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The evolution of new gene families subsequent to gene duplication may be coupled to the fluctuation of population
and environment variables. Based upon that, we presented a systematic analysis of the animal transmembrane gene
duplication events on a macroevolutionary scale by integrating the palaeontology repository. The age of duplication
events was calculated by maximum likelihood method, and the age distribution was estimated by density histogram
and normal kernel density estimation. We showed that the density of the duplicates displays a positive correlation with
the estimates of maximum number of cell types of common ancestors, and the oxidation events played a key role in
the major transitions of this density trace. Next, we focused on the Phanerozoic phase, during which more
macroevolution data are available. The pulse mass extinction timepoints coincide with the local peaks of the age
distribution, suggesting that the transmembrane gene duplicates fixed frequently when the environment changed
dramatically. Moreover, a 61-million-year cycle is the most possible cycle in this phase by spectral analysis, which is
consistent with the cycles recently detected in biodiversity. Our data thus elucidate a strong coupling of duplication
events and macroevolution; furthermore, our method also provides a new way to address these questions.
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Introduction

Several models have been proposed to depict evolutionary
trajectories of gene duplicates and evolutionary forces
behind functional divergence of duplicate genes [1,2]. Despite
the difference among detailed processes of the duplicates in
these models, the final fate of the daughter copies is mostly
determined by natural selection [2]. Therefore, drastic
environmental alterations may result in frequent function
fixations of duplicates. On the other hand, the environment
variables play a crucial role in the genera-level evolution [3].
This concept compelled us to map the distribution of
duplication events to the profile of macroevolution.

Previously, a large-scale effort was mounted to detect and
analyze the cycles and patterns in macroevolution using
paleontological and geochemical data [4–6]. These included
paleontology methods such as finding patterns from the fossil
records [7], geochemistry methods such as tracing the
isotopic composition of the biogenic sediments [8], and
ecological methods such as stochastic simulations of the
ecosystem’s environment-information transitions [9]. Studies
on global marine fossil records [10] have obtained many
interesting results, such as the relationship between macro-
evolutionary origination and CO2 levels [3], the phase shift
between fluctuations in the rate of extinction and origination
[11], and the mysterious 62-million-year (Myr) cycle, which
has a high statistical significance but no physical or biological
explanation [7]. Further studies [12,13] using sequence
information to construct a gene’s phylogenetic tree and
compare it with the geological events inferred from other
paleontological or geological studies implied that some
speciation events were contemporaneous with the geological

events. However, according to our knowledge, little research
focused on the cycles and patterns in the gene duplication
event records and the relationship between the evolutionary
patterns on the molecular level and the species level. By using
the animal transmembrane gene family, which is a key
component for information exchange between cells and the
environment and which can be easily investigated computa-
tionally [14], we detected the duplication events, estimated its
age distribution with PAML (phylogenetic analysis by
maximum likelihood) [15], and found that some patterns
reported from macroevolution also emerged in the record of
the duplication events.

Results/Discussion

The age of the transmembrane gene duplicate was
explicitly inferred as real time by the maximum likelihood
method [16,17], which is a variable rate (so-called ‘‘relaxed
clock’’) method. Each orthologous group was supposed to

Editor: Takashi Gojobori, National Institute of Genetics, Japan

Received March 27, 2006; Accepted June 26, 2006; Published August 11, 2006

A previous version of this article appeared as an Early Online Release on June 26,
2006 (DOI: 10.1371/journal.pcbi.0020102.eor).

DOI: 10.1371/journal.pcbi.0020102

Copyright: � 2006 Ding et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: Gyr, billion years; Myr, million years

* To whom correspondence should be addressed. E-mail: yxli@sibs.ac.cn

PLoS Computational Biology | www.ploscompbiol.org August 2006 | Volume 2 | Issue 8 | e1020918



have a smoothed rate, and multiple calibrations were used in
each orthologous group to reduce the uncertainty in
establishing a divergence time [18]. The S-clock (a clock
inferred from synonymous distance) and rate-constancy clock
were not used because the S-clock is highly unreliable for
ancient gene duplications, while the assumption of rate
constancy is often violated for distantly related genes [19].
Then, both the global clock and local clock models in the
codeml program [16] of the PAML package [15] were applied
to estimate the robustness of the different clock models used.
The coefficient of Pearson correlation between time esti-
mates by these two models in each divergence is 0.7439 (p ,

2.23 10�16; Figure S2A), and the cumulative age distributions
estimated by these two methods are almost the same (see
Protocol S1 and Figure S2B), indicating that these two models
are similar. The time estimates for further analysis were
implemented by using the local clock model. In order to
compare the patterns inferred from fossil records and the age
distribution of transmembrane gene duplicates in the same
time scale, we subdivided the age distribution of trans-
membrane gene families to the Phanerozoic and the
Precambrian phases and focused on the Phanerozoic phase,
which has been studied thoroughly in paleontology [5,6].

