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Abstract

The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of
transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and
integrate these large scale assays. Here, we propose a novel algorithm, based on random forest methodology, to relate
gene expression (as derived from expression microarrays) to sequence features residing in gene promoters (as derived from
DNA motif data) and transcription factor binding to gene promoters (as derived from tiling microarrays). We extend the
random forest approach to model a multivariate response as represented, for example, by time-course gene expression
measures. An analysis of the multivariate random forest output reveals complex regulatory networks, which consist of
cohesive, condition-dependent regulatory cliques. Each regulatory clique features homogeneous gene expression profiles
and common motifs or synergistic motif groups. We apply our method to several yeast physiological processes: cell cycle,
sporulation, and various stress conditions. Our technique displays excellent performance with regard to identifying known
regulatory motifs, including high order interactions. In addition, we present evidence of the existence of an alternative MCB-
binding pathway, which we confirm using data from two independent cell cycle studies and two other physioloigical
processes. Finally, we have uncovered elaborate transcription regulation refinement mechanisms involving PAC and mRRPE
motifs that govern essential rRNA processing. These include intriguing instances of differing motif dosages and differing
combinatorial motif control that promote regulatory specificity in rRNA metabolism under differing physiological processes.
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Introduction

Eukaryotic gene regulation is governed at many levels. At the

transcriptional level, transcription factor (TF) binding, chromatin

structure changes and multiple activators cooperate to promote an

intricate and complex gene expression network. With the advance

of high-throuput technologies, whole-genome scale data sets that

investigate diverse aspects of transcription regulation are available.

Whole genome sequences elucidate DNA elements in the

promoter regions of genes, chromatin immunoprecipitation (ChIP)

technologies coupled with tiling microarrays reveal transcription

factor binding sites, and expression micorarrays provide whole

genome expression profiles in response to genetic or environmen-

tal changes. New and effective bioinformatic tools are needed to

integrate these large scale assays that provide complementary

information on different levels of the regulatory process.

There have been many studies, and corresponding analytic

approaches, that aim to address the challenge of eliciting

regulatory networks using both regulatory element information

and microarray expression data. Here following Boorsma et al. [1],

we define regulatory elements as regulons, which can be motif

counts or ChIP-based TF binding information. A widely-applied

strategy involves first grouping genes with similar expression

profiles using some clustering algorithm, such as hierarchical

clustering. Then, a motif-finding algorithm is applied within each

expression cluster to identify enriched sequence motifs in the

promoters of its (gene) members [2–4]. These DNA sequence

elements/motifs are assumed to act as binding sites for

transcription regulation. Despite some success, this cluster-first

approach has several drawbacks: (i) genes with correlated

expression profiles might not be co-regulated by a common motif,

(ii) genes with the motif might not respond, (iii) results are highly

dependent on the clustering algorithm employed, and (iv) by

prioritizing highly cohesive co-expression, it lacks the sensitivity to

reveal subtle changes promoted by combinatorial regulation

control. An improved and more sophisticated clustering approach

that has the ability to incorporate both expression and regulatory

information to define clusters is provided by the biclustering

algorithm [5].

Motivated by benefits of directly modeling the regulon-

expression relationship, and averting the shortcomings of cluster-

first approaches, a number of subsequent strategies adopt

formulations whereby regulons (motifs and/or ChIP-based TF

binding information) constitute predictors, and expression mea-

sures outcomes. This suggests application of regression flavored

techniques. Notable methods in this category include simple linear

regression [6], logic regression [7], an iterative approach of

clustering followed by regression tree where refinement of cluster

membership and tree parametrization is aided by the EM

algorithm [8], multivariate adaptive regression splines [9],
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multivariate regression trees [10], input-output hidden markov

model [11], boosting [12] and projection-based approaches [13].

Utilizing a regression framework allows formal evaluation of both

main- and interaction-effect contributions from motifs to expres-

sion levels. Interaction effects can be interpreted as motif

cooperativity. Except for logic regression [7] and tree-based

methods [10,12], the above techniques assume additive contribu-

tions from motifs. Moreover, interaction effects can only be

included when both constituent main effects are present due to the

hierarchical nature of the models. In addition, most of these

approaches are limited to handling one expression sample/

response at a time, this being the case for the bulk of the

regression methods surveyed in a recent review published in this

journal [14]. Again, multivariate regression trees are an exception.

Indeed, the tree-based regression paradigm [15,16] has many

advantages for modeling regulon-expression relationships: (i)

flexible extraction of important and/or interacting covariates

(motifs, TF-bindings) among a large number thereof, (ii) no

imposition of rigid parametric assumptions, either with regard

(error) distributions or model functional form and, most impor-

tantly, (iii) it is formulated to identify (gene) subgroups with

common covariate (motif, TF binding) values and homogeneous

multiple outcomes (coherent expression profiles), simultaneously

effecting regression and clustering analyses. Due to these desirable

underpinings, we base our method on the multivariate regression

tree (MRT) approach of Segal [17] and Phuong et al. [10]. MRT is

a natural extension of the standard regression tree schema [15], in

which a univariate response is replaced by a multivariate one, here

the expression levels across multiple experimental conditions.

However, tree methods are not without their deficiencies [18],

notably instability, modest prediction performance, and greediness

in choosing splits. In the present application, where our focus is on

identifying regulatory networks (interactions), the last shortcoming

is arguably the most significant. Fortunately, in the context of

univariate outcomes, these shortcomings have been remedied via

the use of ensembles of individual trees, known as random forests

[19]. Extensive benchmarking studies have shown that random

forests enjoy improved prediction performance and minimized

parameter tuning over single trees. Furthermore, by injecting

randomness through both bootstrapping (each bootstrap replicate

generating one member of the ensemble) and splitting on a

random selection of covariates at each node, random forests

effectively examine a large number splits and interactions, thereby

yielding a much more complete catalog of important networks

than a single tree. Here, we expand the scope of random forests to

include multivariate outcomes. This is accomplished by generating

an ensemble of MRTs. Accordingly, we designate our approach

Multivariate Random Forests (MRF).

One important component of random forests output is the

proximity matrix which can serve as a natural similarity metric

that quantifies similitude based on both homogeneity in outcome

(expression level) and covariates (motif counts and TF-bindings).

We exploit this property of the proximity matrix and use it as a

similarity matrix to conduct a ‘‘guided’’ clustering based on the

PAM algorithm (Partition Around Medoid; [20]) to identify small

cohesive Regulatory Cliques (RCs). Each RC contains genes that are

co-expressed and co-regulated and can be described by its

signature motifs and TF binding that are commonly present in

its gene members. The derivation of these RCs based on

information provided by the proximity matrix is a bottom-up

approach that seeks to decipher the mechanics of random forests,

often construed as a ‘‘black box’’, by reconstructing and re-

associating its inventory of effective splits (motifs and TF binding)

with the resulting homogeneous nodes.

For predictor inputs, we used both motif counts and ChIP-based

binding data for over 200 TFs performed in rich medium (YPD)

by Harbison et al. [21]. For outcomes, we modeled expression data

from the cell cycle [3,22], sporulation [23] and various stress

conditions: heat shock, nitrogen depletion, DTT exposure, and

steady-state growth on alternative carbon sources [24]. We

provide a rigorous assessment of MRF’s utility in uncovering

yeast regulatory networks. We utilize yeast cell cycle data [22] to

illustrate the performance of MRF in elucidating both cyclic and

non-cyclic RCs in the cell cycle, and compare findings not only to

a suite of general statistical approaches, such as single multivariate

regression trees, cluster analysis, and univariate random forests,

but also to current computational methods, specifically devised to

model yeast gene regulation [11,13]. In addition, to further

validate the stability and reproducibility of MRF’s performance,

we perform two additional comparisons, also based on the yeast

cell cycle: (i) we compare findings of MRF using only motifs as

predictors to those using both motifs and TF binding as predictors

[22]; and (ii) we compare MRF’s findings on two independent cell

cycle data sets[3,22]. Next, we examine yeast sporulation and a

diverse set of stress conditions, and show that MRF can not only

identify regulatory modules that are constitutively present across

these different conditions, but also those that give rise to condition-

specific responses to different environmental stimuli. Specifically,

we provide evidence of the existence of an alternative MCB motif

binding pathway. In addition, we outline an elaborate yeast

transcription regulation refinement mechanism involving the PAC

and RRPE motifs, effected by motif doses and combinations.

