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Abstract 

Background:  Falls are a common complication experienced after a stroke and can cause serious detriments to 
physical health and social mobility, necessitating a dire need for intervention. Among recent advancements, wear-
able airbag technology has been designed to detect and mitigate fall impact. However, these devices have not been 
designed nor validated for the stroke population and thus, may inadequately detect falls in individuals with stroke-
related motor impairments. To address this gap, we investigated whether population-specific training data and mod-
eling parameters are required to pre-detect falls in a chronic stroke population.

Methods:  We collected data from a wearable airbag’s inertial measurement units (IMUs) from individuals with (n = 20 
stroke) and without (n = 15 control) history of stroke while performing a series of falls (842 falls total) and non-falls 
(961 non-falls total) in a laboratory setting. A leave-one-subject-out crossvalidation was used to compare the per-
formance of two identical machine learned models (adaptive boosting classifier) trained on cohort-dependent data 
(control or stroke) to pre-detect falls in the stroke cohort.

Results:  The average performance of the model trained on stroke data (recall = 0.905, precision = 0.900) had statisti-
cally significantly better recall (P = 0.0035) than the model trained on control data (recall = 0.800, precision = 0.944), 
while precision was not statistically significantly different. Stratifying models trained on specific fall types revealed 
differences in pre-detecting anterior–posterior (AP) falls (stroke-trained model’s F1-score was 35% higher, P = 0.019). 
Using activities of daily living as non-falls training data (compared to near-falls) significantly increased the AUC (Area 
under the receiver operating characteristic) for classifying AP falls for both models (P < 0.04). Preliminary analysis sug-
gests that users with more severe stroke impairments benefit further from a stroke-trained model. The optimal lead 
time (time interval pre-impact to detect falls) differed between control- and stroke-trained models.

Conclusions:  These results demonstrate the importance of population sensitivity, non-falls data, and optimal lead 
time for machine learned pre-impact fall detection specific to stroke. Existing fall mitigation technologies should be 
challenged to include data of neurologically impaired individuals in model development to adequately detect falls in 
other high fall risk populations.
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Background
Every year, approximately 13 million individuals around 
the world experience a stroke [1, 2]. Falls are one of the 
most common medical complications experienced by 
individuals after a stroke, reported in up to 65% of the 
stroke population during hospitalization and up to 75% 
in the community [3, 4]. Individuals who have expe-
rienced a stroke are at an increased vulnerability for 
falling, related to common correlates of high fall risk 
in this population such as impaired mobility, medica-
tion use, and cognitive impairment [5]. Falling after a 
stroke can have serious consequences. There are a high 
incidence of severe physical injuries, including frac-
tures, soft tissue and head injuries, and at worst, death 
[6, 7]. Psychologically, individuals often develop a fear 
of falling, leading to reduced mobility, increased social 
isolation, and significant reduction in quality of life [8, 
9]. Financially speaking, fall  related injuries constitute 
a burden on healthcare systems through prolonged 
use of services and incurred high healthcare costs 
[10–12]. Despite evidence that multifactorial reha-
bilitation approaches such as improving strength, bal-
ance, and visual impairments can reduce fall incidence 
in the older adult population [13], a recent Cochrane 
review concluded that there is little to no evidence of 
interventions that can prevent falls from occurring in 
individuals experiencing falls after stroke [14]. There-
fore, individuals who suffer from mobility deficits after 
a stroke continue to experience falls, frequently and 
repeatedly. Without a way to prevent these falls from 
occurring, there is a compelling need to develop meth-
ods and tools to detect these falls before impact with 
the ground and reduce the associated consequences.

One conventional solution to achieve some degree 
of fall impact mitigation is wearing padded hip protec-
tors in or underneath clothing, yet their significance 
in reducing fractures and associated injuries is limited 
and their current usage in the community is insignifi-
cant (likely due to discomfort and poor compliance) 
[15, 16]. A more novel and recent fall impact mitigation 
approach to address these concerns is wearable airbag 
technology [17–20]. These devices generally include 
three design components: (1) at least one sensor, such 
as an inertial measurement unit (IMU), to record user 
motion; (2) a computational model that processes the 
sensor signals to pre-detect fall impact; and (3) an 
inflatable airbag mechanism that deploys upon detec-
tion of a fall, to mitigate contact forces with the ground.