Overall Age Distribution of Transmembrane Gene Families
The overall age distribution was determined on the basis of

1,620 transmembrane gene duplication events whose ages
were estimated by the maximum likelihood method using the
local clock model. Similar to the previous report [20], this
distribution clearly shows three peaks (0.13 billion years
[Gyr], 0.46 Gyr, and 0.75 Gyr ago approximately; Figure 1). It
also reveals a phase when the density of the duplicates rose
very rapidly (from 1.3 Gyr ago) and another phase with a
slowly rising density (from 2.75 Gyr ago). In the distribution,
the highest density of duplicates leans towards the youngest
age classes, and the density drops off with increasing age. To
assess the systemic bias of the age distribution, a simple
Monte Carlo simulation was applied (see Materials and

Methods). It seems that the systemic bias of the age
distribution has little effect on the age distribution we have
studied (p , 0.0001, nonparametric test). The observed age
distribution deviates remarkably from the baseline distribu-
tion at about 2.75 Gyr ago (Figure 1). Thus, we ignored the
bins whose age was before 2.75 Gyr for further analysis.
For the purpose of characterizing the feature of the actual

age distributions, a null hypothesis was proposed. The null
hypothesis is that the age distribution of the transmembrane
gene duplicates is a uniform distribution, and assumes that
the new transmembrane gene duplicates emerge, disappear,
and fix in a continuous way with a constant evolutionary rate,
a manner somewhat similar to the neutral theory in
molecular evolution [21]. Then, the actual age distribution
was tested against this null hypothesis by one sample
Kolmogorov-Smirnov test. The null hypothesis was rejected
and the age distribution was significantly uneven (D¼ 0.5318,
p , 2.2 3 10�16, two-tailed Kolmogorov-Smirnov test).
Consistent with the findings in human gene families [22],
these findings support that both the ‘‘big-bang mode’’ and the
‘‘continuous mode’’ play significant roles in the transmem-
brane gene evolution.
Transmembrane gene duplication events versus multi-

cellular complexity. Considering that transmembrane pro-
teins are the principal signal transduction mediators among
cells, we investigated the correlation between multicellular
complexity and the density of the membrane gene duplica-
tion events. The multicellular complexity, estimated by
measuring the number of cell types and its corresponding
time period, were cited from the work of Hedges et al. [23]
(data shown in Table S2). For each time period in which the
cell complexity was estimated, the density of duplicates was
computed by linear interpolation in the time series inferred
from kernel density estimation of overall distribution (see
Protocol S1 and data shown in Table S2). As we expected,

Figure 1. Density Histogram of Overall Transmembrane Gene Duplica-

tion Events

The density trace (blue line) was obtained by using the Gaussian kernel
density estimation with the bandwidth selected by Sheather and Jones’
method [55]. The red line shows the estimate of the systemic bias in the
overall distribution of duplication events, which was obtained by
recalculating the mean value in each bin of 10,000 Monte Carlo–
simulated histograms and smoothing the mean values with function
‘‘lowess’’ available in the statistics package of R environment [54]. The
distinct transitions of the density trace are marked with red arrows.
DOI: 10.1371/journal.pcbi.0020102.g001
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Synopsis

The interplay of information-processing life and force-driven
environment has characterized Earth’s evolutionary history since
its beginning some 4 billion years ago. The study of macroevolution
has seen a growing appreciation of this interplay. Previously, a large-
scale effort was mounted to collect and analyze the paleontological
and geochemical data. In the meantime, more and more genomes
have been sequenced. The growing molecular sequence database
with these paleontological data will provide important opportuni-
ties to investigate this interplay. Using the transmembrane proteins
of 12 genomes, Ding and his colleagues have devised a
sophisticated pipeline to date 1,651 duplication events grouped
into 786 gene families, and have mapped the distribution of
duplication events to the profile of macroevolution. They showed
that the oxidation events played a key role in the major transitions
of this density trace, and that the pulse mass extinction time points
in the Phanerozoic phase coincide with the local peaks of the age
distribution. Through some mathematical transformation of the
density trace of the transmembrane gene duplicates during the
Phanerozoic phase, they reported a potential cycle similar to the
cycle detected by paleontologists. They concluded that a dramat-
ically changed environment affected the evolution of life and left
some imprint in the molecular level that can be detected.