Results

MRF Implementation and Evaluation
The four steps of our MRF technique for identifying regulatory

networks are illustrated in the schematic in Figure 1. Details are

provided in Materials and Methods. Briefly, in the first step, we

build a random forest comprising a large number of multivariate

regression trees using motif and/or TF-binding data as predictors

and expression data as outcomes. One useful MRF byproduct is a

variable importance measure, which we use to assess a regulon’s

overall regulatory influence on gene expression, and for which we

propose a randomization procedure to assess significance. The

MRF also yields a proximity matrix that quantifies gene-gene

similarity, based on both regulon and expression, which we use to

Author Summary

Transcriptional regulation, one of the most complex and
intriguing processes in living cells, drives essential
downstream cellular processes such as development,
proliferation and differentiation. It gives rise to the
versatility and flexibility that allows cells to determine
their actions and states in response to internal needs or
external stimuli by turning on, or shutting off, select sets of
genes. This elaborate control of gene expression is realized
by sophisticated transcriptional regulatory networks that
include a diverse repertoire of transcription factors. Here,
we study the relationship between gene expression and
transcription factor binding in diverse yeast physiological
processes. Our random forest-based method effectively
models gene expression measurements simultaneously,
bypassing the necessity of analyzing the multiple samples
separately. Using our method, we have identified many
high-order interactions between regulatory sequences
that give rise to condition-specific gene expression.

Multivariate Random Forests
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decipher regulon-regulon interactions and regulon-expression

associations. To this end, in the ensuing steps, we employ the

PAM algorithm on the proximity matrix to allocate genes into

homogeneous groups (step 2), and subsequently identify regulatory

cliques (RCs) with tight, cohesive, and time-dependent profiles and

the associated characterizing regulatory elements (steps 3 and 4).

A. MRF tree representation, prediction errors and

variable importance output. The multivariate regression

tree for the cell cycle data using motif counts as predictors, with

size determined by cross-validation, and built using the R package

mvpart is shown in Figure 2A.We also illustrate a few exemplary

multivariate trees built with bootstrapped samples of the original

data and pruned to similar size in Text S1 Figure 1(A–C). Evident

from this small selection of trees is the variability in tree topology

and splits, underscoring the instability of single trees. Also

apparent is the dominance of the MCB motif, which potentially

precludes other motifs from emerging.

As indicated, random forests overcome these concerns by

appropriately injecting randomness: each split within a constituent

tree, from the bootstrap ensemble, is chosen from a sub-sample of

the motifs. This provides opportunities for other candidate motifs

and their attendant interactions to be examined, yielding a more

diverse catalog of effective motifs and motifs combinations. The

cross-validated relative prediction errors of the multivariate tree

and the out-of-bag relative prediction errors of random forests for

the cell cycle data are presented in Text S1 Figure 2. The lowest

cross-validated relative prediction error for the tree is 97.1% and

this is reduced to 95.3% for the forests using the cell cycle data. A

similar scale of prediction error and error reduction is also

observed in the other five array data sets that we investigate in this

study (results not shown). We note that despite a significant

decrease in prediction error compared to a single tree, the

prediction power for forests is still meager due to (i) large between-

gene variation, (ii) minimal pre-filtering of null genes, and (iii) the

contributions of numerous other (unmeasured) factors, beyond

motif counts, to expression levels.

The random forest algorithm outputs covariate importance

summaries, which have been shown to be adept at identifying

predictors that exert influences either by themselves or coopera-

tively with other predictors in high-dimensional genomics settings

[25–29]. We plotted ordered importance measures from motifs

that received significantly higher values (§medianz3|MAD) in

Figure 2B. Among those identified from the 356 motifs are several

experimentally verified motifs associated with the cell cycle: MCB,

ECB, SCB, SFF’ and MCM1’.

B. Method validation via randomization. An obvious

question is whether the observed improved prediction

performance and the highly ranked motifs (via variable

importance measures) result from meaningful regulatory

relationships. In the absence of experimental validation, we

address this by disrupting the original motif (X matrix) –

expression (Y matrix for the cell cycle data) correspondence by

randomly permuting the rows of the expression matrix. So doing

disassociates response-predictor relationships, but preserves

Figure 1. Schema of Multivariate Regression Forests.
doi:10.1371/journal.pcbi.1000414.g001

Multivariate Random Forests
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within-predictor and within-response correlation structures. The

relative prediction error traces and the ordered variable

importance measures for the 100 permuted data sets (in gray)

are displayed in contrast to those calculated from the original data

set (in black) in Figure 3. The randomization process provides a

means to assess model quality and significance of the observed

summaries including relative prediction error and motif

importance measures. This is carried out by computing the

relative prediction error and motif importance measures for each

permuted data set. A histogram is then formed for each statistic

and a permutation p value derived. The permutation p values for

variable importance were evaluated collectively and adjusted using

the false discovery rate (FDR) control procedure proposed by

Benjamini and Hochberg [30]. There are 19 motifs that have a

FDR p value#0.1, and they are highlighted in Figure 2B. A

detailed discussion of motif importances and regulatory cliques for

the cell cycle data follows.

Application of MRF on Cell Cycle Using Motif Data as
Predictors

The variable importance measures yielded by the random

forests evaluate the contribution of each candidate motif to gene

expression, but do not reveal whether this contribution is the result

of individual-motif potency or multiple-motif synergies, nor do

they disclose the constituent genes that the motif governs. One

modest step with regard the question of synergy was recently

proposed [26] but is limited to yielding pairwise importances:

again combinatorial explosion precludes extending this approach.

Since regression trees share similar attributes with clustering in

partitioning genes into homogeneous groups, we pursue decipher-

ing the mechanisms underlying co-expression and co-regulation,

as modeled by random forests, by recovering these homogeneous

gene groups, which we term regulatory cliques (RCs).

A. Cyclic RCs of the cell cycle. Derivation of RCs using

PAM clustering on the proximity matrix and motif enrichment

analysis (see Materials and Methods for details) gives rise to the

RC diagram in Figure 4 for the cell cycle data set. Each column in

the figure corresponds to an identified RC, with the upper panel

depicting its average expression profile, and the lower panel

highlighting its highly enriched / depleted motifs. One cluster, that

contains 599 genes, is designated as null (step 3 in Figure 1) and its

expression profile is not shown. These RCs can be divided into

cyclic and non-cyclic expression patterns. The cyclic RCs include

a total of 636 genes, the expression of which show large wave-like

fluctuations, and can be divided into five cliques according to the

time of their peak expression and their signature motifs: these are

illustrated in Figures 4 and 5. The five cyclic RCs govern four

different cell cycle phases. In the G1RS phase, when the initiation

of DNA replication occurs, we identified MCB (MluI cell cycle

box) as the single motif, whose target genes show strong wave-like

expression pattern that peaks during the G1RS transition

(Figure 5A). The MCB motif is the binding site of Mbp1, a

transcription factor known to be involved in mitotic transcription

from G1 to S phase [31]. In contrast, the ABF1 RC assumes a

much weaker periodic expression pattern that peaks

approximately at the G2 phase (Figure 5A). The ABF1 motif is

the binding site of the general regulatory factor Abf1, whose

contribution to mitotic promoter activities was previously

confirmed via mutational analysis of its DNA-binding and

protein-interaction domains [32].