Despite continued development, wearable airbag tech-
nologies are currently only developed with the non-
neurologically impaired older adult population in mind. 
Furthermore, the internal fall impact detection algo-
rithms are often developed on data from young par-
ticipants [21–25]. The algorithms have neither been 
specifically designed nor validated for detecting falls of 
individuals presenting with stroke-related motor impair-
ments. A presumption is that the design and computa-
tional models should seamlessly transfer to users in the 
stroke population. However, the underlying pathophysi-
ology of a stroke, fundamentally related to the cerebro-
vascular territory that is compromised in the brain, may 
manifest with alterations in movement kinematics and a 
loss of ability to control movements. These characteris-
tic changes in movement have been observed and quan-
tified in existing literature [26–28] and may translate to 
observed and measurable differences leading up to or 
during falls [29–33]. For example, earlier studies have 
analyzed and compared falls between older able-bodied 
and stroke individuals, and found significantly different 
motor responses including postural stability, trunk con-
trol, fall velocity, and timely step compensation [29, 31–
33]. Furthermore, Dusane et al. found that within a stroke 
population, kinematic responses differed depending on 
the side of the body which a fall was initiated on (paretic 
vs. non-paretic) [34]. Given falls in stroke may have dis-
tinct kinematic profiles, current fall mitigation technol-
ogy developed on data of generally healthy individuals 
might not be sufficiently sensitive or specific to detect 
falls in individuals who have experienced a stroke. Such 
inaccuracy could result in failure to deploy the airbag 
during a fall or cause unnecessary airbag deployments 
(i.e. false positives) and consequently, may lead to poor 
user engagement.

To address these issues, we suggest that systematic fall 
detection models should consider incorporating train-
ing data of individuals specific to the intended user 
population. Using machine learning to tune movement 
recognition algorithms to unique movements of par-
ticular mobility-impaired populations has been dem-
onstrated in various applications for Parkinson’s disease 
[35], incomplete spinal cord injury [36, 37], and stroke 
[38], yet has not been applied to pre-impact fall detection 
in stroke populations. Thus, this paper presents consider-
ations for a sensor-based, machine learned wearable air-
bag system to demonstrate the importance of pre-impact 
fall detection models specific to stroke-related movement 
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impairments. We hypothesize that for fall detection in 
the stroke population, a pre-impact fall detection model 
trained on data from a stroke population would perform 
better than models trained on data from a control pop-
ulation. In other words, failure to train a model on fall 
movements specific to individuals with a history of stroke 
will result in decreased pre-impact detection perfor-
mance for users of the stroke population. Furthermore, 
we explore secondary considerations for model develop-
ment, including dataset activity composition, severity of 
gait impairments across users, and lead time parameter 
tuning.

Methods
Device concept and prototype
Data were recorded via the Wolk Hip Airbag (Wolk De 
Heupairbag; Wolk Company, Netherlands), a commer-
cial airbag system (Fig. 1). Wolk Airbag is a Conformitè 
Europëenne (CE) marked and Federal Communications 
Commission (FCC) approved smart system designed to 
mitigate falls in the healthy older adult population. The 
device is a lightweight, battery-powered belt available 
in four sizes designed to be worn underneath clothing. 
The device includes three fixed IMU sensors (one on the 
side of each hip and one on the lower back, in line with 
the L3 vertebrae) and an onboard computing unit. Each 
IMU sensor contains an accelerometer (range ± 16 g) and 
gyroscope sensor (range ± 2000 deg/s) collecting data in 
all three axes (x, y, and z) at a sampling rate of 500 Hz. 
The device has built-in models for pre- and post-impact 
fall detection, which send a command signal for deploy-
ment to the two embedded CO2 cartridges in the event 
a fall impact is pre-detected. For this study, a modified 
version of the Wolk airbag was utilized. The internal 
circuitry had been altered to incorporate data logging 
capabilities to an external SD card to store the raw IMU 
data, and the deployment signal was inhibited to pre-
vent cartridge activation during the supervised falls data 
collection.

Study design and data collection
Stroke cohort eligibility criteria included individu-
als within the age range of 18–85, diagnosis of stroke at 
least 6 months ago, and the ability to sit unsupported and 
walk independently (at least with an assistive device). The 
control cohort were recruited from the same age range 
with no serious conditions, injuries, or history of back 
pain. Exclusion criteria for both cohorts included per-
sons on anti-coagulants, severe osteoporosis, pregnant 
women, cognitive deficits, and a comorbidity that inter-
feres with the efficacy of the study or increases minimal 
risk of injury. All participants signed informed consent 
before study participation, which was approved by the 

Northwestern University Institutional Review Board 
(NUIRB, IL, USA). All study procedures were carried out 
in accordance with the standards listed in the Declaration 
of Helsinki 1964. This study is a registered clinical trial on 
ClinicalTrials.gov (registry number NCT05076565) with 
the National Library of Medicine (NLM) at the National 
Institutes of Health (NIH).