Duplication Events and Macroevolution



these two records display a positive correspondence (r ¼
0.5272, p ¼ 0.01406, Pearson correlation analysis; Figure 2).
This result indicates that at low multicellular complexity,
duplication density may be either high or low, but at the four
instances of high multicellular complexity, only high dupli-
cation density occurred.

Linkage with the oxidation events. As illustrated by the
arrows in Figure 1, some apparent transitions emerge from
the age distribution. These observations raise an interesting
question about the cause of this pattern during the trans-
membrane gene evolution. Since the oxygen levels in the
environment and the ability of eukaryotes to extract energy
from oxygen, as well as to produce oxygen, has been proposed
as key factors in the rise of complex multicellular life [23], we
next examined the relationship of the apparent disturbances
of the age distribution with oxidation event records
reconstructed from geochemical and fossil research, and the
origin of some cell organelles related to the oxygen process
deduced from molecular phylogeny analysis. We collected
time periods of the origin of oxygenic photosynthesis, two
great oxidation events (the origin of mitochondria and
plastids), and the evolution of plants. Interestingly enough,
the time point at which the density of the duplicates increases
distinctly under the baseline distribution is completely
consistent with the reliable minimum age [24] for the advent
of oxygenic photosynthesis (2.75 Gyr ago) and the age of the
domain Eucarya concluded from molecular fossils (about 2.7
Gyr ago) [8]. Moreover, the 0.74-Gyr peak is within the
estimated time window for the second oxidation event, from
0.55 to 0.8 Gyr ago [12,25]; the 0.46-Gyr peak is within the
time window for the early colonization of land by plants,
from 0.48 Gyr to 0.36 Gyr ago [26]; the 0.13-Gyr peak is
consistent with the age of the oldest flowering plant [27,28].
Especially, the origin of plastids (from 1.2 Gyr to 1.6 Gyr ago)
[23,29] is nearly contemporaneous with the age (about 1.3 Gyr
ago) when the density of the duplicates rose rapidly. In

addition, the first oxidation event (from 2.0 Gyr to 2.4 Gyr
ago) [4] and the origin of the mitochondria (from 1.5 Gyr to
2.3 Gyr ago) [23,30] coincide with the first phase in which the
density of the duplicates rose slowly. The slowly rising density
in this phase might have been caused by the global euxinic
ocean, which kept deep-water anoxia beneath oxidized
surface water about 1.84 Gyr ago [4,31].
These findings imply the linkage between the oxygen level

and the transmembrane gene duplicates. For multicellular
organisms, the oxygen level of the environment essentially
determines the diffusion of oxygen across several layers of
cells and the degree of communication among different cells.
When the oxygen level rose, a potential multicellular niche
might have given the transmembrane gene duplicates a
chance to fix rather than experience loss or silencing. On
the other hand, life is not a simple passive process, especially
the ecosystem. The origin of oxygenic photosynthesis and the
evolution of plants affected the earth’s atmosphere and
climate and increased the free energy supplied to the biota
[32]. This factor provided a truly global environmental impact
to animals, which can be detected by the correlation analysis
of the age distribution of transmembrane gene duplication
events with the time periods of geochemical events.

The Record of Transmembrane Gene Duplication Events
in the Phanerozoic Phase
Because most patterns of macroevolution were inferred

from evidences in the Phanerozoic phase, and dating young
duplication events is more reliable than ancient events using
fossil calibration [22], we focused on the age distribution of
the duplication events of transmembrane genes in the
Phanerozoic phase. A smaller ‘‘reasonable’’ bandwidth [33]
for the kernel density estimation (see Materials and Methods)
was applied to extract some of the finer structures of the
disturbances (Figure 3).
Transmembrane gene duplication events versus animal

biological diversity events. As expected from the logic
relationship of oxygen levels and transmembrane gene