In addition to these two motifs, our algorithm has also recovered

three RCs of SFF’, MCM1’ and their combination SFF’-MCM1’

(Figure 5B). Note that the SFF’ motif is a subsequence of SFF. We

do not adopt the approach of Pilpel et al. [33] of considering SFF

and SFF’ as synergistic when they appear in the same clique.

Rather, we employ a more cautious approach, using the smaller

Figure 2. A Multivariate regression tree and the variable importance measures from MRF for the cell cycle data. Panel A illustrates a
multivariate regression tree built for the cell cycle data, in which allowable splits are order-preserving motif counts and the splitting values are mid
points of two consecutive motif counts. The first split separates MCB counts at 0.5, resulting in genes that have at least one copy of the MCB motif
($0.5) going into the left daughter node whereas genes that don not have the MCB motif (,0.5) going into the right daughter node. Tree is pruned
to the size that has the lowest cross validation error. At each leaf node resides a barplot that indicates the average expression level at each time point
of genes allocated to the node. Panel B shows the barplot of the variable importance measures yielded by multivariate random forests (MRF). Black
bars are those that have significant (FDR adjusted pƒ0:1) based on the permutation procedure that randomizes the relationship between expression
and motif counts. Names of putative motifs begin with the letter ‘‘m’’.
doi:10.1371/journal.pcbi.1000414.g002

Multivariate Random Forests
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SFF’ motif to represent both motifs. Similarly, MCM1, MCM1’

and ECB are variants of each other, and we use the shortest motif

MCM1’ to represent occurrences of all three motifs. SFF’ (Swi five

factor) is recognized by the conserved forkhead family of

transcription factors Fkh1p and Fkh2p. The involvement of the

Fkh proteins together with Mcm1p (MADS-box protein, recog-

nizes the MCM1’ motif) to regulate transcription of genes during

the G2/M transition has been well established [34]. However,

here we provide evidence that there is a set of 278 genes that may

be regulated by Fkh proteins at the G2 phase independently of

Mcm1p. The MCM1’ RC contains a set of 122 genes,

characterized by the MCM1’ motif and a periodic expression

pattern peaking during mitotic exit (MRG1; [35,36]). The third

RC in Figure 5B involves a set of genes that contain both of the

SFF’ and the MCM1’ motifs. These genes are expressed at

intermediate times (M phase) between the two transcriptional

waves promoted by each individual regulator (G2 for SFF’ or

MRG1 for MCM1’). This is consistent with other findings [35,37]

that two cooperating/synergistic regulators can govern gene

expression through at least three waves of gene expression,

contributing to the refinement and sophistication of cell cycle

transcription regulation.

Figure 3. Outputs of (A) relative prediction error (left axis) and absolute prediction error (right axis) and (B) variable importance measures
from MRT. Black traces are the real, observed statistics, whereas gray traces are derived from the 100 permuted data. Only top 100 ordered motifs are drawn in B.
doi:10.1371/journal.pcbi.1000414.g003

Multivariate Random Forests
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B. Dosage effect of the SFF’ motif in the cell

cycle. Another particularly notable feature of the SFF’ RC is

that almost all of these 278 gene targets have a high dosage of SFF’

binding sites. In fact, 98.9% have at least 3 SFF’ sites, whereas the

overall frequency (all genes) is 17.1%. Similarly, 46.4% have at least

4 SFF’ sites whereas the overall frequency is 7%. This finding led us

to investigate whether there is a dosage effect of the SFF’ sites on

mitotic gene expression. We pursued this by examining the

expression profiles of all RCs that involve the SFF’ motifs. Mean

gene expression profiles of these RCs are plotted in Figure 6A and

the corresponding SFF’ copy number distributions are illustrated in

Figure 6B. RCs for genes containing 2 binding sites of SFF’ (green

and blue traces) show slight periodic expression patterns, with the

periodicity magnified with increasing SFF’ copies (cyan trace). This

provides evidence that the strength of Fkh proteins in regulating cell

cycle gene expression is directly proportional to the dosage of its

Figure 4. RC diagram of the cell cycle data by Cho et al. using motifs as predictors. Each column is an RC with the original cluster numbers
designated by PAM indicated in the middle. Note cluster 1, which contains 599 genes, is designated as a null cluster and not shown. The top section
of the graph shows the average expression profile of the genes in a specific RC, which is clustered based on Pearson correlation and average linkage.
The magnitude of the expression in log2-ratios can be read off from the color bar at the top right hand side. The bottom section depicts signature
motifs in the corresponding RC. The color red indicates enrichment {log10p values by a Chi-square test of association; the color blue corresponds to
the depletion {log10p values. The color bar at the lower right hand side is in {log10p scale and the color signals the direction of the test.
doi:10.1371/journal.pcbi.1000414.g004

Multivariate Random Forests
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binding sites. Intriguingly, a lack of SFF’ sites (black trace) inverts

the expression profile, with genes in this group having decreased

expression at the G2 phase, as opposed to increased expression at

this phase for genes with at least two SFF’ sites.

C. Non-cyclic RCs of the cell cycle. In addition to the cyclic

RCs, we also found several non-cyclic RCs, which contain genes

whose expression is altered during the cell cycle experiment but

not in any particular oscillatory pattern. These include cliques of

RAP1, PAC-mRRPE-mRRPE3 and MSE. The mRRPE (also

known as M3a) motif is derived from the MIPS rRNA-processing

functional category, and PAC (also known as M3b) is found

upstream of many DNA polymerase A and C genes. Both mRRPE

and PAC have been identified to be enriched in the same

expression cluster in previous analyses of the cell-cycle data [4,33].

However, we also found that mRRSE3 (MIPS rRNA Synthesis

Element 3) is highly enriched in the same clique. The discovery of

this three-member regulatory module was the focus of Pilpel et al.

[38], which deduced tri-membership through examining all

pairwise synergies. The comparative ease with which our MRF

algorithm identified this three-member RC demonstrates its

effectiveness in eliciting high-order interactions. The RAP1 motif

has a pivotal role in activating the transcription of ribosomal

proteins, and the MSE motif is highly involved in meiosis gene

regulation; our findings on the role of these motifs in the cell cycle

are consistent with previous research [6,33].

D. Comparisons of MRF to univariate RFs. In the last

section, using motif and cell cycle expression data, we compared

multivariate random forests to multivariate trees and showed that the

forest ensemble improved prediction error and was more

comprehensive in uncovering interactions (networks). We next

Figure 5. Time courses for (A) MCB and ABF1 RCs and (B) SFF’ and MCM1’ RCs in cell cycle. Plotted are traces of average expression
profiles of the genes in the corresponding RC.
doi:10.1371/journal.pcbi.1000414.g005

Multivariate Random Forests
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investigate whether there are benefits to simultaneously modeling

multiple responses, as opposed to making recourse to existing

methods only equipped to handle univariate responses. First, we use

(univariate) random forests [19], constructing the univariate response

from the expression matrix via principal component analysis (PCA).

PCA is a dimension reduction algorithm that replaces the original

variables with orthogonal (uncorrelated) linear combinations thereof.

The first principal component explains the maximal amount of

outcome (expression) variability, and so on in decreasing order. In

lieu of MRF, we reduced to a single outcome as provided by the first

principal component (which explains 23% of the overall variance)

and then applied random forests and PAM on the resulting

proximity matrix as described in the method section. The derived

RCs displayed in Text S1 Figure 3 include MCB, ABF1, MSE,

RAP1, mRRPE-PAC-mRRSE3 and MCM1’, a subset of what

emerged when modeling the multivariate response. This highlights

the robustness of the guided clustering component of the algorithm

and its ability to recover relevant RCs. Nonetheless, this reduction of

the multivariate outcome to a single principal component entails

information loss, reflected in the absence of key RCs, including SFF’

and SFF’-MCM’.

