BANK1 (2/2

HumanMethylation27 array probes) and 6/8 CDKN1C methyl-

ation probes representing different CpG loci (p,0.01, Mann-

Whitney U test). The data demonstrate differential methylation

between primary breast tumors and brain metastases, where the

metastatic samples were significantly more hypermethylated than

primary tumors. The ROC curves for BANK1 and CDKN1C are

shown in Figure 6. These data highlight the importance of the

epigenetic silencing of BANK1 and CDKN1C in the development

of BBM.

There was also hypomethylation and upregulation of six X-

linked MAGE genes (1 Basal sample), histone gene cluster (7),

DNMT3B (4), and IL20 (5). CHODL was upregulated in basal

like tumors and downregulated in Her2 and Luminal B tumors,

but we also noted hypermethylation and downregulation of

CHODL in four Luminal B tumors. Similarly, TFF3 is highly

expressed in Luminal B tumors and TFF1 is hypomethylated and

overexpressed in fourLuminal B tumors.

We further examined each sample for enrichment in canonical

pathways and identified ‘IL8 signaling’, ‘hepatic fibrosis/hepatic

stellate cell activation signaling’ and ‘thyroid hormone metabolism

signaling’ to be among the most frequently enriched pathways
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(Table S14, File S1). In particular, enrichment of ‘IL8 signaling’

was due mainly to the hypermethylation and downregulation of

several key genes such as ANGPT1, ANGPT2, KDR, ITGAM,

ITGB2, PIK3CG, PIK3CD and TEK. BRAF and BCL2 were

among the hypomethylated and overexpressed genes in this

pathway.

Combined Copy Number, Gene Expression and DNA
Methylation Analysis on Single Tumors for the
Identification of Putative Tumor Suppressor Genes and
Oncogenes

We next combined all three datasets to identify genes that had a

one-copy deletion, downregulation and hypermethylation in 11

individual samples; this was anticipated to be an indication of

tumor suppressor function for these genes. We identified the

following genes (chromosome and frequency in parenthesis):

BNC1 (15q25, 2), CHODL (21q11, 2), CRYAB (11q23,2),

EDNRB (13q22, 1), FHL1 (Xq26, 1), HS3ST3A1 (17p12, 2),

KL (13q13, 1), ME3 (11q14, 2), PENK (8q12, 1), PIK3CD (2),

SCARA3 (8p21, 2), SCN3B (11q24, 2), SMYD4 (17p,12, 2),

SOX7 (8p23, 2).

Other candidate tumor suppressor genes included those that

demonstrated homozygous deletions and loss of expression. Of 11

samples, only the three basal-like samples had evidence of

numerous homozygous deletions, which were as follows: Sample

BBM6 - CDKN2A, CDKN2B, DMD, DMRTA1, GTPBP6,

PLCXD1, PPP2R3B, SPRY2; Sample BBM9 - DMRT2,

DMRT3, DOCK8, KANK1, ODZ1, RB1, SMARCA2, STAG2,

VLDLR; Sample BBM15 - ARHGAP24, FBXO11, FOXN2,

GABPB1, HABP2, LHCGR, LILRB2, MSH6. One luminal

tumor had a homozygous deletion of the QRFPR gene.

Similarly, we identified genes that were amplified, upregulated

and hypomethylated. These include: CAPN9 (1q42, 3), CEBPG

(19q13, 2), CTSE (1q32, 2), DNMT3B (20q11, 2), HIST1H2BJ

(6p22, 2), HMGN1 (21q22, 2), IL20 (1q32, 2), MAT1A (10q32, 2),

PSCA (8q24, 2), SRMS (20q13, 2) and TSPYL5 (8q22, 2).

Discussion

The brain is a common sanctuary site of metastatic disease in

patients with breast cancer and brain metastases are becoming

increasingly prevalent as greater control over systemic disease is

achieved. Given the poor clinical outcomes of patients with breast

brain metastases, there is urgency to better understand the

mechanisms underlying the pathogenesis of brain metastasis as

well as to identify novel targeted therapies. Accordingly, we

performed a comprehensive genomics and epigenomics analysis

using microarray technology to measure alterations at the level of

mRNA expression, DNA copy number and DNA methylation.

Copy number analysis identified a number of focal and broad

regions of amplifications and deletions. Among the most notable

regions of broad gains in our samples were 1q, 5p, 8q, 11q and

20q. Broad-level deletions were identified in 8p, 17p, 21p and Xq.

Previous studies have shown that ductal carcinoma in situ (DCIS)

were associated with chromosomal gains in 1q, 8q and 17q [10].