Participants wore the airbag device and protective gear 
(e.g., helmet, neck/knee/elbow guards, padded shorts) 
while performing falls and non-falls onto a padded mat 
under supervision. For the purposes of this study, a fall 
was defined as an event in which the participant loses 
balance and results in a terminal position on the ground 
(e.g., slips, trips, and falls from chair) [39]. Within falls, 
we defined subcategories for the directionality of the fall, 
namely in the lateral direction (i.e., lateral fall) and ante-
rior–posterior direction (i.e., AP fall). Participants were 
instructed to respond to loss of balance using any natu-
ral technique, such as using an arm to catch themselves 
or taking multiple steps, to encourage realistic behavior. 
Non-falls were performed and stratified for low or high 
movement complexity, in this case related to loss of bal-
ance. Activities of daily living (ADLs) are lower  com-
plexity non-fall movements which do not include loss 
of balance (e.g., walking, sitting, lying, sit-to-stands, 
jumping), and are often used to discriminate against fall 
events for fall detection technology. On the higher com-
plexity end, near-falls are non-fall movements in which 
the participant loses balance but recovers without hitting 
the ground, such as recovery from slips, trips, and lateral 
perturbations. The order of the event types (i.e., falls, 
non-falls) and their subcategories (e.g., trips, slips, near-
falls, ADLs) were randomized between participants. Each 
event was observed and labeled by the research team, 
encoding the type of fall activity and its context. Video 
recordings of all activities were collected for fall activity 
confirmation, post-session processing, and data analy-
sis. All events were performed at least twice to capture 
intra-subject variability. Participants did not use assistive 
mobility devices during the session with the exception of 
orthoses if necessary.

Development of a fall detection model for individuals 
with stroke‑related impairments
The collected raw IMU data and event times were pro-
vided as input to an automated custom Python program 
(Fig.  1). Accelerometer data were filtered by a fourth-
order band pass Butterworth filter (0.1–50 Hz) to remove 
high frequency noise. The pre-impact data window 
was extracted based on the fall impact and the accept-
able intervention time, which is critically constrained 
by the device lead time (i.e., the time prior to impact by 
which the algorithm must decide to deploy the airbag for 
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successful intervention) [23]. The minimal lead time for 
the device in use is 75 ms. Thus, for each fall event, the 
program automatically selected an evaluation data win-
dow (250 frames) ending 75 ms before the identified fall 

impact, i.e., the last possible moment to classify the fall 
(Fig.  1). Non-fall data were randomly evaluated within 
the latter half of the event time region to capture near-fall 
event features in close proximity to the user’s maximal 

Fig. 1  Airbag Device and Model Pipeline. Sequence of steps in processing and developing the fall prediction models. Kinematic data were 
collected from individuals with a history of stroke (n = 20) and individuals who had not experienced a stroke (i.e. control, n = 15) while wearing an 
IMU airbag device. Raw IMU accelerometer and gyroscope signals were filtered and segmented for the pre-impact fall data window, ending at the 
detected impact time minus the selected lead time duration. Statistical features were extracted from the pre-impact fall data window and labeled 
according to cohort membership (control or stroke) and activity type (fall or non-fall, fall type). All features were used as input to two models, each 
model trained on either control or stroke data. The control-trained model was trained on all control features, and each subject of the stroke cohort 
was tested iteratively. In the stroke-trained model, a single subject was iteratively held out for testing while the remaining subjects were used for 
model training (leave-one-subject-out cross-validation scheme). The dashed grey rectangle signifies an iterative selection process of each held out 
test subject. Performance metrics to pre-impact detect falls in stroke were compared between the two exclusive cohort trained models
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instability for the task. Any activities with missing or 
defective data (due to occasional hardware damage of a 
cable or connection during recording) were flagged and 
removed from analyses. The following features were 
engineered for each axis of the acceleration and angular 
velocity from the IMU signals: min, median, max, inter-
quartile range, standard deviation, skew, and kurtosis 
(see Additional file 1: Table S1) [40].

The calculated features were used as input to develop 
a machine learning classifier for pre-impact fall detec-
tion based on an adaptive boosting algorithm [41]. Gra-
dient boosting algorithms, such as AdaBoost, have been 
noted for superior fall detection performance as com-
pared to other methods including k-Nearest Neighbor 
(KNN), Support Vector Machine (SVM), and Random 
Forest (RF) [42]. The AdaBoost classifier is a multiple 
decision tree classifier that, in sequence, chooses a selec-
tive weight by which the average contributes to the final 
prediction of the test data set. Two identical AdaBoost 
models (50 estimators, learning rate = 1) were developed 
to detect falls of individuals with stroke-related impair-
ments. Each model was exclusively trained on data from 
a homogeneous population, namely, (i) a model trained 
only on data of non-stroke participants (the “control-
trained” model), and (ii) a model trained only on data of 
post-stroke participants (the “stroke-trained” model). A 
“leave-one-subject-out” (LOSO) modeling scheme was 
used to structure train and test sets in the stroke-trained 
model. The control-trained model was trained on data of 
all control subjects and iteratively tested on each stroke 
cohort participant (Fig.  1). Both models utilized identi-
cal processing techniques and features for iterative model 
development and testing. Events were predicted and 
labeled as falls or non-falls.