Next, we obtained a series of univariate random forests, each

based on a specific time point. This can be a tedious process when

many time points are involved and when gene expression at

individual time points is not of primary interest, with synthesis of

results across the respective model outputs being challenging. In a

similar, time point specific approach of Bussemaker et al. [6],

assimilation across models was achieved by graphing (main effect)

regression coefficients, for a few prominent motifs, against time

point. Correspondingly, we list the top 10 motifs at each time point

by the random forests importance measure in Text S1 Table 1, in

addition to plotting normalized importance measure traces for the

Figure 6. Time courses and dosages of SFF’ for the multiple SFF’ RCs in cell cycle. Panel A depicts SFF’ RC’s time profiles with different RCs
differentiated by the different colors and their corresponding SFF’ dosages are illustrated in B.
doi:10.1371/journal.pcbi.1000414.g006

Table 1. Relative reduction in MAD (RRMAD) by combinations of rRNA processing motifs under different conditions.

Motif combinations Sporulation Heat shock
Alternative carbon
sources DTT exposure

Nitrogen
depletion

mRRPE 0.14 0.31 0.15 0.04 0.06

PAC – – – 0.05 0.32

PAC-mRRSE3 – 0.34 0.25 0.15 0.25

2 mRRPE 0.24 – – 0.41 0.11

mRRPE-PAC 0.12 – 0.56 0.63 0.40

mRRPE-PAC-mRRSE3 – 0.57 0.61 0.59 0.49

2 mRRPE-PAC – – – – 0.40

2 mRRPE-PAC-mRRSE3 0.21 – – –

doi:10.1371/journal.pcbi.1000414.t001

Multivariate Random Forests

PLoS Computational Biology | www.ploscompbiol.org 8 June 2009 | Volume 5 | Issue 6 | e1000414



three motifs that are ranked the most important for at least one of

the 16 time points – MCB, SFF and RAP1 – in Text S1 Figure 4.

It is evident from these results that even though modeling each

time point separately reveals key regulons at each time point, it

lacks the ability to elucidate regulon relationships and coopera-

tivity across time.

E. Comparisons of MRF to cluster analysis. We then

compared our method to unsupervised clustering, which had early

successes in analyzing motif-expression relationships. We applied

PAM to the cell cycle expression data, and prescribed 13 clusters,

matching the number of clusters used with MRF. The sizes of the

resulting clusters ranged from 94 to 256, appreciably more

uniform than those derived from MRF, which ranged from 54 to

599. The largest MRF cluster consists of essentially null (non-

varying) genes. Cross-tabulating these two gene categorization

schemes reveals that the members of this large null cluster are

evenly distributed across all unsupervised clusters, potentially

diluting meaningful cluster-specific information. Indeed,

enrichment analysis conducted within each unsupervised cluster

yields only four clusters with significant feature motifs. Moreover,

the signals within each cluster are much more attenuated. The

RAP1 cluster has 145 genes, but only 30.3% of them contain the

actual RAP1 motif. The MCB cluster has 96 members with 28.6%

MCB motif occurrence. The MCM1’ cluster contains 181 genes

with a 56.9% prevalence of the MCM1’ motif. Lastly, the MSE

cluster is comprised of 228 members, only 9.1% of which possess

the MSE motifs. The stark contrast in motif enrichment strength

compared to MRF (See Figure 7) is due to a lack of simultaneous

evaluation of both components of regulation: motif and

expression. Such limitations are inherent in unsupervised

approaches and have been widely noted in the context of

microarray classification / regression problems. Increasing the

number of clusters does not lead to discovery of more meaningful

regulatory modules (results not shown).

Application of MRF on Cell Cycle Using Both Motif and TF
Binding Data as Predictors

As a set of comprehensive binding data for 203 TFs exists [21],

and as both the binding data and the cell cycle data were conducted

in the same medium (YPD), it is natural to combine motif and TF-

binding data as predictors and use MRF to model the cell cycle

expression profile. This exercise can affirm results obtained above,

which only used motif data as predictors. In addition, it might also

provide insight into the relationship between motif nucleotide

sequences and the actual TF binding sequences. The derived RC

Figure 7. Signature motifs in identified cell cycle RCs using motifs as predictors.
doi:10.1371/journal.pcbi.1000414.g007
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diagram, together with gene ontology (GO) enrichment for each

RC, is displayed in Figure 8, in which motif and binding regulons

are differentiated by an ‘‘m_’’ or ‘‘b_’’ prefix respectively. As

expected, many motifs and their corresponding TF-binding were

consistently enriched in the same RC, for instance, ‘‘b_ABF1’’ and

‘‘m_ABF1’’, ‘‘b_MCM1’’ and ‘‘m_MCM1’’, and ‘‘b_RAP1’’ and

‘‘m_RAP1’’ were both signature regulons in the same RCs. Again,

MRF was able to reconstruct cyclic and non-cyclic time profiles,

corroborating findings by using only motif-data. Below are a few

noteworthy cases.

MCB. We have identified two MCB RCs (RC6 and RC20)

that exhibit cyclic expression profile peaking during the G1RS

transition; the expression traces of member genes from both RCs

are displayed in Figure 9A. RC20 contains 79 genes, whose

promoters, according to the binding data, have high occupancy of

the transcription factors Swi6 (95%), Swi4 (%), Mbp1(62%) and

Stb1 (14%). The Swi factor Swi6 is a cofactor for both Swi4 and

Mbp1, forming SBF and MBF activators with them respectively to

regulate late G1 genes. Stb1 has recently been found to also be

associated with G1-specific promoters during G1-phase [39]. In

contrast, RC6 has 91 genes, all of which has weak or no binding of

these four transcription factors (see Figure 9B). We illustrate these

differences in binding strength by boxplots of the binding p-values

from RC6, RC20 and the rest of the genes in Figure 9C.

Interestingly, even though RC6 genes have no demonstrated

binding of the MCB binding factor (Mbp1) and its G1

transcription regulation partners (Swi6, Swi4 and Stb1), 100% of

these 91 genes possess at least one copy of the MCB motif and

display the cyclic transcriptional activities with the same

periodicity, phase and strength as genes in RC20. Moreover, the

existence of these two MCB RCs is further confirmed by the

analysis of another independently generated cell cycle dataset [3];

see Text S1 Figure 7. This suggests that a subset of MCB-

possessing genes are dependent upon the MCB motif sequence for its

periodic transcription during the cell cycle, but are independent of

known MCB binding transcription factors, indicating perhaps an

alternative regulation route via one or more unknown MCB

binding factors. Comparing GO category enrichment (bottom

panel of Figure 8) of these two cliques shows that genes from both

cliques are enriched in cell cycle, DNA metabolic process, and

DNA binding, but RC6 genes are also additionally involved in

response to stress and meiosis.

MCM1. There are two MCM1 enriched RCs, RC18 and

RC19. RC18 is characterized with the association of TFs Mcm1,

Fkh1, Fkh2, Ndd1 with the motif MCM1, whereas RC19 genes

uniformly possess MCM1 motif, yet lack the binding of the

aforementioned TFs; see Text S1 Figure 5. The phases of RC18 and

RC19 genes are different, with RC19 genes peaking during mitotic

exit (MRG1; [35,36]), whereas the RC18 genes exhibit binding of

Fkh1 or Fkh2 with Mcm1 and increased expression in M. These two

MCM1-based RCs are also identified in the Spellman et al. data [3]

(see Text S1 Figure 7) with the same lag in phases.

Comparisons with Existing Methods that Model Yeast
Regulon-Expression Relationships

A. Comparison with DREM. Except for multivariate trees,

whose performance we contrasted with MRF earlier, all existing

methodologies that utilize the regression framework to model yeast

regulon-expression relationship and to identify pivotal regulators

rely on a univariate outcome. Most of these methods operate within

each time point and attempt to synthesize information across times

in a heuristic manner. One recent method that is notably different

and is specifically designed to model yeast time series data is due to

Ernst et al. [11]. The authors developed a novel computational

method, DREM, which uses an input–output hidden Markov

model to identify regulatory networks. DREM works by identifying

bifurcation points, these being places in the time series where the

expression of a subset of genes diverges from the rest of the genes.