Most commonly, deletions in DCIS have been shown to occur in

8p, 11q, 13q, 14q and 16q [11,12]. In invasive breast cancer, gains

of 1q, 6p, 8q, 11q, 16p, 17q and 20q are most common and

Figure 4. Differential Methylation Analysis in Breast Brain Metastases. A) Hierarchical clustering showing 425 tumor-specific differentially
methylated loci (DML). Breast brain metastases (BBM, blue ticks) are distinguished from non-neoplastic breast (NBr) and non-neoplastic brain tissue
(NBn, red ticks). B) Box plot demonstrating higher overall median methylation levels for 425 DML in BBM compared with NBr and NBn. C) Hierarchical
clustering of 90 DML obtained by performing an ANOVA analysis and analyzing the union of genes between the different subtypes was able to
distinguish BBM intrinsic subtype; D) Box plot representing the median methylation levels of 90 DML described above. NBr and NBn values are also
shown. Basal-like breast brain metastases have overall lower methylation compared with the other groups. E) CpG Island Hypomethylator Phenotype
(CIHMP) in basal-like brain metastases (red ticks) representing the 15 most hypo-methylated CpG Island loci when compared to Luminal B (maroon
ticks) and Her2+/ER2 tumors (blue ticks); F) Box plot graphing the methylation values of the 15 CpG loci most hypomethylated in basal-like breast
brain metastases.
doi:10.1371/journal.pone.0085448.g004

Figure 5. Validation of ATAD2 and cMYC Copy Number and
Gene Expression in Breast Brain Metastasis (BBM, n = 42) and
Early-Stage Primary Breast Cancer Samples (n = 50). A) Vertical
scatter plots demonstrate a copy number gain of ATAD2 and cMYC by
qPCR but with no difference between BBM and primary breast tumors.
B) Vertical scatter plots show comparative overexpression of ATAD2 in
both primary tumors and primary breast cancer, whereas cMYC is not
expressed. None of the comparisons between primary tumors and BBM
samples were statistically significant (p.0.05).
doi:10.1371/journal.pone.0085448.g005
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Figure 6. Receiver Operator Characteristic (ROC) Curve for BANK1 and CDKN1C for Determining Differential DNA Methylation
Between BBM (n = 32) and Primary Breast Tumors (n = 48). The ROC curve is a graph of the true-positive rate versus the false-positive rate
using different threshold values. Data plotted represent two BANK1 HumanMethylation27 array probes and 6/8 CDKN1C probes that demonstrate
statistically significant differential methylation between BBM and primary tumors. The area under the curve (AUC) and pvalues are indicated on the
graphs.
doi:10.1371/journal.pone.0085448.g006
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chromosomal losses have been identified in 1p, 8p, 11q, 16q, 18q

and 22 [11,12]. These data suggest some clear overlap of regions

involved in primary breast cancer, but also point towards the

emergence of other chromosomal alterations that may be unique

to breast cancer brain metastasis. Certainly, concomitant gain of

8q with loss of 8p has been previously described for breast cancer,

as well as prostate cancer, and has been associated with disease

progression and poor patient prognosis [13]. Known breast cancer

oncogenes such as MYC (8q) and ERRB2 (17q), while among the

common regions of amplifications, were not among the highly

expressed genes in our samples.

ATAD2 (8q24), and DERL1 (8q24) were among the frequently

amplified and over-expressed genes suggesting they could play an

important role in breast brain metastasis. ATAD2 may be a

transcriptional coactivator of ESR1 required to induce the

expression of estradiol target genes such as CCND1, MYC and

E2F1 and may be required for histone hyperacetylation [14]. It

has also been identified as a MYC cofactor and correlates with

poor breast cancer outcomes [15]. The protein encoded by this

gene contains two AAA domains and a bromodomain. AAA

family proteins often perform chaperone-like functions that assist

in the assembly, operation or disassembly of protein complexes.

DERL1 encodes a member of the derlin family of proteins and is

thought to participate in an endoplasmic reticulum (ER)-associ-

ated degradation response and retrotranslocate misfolded/unfold-

ed proteins into the cytosol for proteosomal degradation. Data in

breast cancer cells show that DERL1 expression is increased by

ER stress while DERL1 knockdown resulted in decreased

development of cancer cells [16]. The NEK2A gene on 1q32

was another frequently amplified and over-expressed gene in the

samples we analyzed. The gene encodes a protein serine/

threonine kinase that is involved in mitotic regulation. It has

recently been described to contribute to the growth potential of

DCIS and IDC and expression correlated to higher histological

grade and lymph node metastasis [17].

Several samples had co-deletion and downregulation of

CRYAB and HSPB2 (both on 11q23) due to deletion and/or

hypermethylation. CRYAB (B crystallin) and HSPB2 are two

members of the multi-gene small heat shock proteins (sHSPs)

family that are typically coexpressed in the mammalian heart, but

the biological roles remain poorly defined [18,19]. CRYAB has

been implicated in stress-inducible translocation, antiapoptosis,

remodeling of the cytoskeleton, cardioprotection and inheritable

cardiomyopathy in humans [19]. It has been reported that 11q22-

23 is a frequent target for deletion during the development of

many solid tumor types, including breast, ovarian, cervix,

stomach, bladder carcinomas and melanoma [20], suggesting

tumor suppressor functions in solid tumors including breast brain

metastases. Integrated copy number and gene expression analysis

also reveal BRAF, AKT1, and IGF1R amplifications and

deletion/downregulation of ATM, all of which belong to pathways

that lend themselves to therapeutic targeting.