One of the key factors in developing a generalized and 
reliable fall detection model is the type of data used for 
the non-fall events. In much of the existing research, falls 
are improperly classified against static ADLs only, which 
often yields inflated and overly optimistic fall detection 
performance. Real life applications require classification 
of more complex motions, such as near-fall events. In 
order to demonstrate the importance of non-falls diver-
sity, fall detection models that were trained and tested 
using exclusively ADLs or near-falls as the non-fall events 
were compared. Additionally, as an exploratory analy-
sis, we investigated whether models developed to detect 
falls in post-stroke individuals should include train-
ing data not only of falls from the stroke population but 
furthermore, falls of individuals with varying levels of 
stroke-related impairment severity. Models which are not 
adequately trained on movements of stroke individuals 
with severe motor impairments may result in a decreased 
pre-impact fall detection performance for severely 

impaired stroke users. To preliminarily assess the sensi-
tivity of the models to severity representation, subjects 
from the available stroke cohort who displayed indica-
tors of severe gait impairments during a standardized 
gait assessment were identified and collectively labeled as 
“unstable ambulators” (see Additional file 2: Table S2). A 
compilation of test sets was constructed using a “leave-
one-group-out”  (LOGO) modeling scheme, each group 
a subset of five stroke cohort subjects labeled by quan-
tity of unstable ambulators being tested on  (see Addi-
tional file  3: Figure S1). Iterative model evaluation was 
performed for each test group in both the control- and 
stroke-trained models. Please see the Additional file 5 for 
detailed information on this analysis.

Lastly, model performance was investigated for var-
ied lead times to determine the optimal lead time which 
maximizes model performance for each population-spe-
cific model. Lead time, tl , is defined as the time before the 
impact by which the fall must be detected [23]. Instead 
of viewing this lead time parameter as a constraint, we 
rather investigate and define an optimal lead time,tl∗ , as 
the duration of time before a fall impact, tp , to end the 
data evaluation window, te , resulting in a maximized fall-
classification performance. The start, ts , and end, te , time 
of the data evaluation window for different lead times, tl , 
are defined as the following, where w is the duration of 
the data window (250 frames or 500 ms):

For all analyses, the evaluated metrics on model perfor-
mance were recall, precision, F1-score, receiver operat-
ing characteristic curve (ROC), and area under the curve 
(AUC). In this study, recall is defined as the percentage of 
true falls detected out of all true falls performed, and pre-
cision is defined as the percentage of true falls detected 
out of all the events predicted as falls. The F1-score con-
siders both the recall and precision scores to measure 
overall performance, given by the following equation:

While performance metrics are calculated for every 
model iteration (i.e. each train and test split), the aver-
age and standard deviation of model performance are 
reported to convey overall model performance and 
reduce complexity for between-model comparisons.

Two-tailed paired t tests were performed to determine 
the relative performance of two models using different 
training data. Both models were used to make predic-
tions for an identical test set, from which average recall, 

ts = tp − tl − w

te = tp − tl

F1 = 2 ·
recall · precision

recall + precision
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precision, F1-score, and AUC metrics were calculated. 
Each of these performance metrics were recorded per 
test iteration in both models, resulting in paired distri-
butions of average performance metrics. For most tests, 
basic statistical significance is reported if P < 0.05. For 
some instances where repeated t tests were used, signifi-
cance after accommodating for the family-wise error rate 
is also reported using the Holm-Bonferroni method [43]. 
The Holm-Bonferroni method proceeds as follows: for 
each of the m repeated t tests, sort their corresponding P 
values from lowest to highest (P1, P2,…, Pm). Starting with 
the lowest P value, P1, check if:

where α is the desired significance level ( α = 0.05 
throughout this paper). While checking ascending val-
ues of Pk = P1, P2,…, Pm, determine the first Pk such that 
the above inequality is satisfied. All subsequent values of 
P (Pk ,Pk+1, . . . ,Pm) are considered significant. This pro-
cedure ensures that the family-wise error rate does not 
exceed α , and is less overly conservative than the popular 
Dunn-Bonferroni method.

Results
Fall mitigation model performance: control‑ vs 
stroke‑trained models
A summary of participant demographics and session-
related characteristics are given in Table 1. In total, 842 
falls (610 lateral falls and 232 AP falls) and 961 non-falls 
(562 ADLs and 399 near-falls) were performed in the 
experiment. The control cohort constitutes a greater 
number of recorded movement samples within all sub-
categories of falls and non-falls, with the exception of 
lateral falls. In total, 126 features per fall sample were 
included in the feature matrix, provided as input to the 

Pk <

α

m+ 1− k
,

training stage of each model (see Additional file 4: Fig. S2 
for an illustration of model feature importance).

Cohort-dependent models were compared to detect 
falls of individuals with stroke-related impairments. For 
training on all categories of falls and non-falls, the stroke-
trained model resulted in higher average recall while the 
control-trained model resulted in higher average preci-
sion (Fig.  2). However, the difference in recall was sta-
tistically significant (P = 0.0035), while the difference 
in precision was not. When broken down into specific 
fall types (i.e. lateral falls and AP falls) classified against 
non-fall activities, the stroke-trained model had statisti-
cally higher recall for both lateral (P = 0.028) and AP falls 
(P = 0.0036). The control model had 5.7% higher preci-
sion for lateral falls, while the stroke-trained model had 
10.7% higher precision for AP falls, though neither differ-
ence was statistically significant.