Figure 2. Correlation Analysis between the Maximum Number of Cell

Types and the Density of the Transmembrane Gene Duplicates

throughout the History of Life

The estimates of the number of cell types in eukaryotes at different times
in the past was derived from the work of Hedges et al. [23], and the
corresponding density of duplicates was calculated by using linear
interpolation in the time series inferred from the overall density trace (for
details, see Protocol S1).
DOI: 10.1371/journal.pcbi.0020102.g002

Figure 3. Density Trace of Transmembrane Gene Duplicates during the

Phanerozoic Phase

The trace was obtained by using the Gaussian kernel density estimation
with a smaller ‘‘reasonable’’ bandwidth [33]. Arrows indicate the times of
the major extinctions [5], and stars indicate the evolutionary events of
plants [26–28].
DOI: 10.1371/journal.pcbi.0020102.g003
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duplication events, peaks of 0.13 Gyr and 0.32 Gyr appeared.
The 0.13-Gyr peak is simultaneous with the time window of
the spread of angiosperms mentioned above [27,28], while the
rise from 0.3 Gyr to 0.4 Gyr coincides with the emergence of
ancient forests implied from fossil density [26]. The evolved
tree-like plant led to changes of most variables in the
environment, such as the oxygen level, and this scenario
fixed more transmembrane genes with neofunctions. Curi-
ously, the other little distinct peaks corresponded well with
the pulse extinctions (Figure 3) (i.e., the six great mass
extinctions in the past 600 Myr [5]). This surprising finding
indicates some relationship between the dramatic biological
diversity decrease and the frequency of fixed transmembrane
gene duplicates.

Cycles in the record. Because the periodogram is a more
robust property to depict distributions, we performed
decomposition in Fourier series of the detrended density
trace of the duplicates in the Phanerozoic phase. Further-
more, we hypothesized that the same cycles, which have been
detected in fossil record, would be found in the age
distribution if macroevolution were coupling with duplica-
tion events. The density trace was detrended with a third-
order polynomial curve, and then a periodogram was
constructed with the detrended trace (Figure 4A). Modified
models R and W [7] were applied in the Monte Carlo
simulation with 10,000 repeats to determine the statistical
significance (see Materials and Methods and Table S3). On
this basis we defined a potential peak that has a statistical
significance at the specified period in either model and
incorporates at least 5% of the variance (i.e., biological
significance cutoff) in the diversity signal [7]. We identified 3
potential peaks, which are 60.92-Myr, 27.29-Myr, and 10.32-
Myr cycles. Because the 10.32-Myr cycle is only twice the
interval of the data that are 5 Myr ago, we discarded this cycle
value. The 60.92-Myr cycle has the strongest cyclicity in the
density trace of the transmembrane gene duplicates (modi-
fied W model: p ¼ 0.0098; R model: p ¼ 0.14; representing
8.65% of the variance, the highest peak in the Fourier
spectrum; Figure 4A). Consistent with the opinion that the
macroevolutionary time series have characteristics of a
random walk [34], because these cycles are not statistically
significant, they cannot reject the null hypothesis of a random
walk (Table S3).

The existence of the most potential cycle of 60.92 Myr in
the age distribution of transmembrane gene families is a very
interesting discovery, because it is not indistinguishable from
the 62 6 3-Myr cycle that is the most statistically significant
cycle detected in biodiversity recently reported [7]. Further-
more, the 27.29-Myr cycle coincides with the 26- to 32-Myr
cycle proposed by several reports [7]. Although 140 Myr cycles
were previously reported [7], it was neither statistically nor
biologically significant (i.e., accounting for less than 5% of
the variance) in our data. We added the eliminated data in the
first 45 Myr for the periodogram analysis and found no effect
on the 61-Myr cycle, suggesting that the 61-Myr cycle in the
data was robust, but the 27.29 Myr and 10.32 Myr cycles were
not striking (unpublished data). These findings support our
hypothesis mentioned above that the same cycles would be
found both in fossil record and age distribution, and
confirmed the emergence of the 62-Myr cycle from a
completely independent dataset. Although the causes of the
62-Myr cycle in biodiversity remain mysterious, our data

suggest that the variables that may be the geophysical and
astronomical factors affecting the macroevolution also leave
some imprint in the molecular level. Our data provide an
evidence of this prediction.
We concentrated on the equation of the nonlinear least-

squares fit of the 61-Myr sine wave to the residual data and
compared it with the equation inferred from the fossil data
[7], which can be represented as