Over-enrichment scores based on hypergeometric tests are then

used to associate TFs with such splits. The authors provided the

DREM software on their website (http://www.sb.cs.cmu.edu/

drem), which we ran on the cell cycle data of Cho et al. [22] with

default parameter settings. The output dynamic regulatory map is

displayed in Text S1 Figure 6. To facilitate interpretation, we

summarized the significantly enriched TFs associated with

correspondingly colored nodes in colored and numbered boxes

underneath the map. Consistent with the findings of MRF, DREM

also identified the following regulatory circuits: (1) MCB, Swi4, Swi6

and Mbp1; (2) RAP1, Rap1 and Fhl1. It also discovered Ndd1 and

Gcn4, whereas MRF assigned Ndd1 to MCM1-based RCs. Motifs

or TFs that play prominent roles in the cell cycle but were not

detected by DREM include MCM1 and its partners. The regulatory

map output by DREM shows two major divergent paths (A and B)

that can be associated with TFs. Path A (gray node/box A1)

contains TFs that are known to activate periodic transcription. Path

B (red node/box B1) contains Rap1 and Fhl1 based transcription at

the start of the path, but then splits into two sub-paths (B3 and B4) at

130 minutes, with B3 corresponding to MCB, Mbp1, Swi6 and

Swi4 (dark gray box). Note that the same TFs are also similarly

enriched in A2. Comparing paths A and B, it can not be readily

reconciled why two sub-paths (A2 and B4), divergent from the

outset, are associated with the same set of enrichment TFs. In

addition, none of the expression traces of the different paths exhibit

cyclic behavior, and none of the identified motifs or TFs can be

confidently assigned to a phase in the cell cycle. This suggests

modeling via bifurcations is perhaps not the most suitable approach

for investigating the cell cycle or periodic series in general.

B. Comparison with Zhang et al. Another notable

improvement over single time point modeling is proposed by

Zhang et al. [13]. Their method defines the regression loss function

as weighted sum of losses over the principal component (PC) scores

or linear contrasts of the initial outcome variables. The use of PCs

instead of single time point samples effectively captures meaningful

time-dependent structure in the data. We refer to the projection-

based regression method of Zhang et al. [13] as PBR hereafter.

Zhang et al. [13] applied PBR to the cell cycle data of Spellman et

al. [3]. To properly compare MRF with PBR, and to investigate

whether MRF can obtain reproducible results on two independent

data sets interrogating the same biological conditions, we ran

MRF on the cell cycle data of Spellman et al. [3]. The derived RC

diagram is displayed in Text S1 Figure 7. The most prominent

cyclic motifs, including MCB, SWI5, MCM1, and SFF, are

identified by both methods. MRF additionally identified ABF1,

consistent with the findings in Cho et al., but missed by PBR.

However, the most noteworthy differences between the results of

the two methods concern non-cyclic motifs and motif interactions.

MRF is able to identify regulatory circuits of RAP1 and multiple

mRPEs, which regulate ribosomal protein genes, and those of

mRRPE, PAC and mRRSE3, which are involved in ribosomal

RNA processing. The time-dependent expression trend of these

genes increases with time, after initial dampening, and so should

strongly correlate with the third PC projection used by PBR. The

failure to identify patterns that do not correlate with the strongest

PCs showcases problems with PCA regression whereby key modes

of variation may not correspond to (leading) PC directions.

C. Comparison of MRF findings on cell cycle data from

Cho et al. and Spellman et al. RC diagrams from the two cell

cycle data sets, (Cho et al. [22] and Spellman et al. [3]), are
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Figure 8. RC diagram of the cell cycle data by Cho et al. using both motifs and TF-binding as predictors. The top section of the graph
shows the average expression profile of the genes in a specific RC, which is clustered based on Pearson correlation and average linkage. The middle
section depicts signature regulons in the corresponding RC. Motif regulons have the ‘‘m_’’ prefix whereas TF-binding regulons have the ‘‘b_’’ prefix.
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displayed in Figure 8 and Text S1 Figure 7. The results are

remarkably consistent in terms of the RCs elicited by MRF. Most

interestingly, two MCB related RCs emerged from the Spellman et

al. data, one characterized by the MCB motifs and the other

characterized by Mbp1 binding, similar to their counterpart RCs

uncovered using the Cho et al. data. These two RCs share very

high percentages of common genes – 94% and 82% respectively –

between the two datasets. This reproducibility reinforces our

hypothesized existence of an alternative, and currently unknown,

MCB-binding pathway. To further examine whether constituent

genes in the RCs characterized by the same regulons between

these two data sets resemble one other, we tabulated percentage of

common genes among select RCs in Text S1 Figure 8. The

tabulation confirms that the similarity between RCs featuring the

same regulons of the two data sets is .70% whereas it is ,10%

between RCs featuring different regulons.

Application of MRF to Sporulation and Stress Conditions
Unlike the yeast cell cycle data, where the expression data were

performed under the same biological condition as the binding

data, stress and sporulation conditions have only either no, or very

sparse (#10 TFs), TF binding information. We therefore used only

motifs as predictors.

A. RCs in sporulation. The RC diagram of the sporulation

data set [23] is clustered into two distinct groups that exhibit

increased and decreased expression upon entering sporulation

respectively (Figure 10A). The direction of the transcription

response to sporulation is clearly associated with the presence of

the mRRPE motif, which is the rRNA processing element. The

expression of genes that possess the mRRPE motifs, or

combinations of the rRNA synthesis/processing motifs (PAC,

mRRPE, mRRSE3 and mRRSE10), is repressed throughout the

sporulation process. Such repression is also seen in genes that have

the RAP1 motif. This corroborating evidence of a decline in gene

expression relating to the production of the ribosomal machinery

may be the result of a growth respite caused by nitrogen starvation

in order to trigger the sporulation process. Interestingly, we have

identified RCs of different combinations of this group of rRNA-

related motifs: mRRPE, PAC-mRRPE, PAC-mRRSE3 and

mRRPE-PAC-mRRSE3. The composition of these combinations

The color red indicates enrichment {log10p values by a Chi-square test of association; the color blue corresponds to the depletion {log10p values.
The bottom section shows enrichment of GO categories.
doi:10.1371/journal.pcbi.1000414.g008

Figure 9. Comparisons of RC6 and RC20 uncovered in yeast cell cycle data by Cho et al. using both motifs and TF-binding as
predictors. A Expression profiles of constituent genes. B Left: binding and motif frequency of feature regulons in the two RCs; Right: MCB motif
dosages in the two RCs. C Boxplots of binding p-values of the four binding TFs comparing RC6, RC20 and the rest of the genes.
doi:10.1371/journal.pcbi.1000414.g009
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Figure 10. RC diagrams for (A) sporulation (B) heat shock and (C) nitrogen deplection. The top section shows that dendrogram of hierarchical
clustering of the average expression profiles (in log2-ratios) within each RC based on Pearson correlation and average linkage. The bottom section depicts
signature motifs in the corresponding RC. The color red indicates enrichment {log10p{values by a Chi-square test of association; the color blue corresponds
to the depletion {log10p{values. The color bar at the lower right hand side is in {log10p{ scale and the color signals the direction of the test.
doi:10.1371/journal.pcbi.1000414.g010
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have differing consequences for the profiles, and magnitudes, of

expression changes further highlighting the combinatorial

transcription control of rRNA processing. Among the genes that

are induced upon entering sporulation three distinctive RCs

emerge: URS1-SCB, MCB, and RPN4-mPROTEOL18. This is

consistent with previous studies that suggest the involvement of cell

cycle (MCB and SCB; [6,33]) and stress (RPN4 and

mPROTEOL18; [6]) motifs in sporulation. URS1 is the binding

site of the Ume6/lme1 complex which is the major transcriptional

regulator of genes involved in early phase meiosis [23].