For lateral falls, the stroke-trained model and con-
trol-trained model had approximately equal AUC and 
F1-scores, with less than 3.5% change and no statistical 
difference. For AP falls, the stroke-trained model had 
3.5% higher AUC and 35% higher F1-score (P = 0.019).

Comparison of data types used for fall and non‑fall events
In addition to evaluating performance for directionally 
distinct fall types, non-falls of different movement com-
plexities (i.e., ADLs, near-falls) were assessed (Table  2). 
Table 2 shows the results of paired t tests that were used 
to compare the distribution of each performance metric 
(recall, precision, F1-score, and AUC) between the vali-
dation set of stroke-trained and control-trained models. 
Tests that resulted in a statistically significant value (as 
defined by P < 0.05) are indicated by a single *. Tests that 
are significant, even after compensating for the family-
wise error rate of using repeated t tests for all three fall 
types (all falls, lateral falls, AP falls), are marked with **. 
Using ADLs as non-fall data resulted in generally higher 
model performance compared to using near-falls as non-
fall data. This effect was most pronounced in the con-
trol model for AP falls, where using ADLs as non-fall 
data resulted in statistically significantly higher recall 
(P = 0.0065), AUC (P = 0.042), and F1-score (P = 0.037). 
The difference was less pronounced for the stroke-trained 
model, which only has statistically significantly higher 
AUC when using ADL data, both when analyzing AP falls 
(P = 0.033) or the group of all falls (P = 0.021), but not for 
the group of lateral falls alone.

Model performance for a spectrum of stroke‑related 
impairment
The above models evaluated training data based on 
binary presence or absence of stroke, yet within the 
stroke population there is a spectrum of severity levels 

Table 1  Participant demographic and session information

Characteristics Unit Stroke (n = 20) Controls (n = 15)

Mean Age (std) years 53 (13) 40 (16)

Sex – 10 M / 10 F 8 M / 7 F

Mean Height (std) cm 168.3 (12.0) 170.7 (12.8)

Mean Weight (std) kg 80.6 (21.5) 80.3 (12.3)

Mean BMI (std) kg/m2 28.1 (5.15) 27.9 (5.97)

Time Since Stroke (std) years 7.47 (4.58) –

Mean Gait Speed (std) m/s 0.88 (0.29) 1.22 (0.19)

Falls Count (Lateral/AP) – 439 (327/112) 403 (283/120)

Non-Falls Count (ADL/
Near)

– 415 (259/156) 546 (303/243)
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Fig. 2  Pre-impact fall detection performance of post-stroke individuals’ falls tested on control- and stroke-trained models. Average 
performance metrics of recall, precision, F1-score, and AUC for pre-impact fall detection of post-stroke individuals’ falls using an AdaBoost Classifier 
trained on control (blue) or stroke (red) cohort data. Each model is stratified and compared across different fall types: (A) all falls, (B) lateral falls, (C) 
AP falls using paired t tests. Tests that resulted in a statistically significant difference (as defined by P < 0.05) are indicated by a single *. Tests that 
are significant after compensating for the family-wise error rate of using repeated t tests for all three fall types, as defined by the Holm-Bonferroni 
method, are marked with **
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related to mobility and fall risk. Five stroke cohort sub-
jects were identified and labeled as unstable ambulators 
(i.e., displaying some form of gait instability) from the 
available dataset (see Additional file  5). The distribu-
tion of model performance is demonstrated below in 
Fig. 3, separated and ordered by an increasing quantity of 

unstable ambulators in the test set. Consistent with pre-
vious findings, fall detection recall and precision face a 
general tradeoff in performance between the control- and 
stroke-trained models. However, these results suggest fall 
performance may be correlated to the quantity of unsta-
ble ambulators within the test set. In general, an increase 

Table 2  Effect of non-fall type (ADLs or near-falls) on pre-impact fall detection for stroke- and control-trained models

Average recall, precision, F1-score, and AUC reported for stroke-trained (top) and control-trained (bottom) models to compare the effect of non-fall type (ADL, near-
fall) on model performance for each category of fall types (all, lateral, AP). For each fall type, P values are reported to compare the significance when using ADLs versus 
near-falls for the non-falls type in the model. Tests that resulted in a statistically significant value (as defined by P < 0.05) are indicated by a single *. Tests that are 
significant after compensating for the family-wise error rate of using repeated t tests for all three fall types are marked with **