y ¼ 1:47573 Sin
2p 3Time
0:06092

þ 0:286758
� �

ð1Þ

(our data) and

y ¼ 0:1572208113 Sin
2p 3Time
0:062207

þ 5:21116
� �

ð2Þ

Figure 4. Periodogram Analysis of the Density Trace of Transmembrane

Gene Duplicates during the Phanerozoic Phase

(A) Fourier spectrum of the detrended density trace of the trans-
membrane gene duplicates during the Phanerozoic phase. Dot-dashed
line (R model) and dashed line (modified W model) are estimates of
spectral background [7]. The arrows indicate three potential peaks (Table
S3), which are of statistical significance in finding the indicated peak at
the specified period in either model, and accounts for at least 5% of the
variance (i.e., biological significance cutoff) in the diversity signal.
(B) The detrended density trace of the transmembrane gene duplicates
during the Phanerozoic phase with a 62-Myr sine wave inferred from
fossil data (solid line) [7] and a superimposed 61-Myr wave from our data
(dashed line). The arrows indicate the times of major extinctions [5].
DOI: 10.1371/journal.pcbi.0020102.g004
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(fossil data). We noticed the significant difference between
the phases of these two equations, which is 1.57p, indicating
that the duplication events and the biodiversity are asyn-
chronous. We found that all six major extinction events
occurred during the expansionary phases of the density trace
wave and correspond qualitatively with the declining phases
of the 62-Myr cycle in biodiversity (Figure 4B).

A Plausible Evolutionary Scenario
Our results seem to conflict with the intuition that the

massive duplication events might go along with more
speciation events or more biological diversity implicated in
some previous works [35]. However, considering the variables
triggering the mass extinction, a plausible evolutionary
scenario could be proposed to explain these results. When
the environment changed dramatically, the population of
most species became smaller, or even extinct. Population
genetic theory predicts that a change that may be deleterious
to the gene function is ready to escape, purifying selection in a
small population [21]. In addition, the sudden and various
positive selections are beneficial for the fixation of the
duplicates inmost of themodels depicting the gene duplicates’
evolutionary trajectories [2]. Therefore, duplicates would be
fixed in neofunction or subfunction, rather than purified or
pseudogenized, when the stable biota was disturbed. Further-
more, genes coding transmembrane proteins mostly belong to
the dosage-sensitive genes [36] that are beneficial for survival
when redundant. Given that the paleoenvironment guided
much of macroevolutionary development and showed a
significant relationship with it [3], the frequency of the
transmembrane gene duplication events was a significantly
negative covariate with diversification for animals in the
Phanerozoic phase. On the other hand, although our results
are based only on the analysis of the transmembrane protein
but not the whole proteomics, the findings from Arabidopsis
thaliana and amphioxus gene families supported our results.
The massive duplication events occurred in A. thaliana around
65 Myr ago [19], when Cretaceous-Tertiary extinction event
took place and in Amphioxus about 488 Myr ago (mean value
of the time phase from 300 to 680 Myr) [37]; that is at the
Cambrian-Ordovician boundary, whenmany brachiopods and
conodonts were eliminated and the number of trilobite
species was severely reduced [38,39].

In this evolutionary scenario, it is not biological diversity
but the environment variables that play a very important and
basic role in the population dynamics of transmembrane
gene duplicates. In this respect it is not surprising that some
peaks in the age distribution are consistent with the oxygen
level transition caused by the evolution of plants or others,
even if these peaks did not couple with mass extinction. In
addition, we defined mass extinction according to the fossils
of animals. Thus, for animals, the increase of the oxygen level
in the atmosphere would boost the animal evolution to more
complex structures or diversity. However, oxygen would also
make conditions ‘‘harsher’’ to certain organisms, such as
anaerobic bacteria, which had little fossil record, and small
increases in oxygen above 21% of the atmosphere increased
the fire probability for forests [40]. Although the oxygen level
transition did not trigger specific extinction in animals, these
oxidation events corresponded with the dramatically changed
environment, affecting the evolution of life. Our data show
that the oxygen level in the atmosphere is the key variable

determining the overall trends of age distribution of trans-
membrane gene duplicates.