B. RCs in stress conditions. To further reveal conditional-

specific RCs, we also investigated four different stress conditions:

heat shock, nitrogen depletion, DTT exposure, and steady-state

growth on alternative carbon sources [24]. The resulting RC

diagrams are displayed in Figure 10B and 10C and Text S1

Figure 9. Similar to sporulation, all four stress conditions invoke

diametrical responses between ribosome-related RCs and stress-

specific RCs, evidenced by the separation of these two groups into

two opposing branches of the hierarchical tree built based on

expression profiles. The ribosome-related clusters again include

two groups of co-operative genes involved in ribosome production:

(i) RAP1 and multiple mRPEs (MIPS ribosomal protein elements),

that regulate the transcription of ribosomal protein genes; and (ii)

mRRPE, PAC, mRRSE3 and mRRSE10, that are involved in

ribosomal RNA processing. However, the response to reduce

ribosome production elicited by these stress stimuli differs in the

speed: heat shock triggers a much more rapid reaction than both

nitrogen depletion and DTT exposure. Also notable is the

emergence of two exclusive RAP1 RCs in heat shock and DTT

exposure, one of which involves only RAP1, whereas the other

features many different mRPEs in addition to RAP1. Interestingly,

in sporulation, we also identified a RAP1 RC that included both

RAP1 and mRPE6 motifs. Consistent with findings in Pilpel et al.

[33], mRPE6 appears to be a potential interacting partner of

RAP1 in the process of regulating ribosomal protein production

across different conditions. The RCs characterized by the different

stress-specifc motifs have induced expression to combat

unfavorable exterior stimuli. And again, the induction triggered

by heat shock is much more prompt than that for the other stress

conditions. Among those motifs that contribute to increased

expression many functional categories are involved, underscoring

the massive changes in metabolism and development that the cells

enlist to withstand adverse conditions. These include (i) stress-

related motifs: RPN4, mPROTEOL18, STRE and CSRE; (ii)

energy-related motifs: mMEREs and mLFTE17; (iii) cell cycle-

related motifs: MCM1’, MCB and SCB; and (iv) amino-acid

biosynthesis related motifs: BAS1 and GCN4.

C. Combinatorial control of the rRNA processing

motifs. The four rRNA processing motifs, mRRPE, PAC,

mRRSE3, and mRRSE10, have exhibited the capacity to impart

fine control on transcription in a combinatorial fashion. We

investigate next how different combinations of these four motifs

affect gene expression and whether this influence is condition-

specific. To this end, we examined conditions that have at least 2

different combinations of the rRNA processing motifs. These

include all conditions except for the cell cycle. For each data set,

and each RC, we calculated its percent relative reduction in

dispersion compared to the overall dispersion of the entire data set,

with dispersion measured using median absolute deviation (MAD).

This summary, termed RRMAD, is displayed in Table 1. By

definition, a synergistic event among constituent motifs will lead to

more cohesive expression profiles and a greater reduction in

expression dispersion, and therefore a higher RRMAD. To

visualize this effect we display gene expression traces within each

combination group in nitrogen depletion, with densities of doses of

the four motifs superimposed in Figure 11. Table 1 exemplifies the

complexity of combinatorial control as arising from the following

effects.

1. Condition-dependent mRRPE-PAC synergistic effect. Interestingly,

among the conditions surveyed, only in sporulation is a concerted

effect between PAC and mRRPE not observed. Specifically from

Table 1, the RRMAD for the mRRPE RC in sporulation is 0.14

whereas it drops slightly to 0.12 in the RC that contains both PAC

and mRRPE. This is in stark contrast to all other conditions. For

instance, in DTT exposure, RCs that contains a single motif,

either mRRPE or PAC are very dispersed with RRMAD smaller

than 0.1, however for genes that possess both PAC and mRRPE,

their expression profiles have sharply increased coherence with

RRMAD larger than 0.6, suggesting high cooperativity between

these two motifs.

2. Condition-dependent mRRPE dosage effect. In sporulation, DTT

exposure and nitrogen depletion, we have observed dosage effects

of mRRPE. It is most striking in DTT exposure, evidenced by the

large increase of RRMAD from 0.04 for a single copy to 0.41 for

two copies of mRRPE. In nitrogen depletion the dosage effect of

mRRPE, while less apparent, appears to be time dependent with

later time points exhibiting more uniformity with an additional

copy of mRRPE, but earlier time points being less affected (see

Figure 11).

3. Condition-dependent mRRPE, PAC and mRRSE3 main effect. Heat

shock is the only condition, where genes containing only one copy of

mRRPE have relatively tight expression, suggesting an important

role of mRRPE in heat shock. Compared to mRRPE, effects of

PAC and mRRSE3 are attenuated, with the exception of PAC in

nitrogen depletion. In fact, a single copy of mRRPE has no direct

influence on gene expression in nitrogen depletion, yet possessing a

copy of PAC reduces RRMAD by more than 30%, suggesting that

PAC by itself is sufficient to exert expression response in the event of

nitrogen depletion. But overall, the results here show that these

three motifs appear to exert most of their influence through co-

operative activity, rather than via sole (main) effects.

4. mRRSE3 and mRRSE10. The mRRSE3 motif is in the same

RC with PAC under the heat shock and DTT exposure

conditions, and with PAC and mRRPE in all conditions

examined, but does not appear to have any synergistic effect with

mRRPE only. The motif mRRSE10 is enriched in RCs in

sporulation, DTT exposure, and alternative carbon sources.

However, unlike the other three motifs, none of these RCs has a

100% occurrence of at least one copy of mRRSE10.

In summary, the combinatorial control of rRNA by the four

rRNA processing motifs presents an elegant testimony to the

complexity of transcriptional regulation governed at various levels

by different motifs, different motif combinations, different motif

dosages, and under different biological conditions. A recent paper

by Boorsma et al. [1] has also suggested the importance of PAC

and mRRPE in yeast transcription regulation and posited that

they may serve as NC2-dependent core promoter elements.

D. Gene targets of the RAP1 and mRPEs RCs. Pairwise

comparisons of the genes in the RAP1 related RCs in the alternative

carbon sources, DTT exposure, and heat shock stress conditions

show that a majority of them are common targets. In fact, between

53% and 71% of the genes are shared between any two conditions.

There are 41 genes with known function (3 have unknown function)

that are present in all 3 conditions, all but one of which encode

ribosomal protein subunits, with the exception being SST2, whose N

terminus regulates stress response [40]. By the nature of RC

derivation the ribosomal proteins in RAP1-mRPE cliques have, on

average, six copies of mRPEs. This is much higher that the
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ribosomal proteins in the RAP1 clique, which typically possess only

one mRPE copy. However, the higher dosage of mRPEs does not

lead to much tighter expression control, as evidenced by the gene

expression traces of these two different cliques for heat shock, shown

in Text S1 Figure 10. This suggests that the RAP1 motif is dominant

in the repression of ribosomal proteins in response to environmental

perturbations, and that the mRPE motifs have only accessory roles.

E. Gene targets of the MCB RCs. We identified the MCB

regulatory clique in two conditions in addition to the cell cycle:

sporulation and nitrogen depletion. These three MCB RCs all

have tight, co-ordinated expression profiles, and the relative

reduction in MAD is 33% (nitrogen depletion), 35% (cell cycle)

and 39% (sporulation). Pilpel et al. [33] and Bussemaker et al. [6]

also noted the correlation between the MCB motif and expression

in meiosis. We have observed that 38% of the gene targets of the

MCB RC in sporulation are involved in DNA metabolic processes,

and this includes various CDCs (CDC6, 7, 9, 21, 45), DNA

polymerase subunits (POL1, 2, 12, 30, 31 and 32), various RADs

(RAD17, 27, 53 and 54), and subunits of replication factors A and

C (RFA1, RFA2 and RFC4). This is perhaps not surprising given

the prominent role of MCB in regulating DNA synthesis in the cell

cycle. While MCB is an established regulator in mitotic gene

expression, the mechanism of its involvement in sporulation /

meiosis is not completely understood. Futcher [41] speculated that

as the known positive regulator of MBF is Cln3, which is

antagonistic to meiosis, these DNA synthesis genes, marked by

MCB sites, could be regulated very differently in meiosis.