Recall Precision F1-Score AUC​

M SD M SD M SD M SD

Stroke-trained model

All falls
 ADL 0.95 0.07 0.94 0.06 0.94 0.05 0.97 0.04

 Near-fall 0.93 0.07 0.92 0.08 0.92 0.06 0.92 0.08

 P 0.53 0.3 0.27 0.02*
Lateral falls

 ADL 0.93 0.08 0.96 0.06 0.94 0.06 0.97 0.05

 Near-Fall 0.92 0.08 0.93 0.10 0.92 0.07 0.95 0.05

 P 0.73 0.28 0.33 0.19
AP Falls

 ADL 0.79 0.23 0.84 0.20 0.79 0.19 0.97 0.05

 Near-Fall 0.80 0.23 0.89 0.19 0.82 0.19 0.88 0.16

 P 0.81 0.44 0.65 0.03*
Control-trained model

All falls
 ADL 0.88 0.12 0.92 0.07 0.89 0.08 0.94 0.08

 Near-fall 0.85 0.10 0.96 0.06 0.90 0.08 0.91 0.13

 P 0.42 0.07 0.85 0.37
Lateral falls

 ADL 0.91 0.13 0.97 0.04 0.94 0.08 0.98 0.04

 Near-fall 0.89 0.07 0.95 0.08 0.92 0.06 0.96 0.05

 P 0.56 0.25 0.45 0.15
AP falls

 ADL 0.75 0.22 0.82 0.25 0.76 0.21 0.94 0.07

 Near-Fall 0.49 0.34 0.76 0.40 0.57 0.34 0.86 0.15

 P 0.01** 0.58 0.04* 0.04*

(See figure on next page.)
Fig. 3  The effect of an increasing quantity of test subjects with severe stroke-related impairments on pre fall detection. Average recall, 
precision, F1-score, and AUC are displayed for unique, randomly selected subgroups of stroke individuals (n = 5 per subgroup) tested on both 
control- and stroke-trained models. Performance is stratified by the quantity of stroke individuals with severe stroke-related impairments (i.e. 
unstable ambulators) included in the test set. For zero to three unstable ambulators in a test set, 100 unique subgroups were input into both 
models. For four or five unstable ambulators in a test set, the maximum number of unique possible subgroups were used, i.e. 75 and 1 subgroup(s), 
respectively. Visual trends are displayed to demonstrate how an increase in the severity of the test group impacts model performance for each 
subcategory of fall types: (A) all falls, (B) lateral falls, (C) AP falls. Notably, control-trained model performance generally declines with an increase in 
unstable ambulators tested upon, while stroke-trained models are unaffected or even result in an improved performance with an increased number 
of unstable ambulators tested upon
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Fig. 3  (See legend on previous page.)
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in the tested quantity of unstable ambulators decreased 
the recall and precision of the control model, while the 
stroke-trained model was more or less unaffected with an 
increase in the quantity of unstable ambulators tested on. 
Accordingly, this led to a larger gap between the recall 
and a narrowed gap in precision between the two mod-
els, suggesting differences in the trained models’ ability to 
predict falls of more severely impaired stroke individuals.

Model performance for different lead times
To test the effect of the lead time on the model’s per-
formance, we compared the AUC-ROC curves for both 
models to classify AP falls against each non-fall subtype 
separately (ADLs and near-falls) with varied lead times 
(50, 100, 150, 200, 300, 400, 500  ms). The results show 
that for the events recorded in this study, the lead times 
resulting in the best performance (i.e., highest AUC val-
ues) differed between control- and stroke-trained mod-
els  (Fig.  4). For classifying the unstable ambulators’ AP 
falls against ADLs, the control-trained model performed 
best at 100 ms lead time (95.9% AUC) while the stroke-
trained model performed best within 150  ms–300  ms 
lead time (94.5% AUC). This lead time difference main-
tained a similar ratio when classifying against near-
falls, with peak AUC scores of 88.7% in both models at 

lead times of 150  ms for the control-trained model and 
300 ms for the stroke-trained model. As shown for both 
models, the lowest lead time (50  ms) did not result in 
the highest-performing lead time and in addition, the 
decrease or increase in AUC was not linear.

Discussion
Here we present for the first time research on a wearable 
airbag technology specific to detecting falls in individuals 
that have experienced a stroke, a population at high fall 
risk with minimal evidence for reliable fall intervention 
strategies [14]. In this work, we investigate the impor-
tance of population-specific models to detect falls in 
stroke by purposefully altering model-dependent train-
ing data sets and analyzing the consequent effects on 
performance. The resulting model comparisons support 
our primary hypothesis, i.e. that stroke-specific train-
ing data improves pre-impact fall detection in stroke, 
and demonstrate the influence of activity composition, 
impairment severity, and lead time on stroke-specific 
model performance. Incorporating a population-specific 
model into fall mitigation technology tailored to the 
motion of ambulatory individuals after stroke could help 

Fig. 4  Pre-impact fall detection optimal lead time dependent on model and non-fall type. An AdaBoost Classifier trained on control or 
stroke data were used to classify AP falls against ADLs or near-falls for a test subgroup of unstable ambulatory subjects (n = 5). AUC-ROC curves 
are displayed for varied lead times (50, 100, 150, 200, 300, 400, 500 ms) for classifying AP falls from ADLs in the control-trained model (A) and 
stroke-trained model (B), and from near-falls in the control-trained model (C) and stroke-trained model (D). The control-trained model performs 
similarly to the stroke-trained model’s maximal performance with a ~ 50% lead time reduction
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to reliably mitigate the impact of falls and their related 
consequences in the stroke population.