Differential expression analysis reveals significant ontologic

profiles associated with G2–M checkpoint and proliferation. A

central player in the G2-M cascade is FOXM1, which was

overexpressed in a large percentage of breast brain metastases.

FOXM1 is a transcriptional activator involved in proliferation,

cell-cycle control, and mitosis, through the regulation of many

genes involved in the mitotic checkpoint, such as AURKA,

AURKB, PLK1, and CENPF. The FOXM1 gene was also

recently highlighted as significantly deregulated in serous ovarian

tumors and metastatic triple-negative breast cancer [21]. Our

DNA methylation analysis demonstrates an overall increase in

methylation compared to non-neoplastic tissue. This is interesting

since much more of the cancer genome is generally subject to

lower methylation levels rather than higher levels of methylation

[22]. Nevertheless, this is consistent with our findings demonstrat-

ing upregulation due to amplification and/or hypomethylation of

DNMT3B and MAT1A. We did however demonstrate lower

overall methylation in basal-like tumors, a finding also consistent

with basal-like primary breast cancer (TCGA) [23].

Functional annotation of our epigenetically-regulated genes

demonstrates a strong relationship to inflammatory and immuno-

logical responses and disorders. We identified a propensity of

genes related to both tumor and immune cell migration and

adhesion to be epigenetically silenced in a high percentage of

samples. This phenomenon could be the result of immune cell

infiltration into the brain and/or could be also be explained by the

fact that progression of metastatic cells from the blood stream into

the perivascular space and then to brain parenchyma share similar

mechanisms as those employed by cells of the systemic immune

system [24]. The latter scenario can be explained by considering

that once cells have colonized the brain, migratory-promoting

genes of the tumor cells are repressed, as cells have likely reached

their ‘final destination’. This would seem to be accompanied by

activation of proliferative genes. However, cancer progression does

involve the activation of stromal cells including pericytes,

fibroblasts and leukocytes [24]. Extravasation of metastatic cells

may cause damage to components of the BBB, which may

facilitate entry of systemic immune cells in the perivascular space

and are known to have both tumor preventing and promoting

roles [24].

Over the last decade, there has been a marked improvement in the

understanding of the molecular profile of breast cancer, which has

suggested that breast cancer may behave as a multiplicity of diseases

[25,26,27]. Gene expression studies using DNA microarrays have

identified at least four distinct subtypes of breast cancer, including

Luminal A, Luminal B, HER2+/ER2, and the basal-like subtype

[25,26,27]. Recent work has shown that compared to the Luminal

subtypes, Her2+/ER2 and basal-like subtypes have a greater

predilection for seeding the brain, a much shorter latency period for

doing so and worst overall survival [5,28,29]. Applying the PAM50

classifier to our breast cancer brain metastasis series identified a

relatively high number of Luminal B tumors compared to Her2+/

ER2 and basal-like subtypes. Certainly, the availability of samples at

the time of accrual could have impacted the frequency of the subtypes

in our series. Additionally, since we were not able to obtain the

matched primary breast tumors, we were not able to confirm the

subtype of the primary tumor to determine if receptor conversion has

occurred. However, previous studies have analyzed gene expression

signatures known in primary tumors in metastatic tumors [30,31].

In summary, the breast brain metastases in our series generally

appeared to retain molecular features consistent mainly with

breast cancer and with their respective subtypes. Identifying

changes unique to metastatic tumors will ultimately require study

of primary/metastatic pairs. However, whether intrinsic subtype

switching has occurred or not, it is clear from this study that

molecular signatures resembling those known for primary breast

tumors and its subtypes can be identified. Ensuring optimal success

for developing novel therapies for breast cancer brain metastases

therefore requires consideration of the tumor intrinsic subtype

status. Due to the BBB and the unique environment of the brain,

novel therapeutic approaches for brain metastases warrant

intensive research efforts. Our study has highlighted a number

of fundamental genetic and epigenetic aberrations occurring in

brain metastases from primary breast tumor with strong implica-

tions for future targeted therapies that are aimed at alleviating the

burden of this clinically unmet need.
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Supporting Information

File S1 Supporting figures and tables. Figure S1: Combined

Network for Upstream Analysis of FOXM1 and TBX2. The

downstream genes connected to FOXM1 and TBX2 were

illustrated as a network in IPA. The mRNA expression ratios are

listed below the gene nodes. The legend within figure describes the

node and edge color keys. Figure S2: Word Cloud Analysis of

Cluster Enrichments. We have used word clouds to visually

summarize the textual results from the enrichment analysis of each

gene cluster as observed in Figure 3. The results were generated

using www.wordle.net web resource. The larger the word, the more

times it is mentioned in the enrichment categories. Supplementary

Tables in File S1. Table S1a. Table S1b. Table S2. Table S3a.

Table S3b. Table S4a. Figure S1. Table S4b. Table S5a–b. Table

S6a–b. Table S7. Table S8a–f. Table S9a–f. Figure S2. Table S10.

Table S11a–c. Table S11d. Table S12. Table S13. Table S14.
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