Raithatha and Stuart [42] similarly suggested that an alternative

MCB binding factor may exist. Since we have uncovered two

MCB-based RCs (RC6 and RC20) in the cell cycle, and RC6 has no

TF binding signals whereas RC20 features strong binding from

Mbp1 and its partners, we compare the constituent genes in the

MCB RCs in sporulation and nitrogen depletion with those in RC6

and RC20 in the cell cycle. We have observed that the MCB RC in

sporulation shares 76% common genes with RC6 and only 26%

common genes with RC20; similarly the MCB RC in nitrogen

depletion shares 97% common genes with RC6 and 40% common

genes with RC20. This is consistent with our GO enrichment

analysis that shows RC6 genes are additionally enriched in response

to stress and meiosis compared to RC20 (see bottom panel of

Figure 8). All this evidence strongly suggests that an alternative

MCB-binding pathway, that does not involve Mbp1, is active in the

cell cycle, sporulation and nitrogen depletion.

Discussion

In this paper, we propose a novel, random forest based

algorithm to identify condition-specific, regulatory cliques that

feature genes that are co-expressed and co-regulated in the yeast S.

cerevisiae. As we have shown, our method, multivariate random

forests (MRFs), enjoys the following advantages over many existing

methods in modeling transcriptional regulation: (i) it simulta-

neously models both regulon-expression relationships and combi-

natorial regulation; (ii) it identifies high-order regulatory networks

without being compromised by combinatorial explosion; (iii) it

handles both univariate and multivariate responses; (iv) it readily

identifies motifs affecting the whole spectrum of experimental

conditions and those involved in only a subset of conditions.

MRF builds upon widely used regression tree techniques. This

popularity arguably derives from trees’ interpretability (enhanced

Figure 11. Combinatorial controls of rRNA processing motifs in nitrogen depletion. Each panel corresponds to an RC that involves one or
more motifs from the rRNA processing motif group that include mRRPE, PAC, mRRSE3 and mRRSE10. Gray traces are expression profiles of the gene
targets allocated in a specific RC. The black, red, green and blue lines are densities of motif counts for mRRPE, PAC, mRRSE3 and mRRSE10
respectively. The motif counts can be read off from the X axis.
doi:10.1371/journal.pcbi.1000414.g011
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by visualization of tree schematics), avoidance of parametric

assumptions, and flexibility in accommodating large numbers of

covariates. Multivariate response regression trees were first

proposed by Segal [17], and Phuong et al. [10] used this

methodology to study yeast expression regulation. As we have

detailed, the advantage of applying tree techniques in the context

of regulation problems is that genes are partitioned into

homogeneous groups with respect to both motifs and expression.

However, well known limitations of single trees diminish their

utility in elucidating regulatory networks as defined via motif

interactions. Of particular concern is that the greedy algorithm

employed in tree construction precludes assessment of an extensive

repertoire of motif interactions. Indeed, Phuong et al. [10]

recovered only one pair of interacting motifs, mRRPE-PAC, in

sporulation, highlighting this potential deficiency of using single

trees.

Our MRF algorithm rectifies this problem for multivariate trees

in precisely the same manner as the original random forest

approach [19] improved univariate trees. The injection of

randomness and the formation of an ensemble of multivariate

trees produces a greatly increased inventory of candidate motif

interactions, including those lacking strong main effects. To fully

realize this potential we have devised a bottom-up approach that

utilizes the output proximity matrix to derive cohesive regulatory

cliques. We have shown that our algorithm for deriving regulatory

cliques is both stable and sensitive. The latter is evidenced by the

novel revelation of dosage effects of the SFF’ and mRRPE motifs,

and the refined dissection of combinatorial control of the rRNA

processing motifs under different conditions. As illustrated in the

RC diagrams in Figures 4 and 10, MRF is effective in identifying

synergistic motifs, notably recovering those without strong main

effects. Examples here include the partnerships of RPN4-

mPROTEOL18 (in sporulation and nitrogen depletion), PAC-

mRRSE3 (in heat shock, alternative carbon sources, and DTT

exposure), mMERE4 and mMERE16 (in DTT exposure, heat

shock, and nitrogen depletion), and BAS1-GCN4 (in nitrogen

depletion). The RCs extracted display a dominance of rRNA and

ribosomal protein motifs. This is as anticipated, in line with special

physiological characteristics that define yeast cells. It is estimated

that in a rapidly growing yeast cell, 60% of total transcription is

devoted to ribosomal RNA, and 50% of RNA polymerase II

transcription and 90% of mRNA splicing are devoted to ribosomal

proteins [43].

For the cell cycle data, we have used both motif-based

predictors and motif-and-TF-binding-based predictors. Even

though TF-binding reflects the actual TF binding level, and likely

has fewer false positives than motif counts, we found that there are

merits in including motif sequence information. In particular, it

facilitates hypothesis generation as many motifs have no known

TF binding information. For instance, as in Boorsma et al. [1], we

have uncovered the importance of PAC and mRRPE motifs in

yeast transcription regulation even though currently there are no

known TF bindings to either motif. Another example is MCB:

even though Mbp1 is known to occupy the MCB motif, we have

shown here that there could be another unknown TF that

regulates genes through binding to the MCB motif, this

proposition also having been raised by Raithatha and Stuart [42].

To model the relationship between regulatory elements and

gene expression, our method requires a set of known motifs or

known TF binding information. It is however potentially useful in

other settings as well. For instance, expression quantitative trait

loci (eQTL) studies that seek to elucidate associations between

gene expression and marker genotypes at specific genetic loci can

naturally be modeled via MRF. Moreover, gene regulation

through microRNA bindings can be investigated by linking

microRNA and gene expression data using MRF. These, however,

represent more complex and intricate relationship than yeast gene

regulation, and the utility of MRF in these settings is the subject of

future research.

Materials and Methods

Data Preprocessing
Microarray data. We used the S. cerevisiae microarray data

sets in the cell cycle [22], sporulation [23] and stress conditions in

heat shock, nitrogen depletion, DTT exposure, and steady-state

growth on alternative carbon sources [24]. Except for the cell cycle

data that used one-channel Affymetrix arrays, all other

experiments employed two-color cDNA arrays. The first four

were all time course studies with 17 (cell cycle), 8 (sporulation), 4

(heat shock), 10 (nitrogen depletion), and 7 (DTT) expression

measures per gene. There were 6 differing carbon sources.

Following Tavazoie et al. [4] and Phuong et al. [10], we selected the

top 3000 most-variable genes from each data set and applied gene-

wise normalization. This was carried out by subtracting the mean

and dividing by the standard deviation across all samples from the

expression level of each gene.

Motif data. We used the established DNA motif database

from Pilpel et al. [33] as our motif covariates. This set of motifs

contain 37 known motifs and 319 unknown motifs, derived by

applying AlignACE [44] to the upstream regions of genes in MIPS

[45] functional categories. For each motif, we used ScanACE [44]

to count the number of times it appears in the promoter regions of

the genes.

Binding data. We used the TF binding data of Harbison et al.

[21]. The data contain ChIP-chip results for 203 TFs performed in

rich medium (YPD). The binding information were dichotomized

using the binding p-value threshold 0.001. A TF was considered to

be binding to a gene if the binding p-value reported by the authors

was smaller than 0.001.

Multivariate Regression Tree
Suppose Yim (i~1, . . . ,N, and m~1, . . . ,M ) and Xip

(p~1, . . . ,P) are response and predictor variables respectively. Here

Xip are counts of the pth motif for the (upstream region of the) ith

gene, and Yim and expression levels for the mth condition (time point)

for the ith gene. We use the regression tree paradigm to estimate the

functional relationship between the predictor variables (motif counts)

and the response variables (gene expression).

The regression tree framework is described in Breiman et al.