This work supports recent initiatives for “data-centric 
artificial intelligence”, encouraging the formulation of 
better datasets (specific to an end model’s intended goal) 
rather than overdeveloping algorithms around poor data 
[44]. While studies have presented wearable airbag tech-
nologies for fall mitigation, their target population was 
non-neurologically impaired and otherwise healthy older 
adults and thus, detection models were developed and 
validated based on data of healthy individuals. To the best 
of our knowledge, the fall mitigation model presented in 
the current study is the first which intentionally encom-
passes movement data of stroke survivors in the training 
set of the detection model. Results demonstrate that the 
model performance for detecting falls in individuals after 
stroke is improved (increased recall and F1-score) when 
the model is trained using movement data of individu-
als after stroke, as opposed to data of healthy individu-
als. In this, a trend in the recall-precision tradeoff was 
observed, namely, stroke-trained models performed with 
an averaged higher recall while control-trained models 
performed with an averaged higher precision (though 
the precision difference was not statistically significant). 
The resulting difference in recall between the control- 
and stroke-trained models suggests that current fall 
mitigation technology developed on data of able-bodied 
individuals could be further improved to better protect 
individuals with neuromotor impairments such as stroke, 
supporting our hypothesis to consider stroke-specific 
data in the model development.

Development and validation of generalized fall detec-
tion models requires not only the aforementioned inclu-
sion of data from the intended user population, but also 
a diverse and complex set of non-fall data [45, 46]. The 
results demonstrate that using only ADLs as non-fall 
data may result in inflated model performance compared 
to the models’ true ability to detect falls in everyday life 
[47, 48]. This was especially apparent for the condition 
in classifying AP falls from near-falls rather than ADLs, 
which significantly affected the performance of both con-
trol- and stroke-trained models.

For the model presented in this work, selection of the 
lead time has a meaningful impact on model training and 
evaluation. Using the shortest possible lead time may not 
result in the best window of data to assess the model’s 
true ability to detect falls. The results of this study convey 
that the control-trained models utilized data closer to the 
time of impact (shorter lead time) than the stroke-trained 
models to maximize performance. This could indicate 
that the pre-impact motion features of control versus 
stroke individuals differ relative to the time of the fall 
impact itself. Stroke features related to falling were better 

detected further upstream from the fall impact, perhaps 
during the ambulation period leading up to a fall. How-
ever, this trend was not linear in either model. In some 
cases, for the stroke-trained model, increasing the lead 
time over 300 ms decreased the model performance. This 
finding suggests that investigating a variety of lead times 
may improve model performance evaluation, and could 
furthermore be beneficial to optimization of fall mitiga-
tion technologies (i.e. decreased allocation of expenses to 
maximally reducing the lead time of the device when not 
optimal). However, lead times should be optimized with 
the end user environmental domain in mind, especially 
during device validation. It may be of interest in future 
work to implement a time series classification structure 
in which previous movement states are used to track falls 
progressing over time, such as in a long short-term mem-
ory network. Such a model may benefit users requiring 
different windows of time and selection criteria to con-
fidently pre-impact detect a fall at the earliest possible 
stage.

For this dataset, the direction of a fall seems to be of 
particular importance for model performance. Specifi-
cally, while the stroke-trained model is much better at 
detecting AP falls in post-stroke participants than the 
control-trained model, this improvement is less sub-
stantial when distinguishing falls to the side. This may 
be because stroke-related impairments do not affect the 
kinematics of all movements and functional activities 
equally. For example, Hollands et  al. studied full-body 
kinematics of turning 180 degrees during the Timed Up 
and Go test [49] for patients following stroke compared 
to healthy age-matched controls. They found that while 
stroke survivors did take longer to turn, there were no 
significant kinematic differences demonstrated in turn 
performance or in axial segment coordination dur-
ing turning between the two groups [50]. Extrapolating 
these results to our study, perhaps lateral falls for post-
stroke individuals and healthy controls appear kinemati-
cally similar enough in IMU output that no significant 
improvements occur when training the model with 
stroke-specific data compared to control data. Nonethe-
less, the need for stroke-specific fall detection training 
relies on the hypothesis that there are significant and 
measurable differences in movement of individuals with 
stroke-related impairments, which we believe is demon-
strated by the improved results for classification of AP 
falls. These nuances indicate a potential need for more 
research to distinguish which movements and falls are 
most effected kinematically by stroke-related impair-
ments, so that stroke-specific model training can be min-
imized when control movement data is sufficient.