Conclusions
The data presented here clearly show that the duplication

events of transmembrane genes are coupled with the macro-
evolution measurement and asynchronous with the animal
biodiversity. The evolution history is a coevolution process of
the environment and life [32,40] (e.g., the plant evolution
versus oxygen level versus animal evolution). The overall
shape of the age distribution is driven by the oxygen level in
the atmosphere, while the waves of the distribution might be
driven by some rhythmic external force. Furthermore, we
proposed a plausible evolutionary scenario to explain these
findings based on the factors finally determining the fate of
the duplicates [1,2], which implies that the environment
alternation would induce the redundancy of the existent
genome system that is beneficial for survival in a rigorous
condition. However, this system was not an optimized one
and would resolve to different species, such as divergent
resolution [41], when the environment disappeared.
In addition, we presented a methodology to provide a

unique, temporally detailed understanding of the interaction
of the transmembrane gene duplication events and the
environment variables. Since the sequence data are thor-
oughly independent from the fossil record and more readily
attainable, this methodology may give us a new strategy to
validate patterns such as the 62-Myr cycle, which was detected
from fossil or other geophysical records. Further studies
using this method may offer important insights into the
interplay of the microevolution and macroevolution factors.

Materials and Methods

Dataset. Sequences of proteomes from 12 eukaryotes were
obtained from the genomes section of National Center for
Biotechnology Information (NCBI) ftp site (ftp://ftp.ncbi.nih.gov/
genomes; accessed October 5, 2004). The species we chose are Homo
sapiens, Mus musculus, Rattus norvegicus, Gallus gallus, Drosophila
melanogaster, Caenorhabditis elegans, Apis mellifera, Encephalitozoon cuniculi,
Plasmodium falciparum, A. thaliana, Saccharomyces cerevisiae, and Schizo-
saccharomyces pombe. ConPred II [42], a consensus approach combining
the results of several proposed methods, was used to predict the
secondary structure of the transmembrane protein after removing
the signal peptide. Proteins with at least one transmembrane helix
were regarded as transmembrane proteins. We identified 73,932
transmembrane proteins from the eukaryote proteomes chosen.

Family building. We developed a sophisticated pipeline to build
the transmembrane gene families. This pipeline integrated the
previously outlined strategy of COG [43,44] and HOBACGEN [45],
and included some additional steps used in phylogenetic analysis,
such as a bootstrapping test [46]. The detailed procedure information
is explained in Protocol S1. Note that the E value cutoff of 10�5 was
chosen based on an empirical method (see Figure S1) [47], and the
bootstrapping cutoff value was 50% [46]. Each of the candidate
families should have at least a triangle of genome-specific best hits
(BeTs) [44] and two mammal homologous proteins. After a manual
check of each candidate family, we had 863 homology families of
eukaryote transmembrane proteins with multiple alignments for the
tree calculation.

Estimation of molecular time scale. The topology of the phyloge-
netic tree of the candidate family was constructed by the neighbor-
joining method [48] with Poisson distance. We also searched for the
bacteria homologs in bacteria proteomes downloaded from the
genomes section of NCBI ftp site by BLASTP analysis [49] with the
default setting. The fungi, plant, and bacteria homologs were assigned
as an outgroup to root the phylogenetic tree. In the absence of
outgroup homologs, the root was placed at the midpoint of the
longest route connecting two homologs. To minimize the error rate,
gene families whose topology of the subfamily’s tree was sharply in
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conflict with the uncontested animal phylogeny were excluded, and
797 homologous families were finally omitted. We then used these
rooted phylogenetic tree topologies and their corresponding align-
ments to estimate the ages of gene divergences with multiple
calibrations implemented in the codeml program [16] of the PAML
package [15] (version 3.14). The mtREV24 model [50] was applied as a
model of amino acid substitution and the a parameter for the c
distribution of evolutionary rates was estimated from the data by the
program itself. We adopted several calibrations inferred from both
fossil data and molecular data [29,51], such as mouse–rat (41 Myr ago),
primate–rodent (91 Myr ago), mammal–bird (310 Myr ago), verte-
brate–fly (993 Myr ago), vertebrate–nematodes (1,177 Myr ago), and
animal–plant–fungi (1576 Myr ago). We used the global clock and
local clock methods, respectively, to compare different rate models
among branch groups [17]. For the local clock, each cluster of an
orthologous group was assigned to its own branch rate group. To test
the congruence between the global clock method and the local clock
method, we collected and compared the age estimate of all
divergences by these two methods (see Protocol S1 and Figure S2).