[15]. Regression tree construction involves four components: (1) A

set of binary (yes/no) questions, or splits, phrased in terms of the

covariates that serve to partition the covariate space. The sub-

samples created by assigning cases according to these splits are

termed nodes. A node that does not have any descendant nodes is

a terminal node. (2) A node impurity measure, typically relating to

variance in the regression context. (3) A split function, w s,tð Þ, that

can be evaluated for each split s, of each node t. The best split,

which optimizes w, is such that the response distributions in the

resultant children nodes are most homogenous amongst all

competing splits, with homogeneity assessed via the impurity

measure. (4) A means for determining appropriate tree size.

Consider a node t containing a sub-sample of cases yi, with

corresponding covariates xi. We aim to partition t into two child

nodes, a ‘‘left’’ node tL, and a ‘‘right’’ node tR. Our motif counts

xip are ordered covariates so that (default) allowable splits are

order-preserving binary cuts of the form tL~i[t : xipƒc,

tR~i[t : xipwc as the (motif count) cut-point c ranges over all
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possible values resulting in distinct tL,tR. Following Segal [17], we

define the node impurity measure as

SS tð Þ~
X

i[t

yi{m tð Þð Þ’V{1 tð Þ yi{m tð Þð Þ,

where V is the covariance matrix of yi, and m tð Þ is the mean of yi

in node t. Here, to simplify computation, we impose V~I tj j (the

identity matrix) for all t. For each motif, we evaluate all possible

splits according to the split function,

w s,tð Þ~SS tð Þ{SS tLð Þ{SS tRð Þ,

with the split s that maximizes w s,tð Þ being selected to partition

node t.

The prediction for each leaf of a constituent regression tree here

is the vector of mean expression values at each time point/

condition for genes reaching that leaf.

Multivariate Random Forest
Breiman [19] has demonstrated that consequential gains in

prediction accuracy can be achieved by using (large) ensembles of

trees. Each tree is constructed from a bootstrap sample drawn with

replacement from the full data set. A valuable by-product of this

approach is that those cases not sampled, termed out-of-bag

(OOB), provide a ready made test set, enabling unbiased

estimation of prediction performance without recourse to cross-

validation. Additionally, instead of determining the optimal split of

a given node of a (constituent) tree by evaluating all allowable splits

on all covariates, as is done with single tree methods, a random

subset of the covariates is used. The size of this subset, mtry,

constitutes the primary tuning parameter of the random forest

procedure. Beriman [19] argues that random forests enjoy

exceptional prediction accuracy for a wide range of settings of

mtry. Here, we used ensembles of size 1000, minimum terminal

node size 20, and the recommended value of mtry, which is the

square root of the number of covariates. Results were largely

insensitive to varying these quantities. We implemented our MRF

algorithm based on the C code from the R package randomForest.

R functions and scripts are available on request.

Proximity matrix. The interpretability of a random forest is

not as straightforward as that of a single regression tree, since we

are unable to readily visualize the ensemble. Thus, additional

interpretative tools have been advanced for random forests. One

such, proximity measures, are valuable since they capture how

cases/genes relate to each other, and so are revealing about nature

of influential splits. For each tree in the forest ensemble all the data

(training and OOB) are run down to their assigned terminal node

as dictated by the split sequence. If genes i and j are both assigned

to the same terminal node, then the proximity value, pvi,j , between

i and j is incremented by one. This process is repeated for each

tree in the forest, with proximity values normalized by dividing by

the number of trees. The proximity matrix is then N|N matrix of

pv0s, where N is the number of genes.

Variable importance measure and its significance

level. For each tree, the mean square error (MSE) on the

OOB data is computed. Then the same computation is performed

after permuting each variable. The difference between the two

MSEs, averaged over all trees and normalized by the standard

error, provides a variable importance summary. To assess the

significance of variable importance, we permute the rows of the

response (gene expression) matrix a pre-specified (e.g. 100) number

of times. The permutation generates data under the null

hypothesis of no association between the regulons and gene

expression. For each permuted data set, we build a multivariate

random forest and calculate the variable importance measures for

each motif. This gives rise to a distribution of variable importance

for each regulon and enables the computation of its permutation p-

value. This collection of p- values are then adjusted using the false

discovery rate (FDR) control procedure proposed by Benjamini

and Hochberg [30].

Identifying Regulatory Cliques (RCs)
Derivation of RCs by guided clustering using PAM. Our

guided clustering analysis utilized PAM (partition around medoids;

[20]) to identify small and tight RCs. Each RC should contain

genes that are co-expressed under at least a subset of the

experimental samples, as determined by the expression data, and

share the same transcription regulator binding evidence, as

determined by the motif/TF binding data. The proximity

matrix provides a natural similarity measure to input into a

clustering algorithm in order to obtain these RCs. We chose to use

the PAM clustering algorithm because of its robustness properties

[20]. The algorithm first computes k representative objects, called

medoids. The goal is to minimize the sum of distances (1 -

similarity) of all observations to their closest medoid. Accordingly,

the objective function is specified as
PN

i~1 minj~1,...,kd i,mj

� �
,

where d i,mj

� �
denotes the distance between observation (gene) i

and medoid mj . The algorithm first selects an initial set of

medoids. Then the objective function is minimized iteratively by

replacing one medoid with another until convergence. PAM

requires the number of clusters parameter, k, to be prescribed a

priori. Several methods have been advanced for estimating this

parameter [20,46,47]. However, such estimation is especially

challenging in array data settings. In part this reflects the fact that

the underlying genetic interactions in eukaryotic organisms are so

complex that defining a precise number of exclusive and

exhaustive gene clusters is misplaced [48]. Our goal in guiding

clustering process is to recover (a maximal number of) coherent,

tight clusters of genes resulting from specific motif-expression

relationships, arising against a noisy background. To this end, we

impose that the size of the smallest resultant cluster should exceed

the terminal node size as specified by the multivariate random

forest algorithm. Accordingly. we run PAM with a series of

increasing k values and select the largest, k̂k�, that does not violate

this constraint. For each of these k̂k� clusters we use the

Kolmogorov - Smirnov (KS) test to examine whether there

exists at least one phase / sample in the experiment where the

expression levels of its member genes are significantly different

than all other phases / samples. Clusters not displaying such

differences typically have flat expression profiles; i.e. are not

variable across experimental conditions. These are labeled as

‘‘null’’ clusters, and are excluded from further analysis. The

remaining clusters constitute our RCs.

Identification of signature regulons of each RC. To

describe each RC cluster, and reveal defining splits (motif

interactions) that lead to the distinctive RC expression pattern,

we seek to identify corresponding signature regulons. For each

RC, we test its association with the presence of each candidate

regulon. Although we used ordered motif counts in tree

construction here, for simplificity, we dichotomize the counts as

present (xpw0) and absent (xp~0). This together with the

dichotomization of genes into residing in the RC or not results

in a 262 contingency table for each RC and each regulon, on

which we perform two one-sided Chi-squared tests to test for

enrichment and depletion of the regulon. We employ stringent

criteria in defining signature motifs, declaring significance only if
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the motif occurs is more than 20% of the genes and the Bonferroni

adjusted Chi-square p value is less than 0.05.

Calculation of RRMAD. RRMAD is a measure that we use

to quantify the amount of dispersion reduction in an RC

compared to the overall null dispersion. Dispersion is measured

using multivariate median absolute deviation (MAD) for

robustness considerations. To compute RRMAD for the kth RC

with constituent gene expression Yim,i[kf g, we first derive its

median expression profile ~YYkm, and then compute the MADs from

the median profile, MADk~mediani

P
m Yim{ ~YY km

�� ��,i[k
� �

. We

calculate MAD0 by treating the entire data set as a single.

RRMAD for the kth RC is then derived as

RRMADk~
MAD0{MADk

MAD0
.
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Found at: doi:10.1371/journal.pcbi.1000414.s001 (1.99 MB PDF)
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