The current study design includes limitations. First, the 
fall detection model was developed based on a limited 
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sample size. While this dataset is novel in its content of 
falls initiated from individuals with a history of stroke, 
future studies could expand upon the variety of data col-
lected by using more participants with a wider range of 
demographics and impairment levels. A related con-
founding factor was that participants within the stroke 
cohort performed fewer falls and non-falls on aver-
age than control participants, due to considerations of 
safety and experiment duration. To reduce the effect of 
data imbalance between cohorts, the stroke model was 
trained on data from 19 post-stroke individuals, and the 
control model on data from 15 control individuals. For 
each tested stroke subject, this resulted in a stroke train-
ing data set with approximately 27.8% fewer non-fall 
events and 3.5% more fall events (only exceeding the con-
trol cohort in lateral fall count, in which there was no sta-
tistically significant difference in classification) as shown 
in Table 1. This training data arrangement was used while 
comparing the efficacy of the cohort-dependent trained 
models (Fig.  2) and evaluating the effect of non-fall 
type on fall detection (Table 2). While the training data 
sets as described provide a compromise between sub-
ject count and the quantity of trained samples between 
the two models, a leave-one-group-out schematic was 
additionally attempted to balance subject count in the 
analysis of stroke-related impairments (Fig.  3). In this 
case, the stroke training set had the same number of sub-
jects, fewer falls, and fewer non-falls, but still has better 
or equal performance metrics. We believe this elevated 
performance, despite having fewer data to train with, is 
strong support for our central message: data from stroke 
subjects, especially of representative severity, is greatly 
beneficial for training pre-impact fall detection algo-
rithms for the stroke population.

The method used to select participants with severe 
impairments in the stroke cohort is approximate and 
includes several assumptions. While many studies 
observe gait characteristics as indicators of post-stroke 
mobility deficits, such as gait speed and changes in trunk 
asymmetry and instability [48, 51–53], these measures 
may not be the most indicative for risk of falling or move-
ment severity. For the available data, it was not possible 
to assess whether greater range of motion about the lower 
trunk during gait was truly correlated to poor instabil-
ity or was rather a by-product of compensatory mecha-
nisms [53]. In addition, five of the stroke subjects could 
not be assessed for severity due to missing data. For true 
fall risk diagnosis in individuals with a history of stroke, 
numerous factors are taken into consideration and cul-
minated to assess safe ambulation, including sensorimo-
tor deficits, poor balance in a variety of contexts, visual 
and cognitive impairment, medication use, and impulsiv-
ity [5, 54]. While an increased quantity of the identified 

unstable ambulators in the test set changed performance 
as hypothesized, it remains uncertain whether perfor-
mance change is attributed to true movement severity 
in this sub group, or rather to a specific movement pat-
tern which our criterion selected for. In both cases, the 
results demonstrate that individuals with distinct move-
ment kinematics will experience decreased user pro-
tection when not represented in the training set. It is 
recommended that future studies incorporate clinically 
validated assessment tools in addition to gait kinemat-
ics to label stroke impairment severity and thus, ensure 
that the final model accounts for individuals across the 
impairment spectrum. It may also be useful to consider 
the symptomatic cause of increased fall risk (e.g. hemipa-
resis vs loss of coordination) to further ensure inclusion 
of specific participant profiles. This stratification may 
allow for a more generalized, universal machine learning 
model for stroke impairment, or allow user input of an 
identified stroke presentation to fine tune parameters of a 
fall detection model accordingly.

While an aim of this study was to demonstrate the 
effect of non-falls complexity on model performance, 
more complex activities that occur in day-to-day living 
or which contribute to falling could have been included. 
Additionally, the models in this study were developed 
using the AdaBoost classification method, yet it is pos-
sible that other machine learning approaches which were 
not investigated for the purposes of this study might 
result in better performance. Rather than present the 
best classification model at this stage, this study aimed 
to demonstrate how training data composition can affect 
classification performance related to falls in stroke popu-
lations. While the statistical features used in these mod-
els did reveal statistically significant differences in the 
cohort-based model predictions, we aim to extract more 
clinically intuitive features with gold standard validation 
techniques in future work, as to better understand the 
kinematic differences between control and stroke popu-
lations. Finally, the airbag system was not deployed into 
a real-world setting, which is one of the next steps in our 
research. Conclusions made in regard to control- and 
stroke-trained models should be validated by the deploy-
ment of the model and prototype into the community 
for those individuals at risk of falling. Capturing real-fall 
data and testing model reliability and feasibility in both 
the community and clinical settings could strengthen the 
arguments made by this study.

Conclusions
In summary, we present a sensor-driven wearable airbag 
technology for pre-detecting falls in individuals’ post-
stroke. Results demonstrate the importance of devel-
oping fall  mitigation technology which utilizes motion 
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data specific to the stroke population. Even further, 
these results demonstrate that a “one-size-fits-all” pre-
impact fall detection model based on healthy data may 
not extend to protecting other neurological, orthopedic, 
and neuromuscular conditions, including but not lim-
ited to Parkinson’s Disease, lower-limb amputation, and 
multiple sclerosis. Our insights could help researchers, 
clinicians, and companies to develop better fall detection 
models and advance fall mitigation technologies for pop-
ulation-specific individuals at high risk of falling. The use 
of such devices could help individuals after stroke and 
other conditions to reduce the risk of fractures and inju-
ries and reduce their fear of falling, thus improving their 
overall health and their quality of life.
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