Duplication event detection.We identified subfamilies in each gene
family along with the corresponding duplication events in terms of
the constructed phylogenetic tree. The acceptance criterion was that
two subfamilies (orthologs) emerging from a duplication event had at
least two outparalogs [52] in different species, whereas a duplication
event found in two different species simultaneously was a low
probability event. Thus, we detected 1,651 duplication events in the
final dataset with 786 gene families (detailed information and data
are available at http://www.biosino.org/papers/TMEvol). All of the
identified duplication events were recorded with the corresponding
ages inferred from local methods. Among the final dataset, 100%
included mouse, 97% rat, 92% human, 60% chicken, 27% fly, 23%
worm, 10% cress, and 12% fungi.

Histogram and kernel density estimates of duplication event ages.
Only duplication events with an age estimate of less than 4.5 Gyr were
considered for further analysis, and 31 duplication events were
excluded. The cutoff value of 4.5 Gyr was defined according to the age
of the earth, which is about 4–5 Gyr old [53]. We represented the age
distribution of duplication events by a 2-D density histogram with
bandwidth of 5 Myr (Figure 1; data shown in Table S1). To assess small
disturbances on the distribution, we employed kernel density
estimation to the data because we considered it to be a straightfor-
ward procedure compared to splines and wavelets. We constructed
the density traces by using the kernel density estimation function
‘‘density’’ with Gaussian kernel available in the statistics package of R
environment [54] (version 2.0.1). Although the smooth bandwidth for
the estimation was selected by an automatic method used before [55],
we adjusted the bandwidth [33] for dealing with the data of different
time phases by the parameter ‘‘adjust’’ in the function. The ‘‘adjust’’
was set at 1 (i.e., no adjustment to the automatic bandwidth selector)
for the data of the overall density traces (Figure 1), and at 0.15 for the
Phanerozoic phase data (Figure 3).

Spectral analysis. For the transmembrane gene duplication events
occurring in the Phanerozoic phase (0–600 Myr ago), we constructed
an age distribution (with an interval size of 5 Myr) and eliminated the
bins in the first 45 Myr (approximately after the mouse–rat
divergence) [29] in which almost no duplication events were detected,
removed the third-order polynomial trend, and conducted a
periodogram analysis with Fourier power spectrum by using the
packages of R environment (version 2.0.1; function ‘‘lm’’ in statistics
package for trinomial regression, ‘‘avgp’’ in GeneTS package [56] for
Fourier transformation; Figure 4A). This workflow was similar to the
process reported previously [7].

Monte Carlo simulations. We performed a Monte Carlo simulation
to ensure that there was no systemic bias in the overall distribution of
duplication event age. A number of ages of gene divergence (1,620)
were randomly selected from all the ages recorded in the gene
families without replacement each cycle. We then analyzed the
randomly selected 1,620 ages and applied our procedure in exactly
the same manner as we did for the real data, to get a histogram with
bandwidth of 5 Myr; this process was repeated 10,000 times. We
recalculated the mean value in each bin of 10,000 simulated
histograms and got an average histogram to estimate a baseline age
distribution (Figure 1). Here, Euclidean distance was used to define

the difference between a pair of distribution, which is calculated as
the square root of the sum of squared density differences between the
distribution at each of the bins (see Protocol S1) [57]. The distances
between 10,000 histograms and the average histogram were found to
derive a frequency distribution. The mean distance is 4.351 6
0.006856 Myr�1 (mean 6 SEM), which is much lower than the distance
of 48.30 Myr�1 between the observed distribution and baseline
distribution (p , 10�26, nonparametric test).

To assess the statistical significance of the periodogram analysis in
the Phanerozoic-phase duplication events, Monte Carlo simulation
was carried out by using two different models (R model and Wmodel)
proposed by Rohde and Muller [7]. Our R model was simply a
construction of random walks by randomly rearranging the steps
between bins in the existing data. Monte Carlo simulations (10,000)
were detrended (third-order polynomial) and analyzed. Their average
spectral power was computed (Figure 4A). The modified W model was
constructed by randomly scrambling the bins’ order. Monte Carlo
simulations (10,000) were transformed into power spectra by Fourier
transformation. Their spectral power was averaged (Figure 4A) as well.

Online material. The members, phylogeny tree of each family,
dates of duplication events, routines coded by R or Java, and other
additional information related to this paper are available at http://
www.biosino.org/papers/TMEvol.
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