
PERSPECTIVE

Cancer Focus
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The treatment of many cancers has been revolutionized by immune checkpoint blockade (ICB) as a standard-of-care
therapeutic. Despite many successes, a large proportion of patients treated with ICB agents experience immune-related
adverse events (irAEs) in the form of clinical autoimmunity, ranging from mild to life threatening, that can limit cancer
treatment. A mechanistic understanding of these irAEs is required to better treat or prevent irAEs and to predict those
patients who are susceptible to irAEs. We propose several mechanisms that may contribute to the generation of irAEs:
(1) preexisting susceptibility to autoimmunity, (2) aberrant presentation of “self” by the tumor, and (3) loss of tolerance
driven by the tumor or tissue microenvironment.

Introduction
Immune checkpoint blockade (ICB) has revolutionized cancer
therapy with several US Food and Drug Administration–
approved treatments targeting the inhibitory receptors (IRs)
cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell
death protein 1 (PD-1), and programmed death ligand 1 (PD-L1).
Therapies targeting several other IRs are under clinical inves-
tigation. These IRs and their ligands play a critical role in
maintaining immune homeostasis and resolving inflammation.
Indeed, genetic deletion or antibody-mediated blockade of IRs/
ligands in mouse models exacerbates existing autoimmunity or
even precipitates spontaneous autoimmunity, highlighting the
importance of IRs in immune homeostasis (reviewed in Zhang
and Vignali, 2016).

In a subset of patients, treatment with ICB leads to aberrant
immune activation against specific organs, known as “immune-
related adverse events” (irAEs). Generally, irAEs colocalize
around barrier (gut, lungs, and skin) or endocrine tissues
(pancreas and thyroid; June et al., 2017), but importantly, the
most common irAEs differ with different immunotherapeutic
targets (Pauken et al., 2019b). This implies differing mech-
anisms of autoimmune reactivity between different ICBs,
complicating the study of irAEs. irAEs are quite common, ranging

from mild to life threatening, and can occur in up to 85% of patients
treated with anti–CTLA-4 and in up to 37% and 24% of those treated
with anti–PD-1 and anti–PD-L1, respectively (Brahmer et al., 2018;
Pauken et al., 2019b). The timing of immune toxicity onset is
variable, with skin toxicities often manifesting early, followed
later by pulmonary or gastrointestinal manifestations, such as
colitis, hepatitis, or endocrinopathies. Dual blockade of the CTLA-4
and PD-1 pathways leads to both increased frequency and severity
of irAEs (Brahmer et al., 2018).

ICB-induced irAEs are similar in symptoms to spontaneous
autoimmunity, though disease pathology may be quite different.
Most spontaneous autoimmune diseases are likely induced by a
combination of environmental and genetic factors, where the
precise inciting event leading to symptoms is often unknown.
In contrast, with ICB-induced irAEs, the inciting event is
known. Other reviews have covered clinical management of
irAEs (Brahmer et al., 2018). Here we focus on three potential
mechanisms leading to the development of irAEs. We hy-
pothesize that the development of irAEs represents a break in
tolerance and occurs through multiple, often overlapping
mechanisms (Fig. 1). While three distinct mechanisms are
discussed, more than one may contribute to the irAEs expe-
rienced by each patient.
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Mechanism 1: Preexisting susceptibility to autoimmunity
In spontaneous autoimmunity, inherited susceptibilities, such as
HLA haplotypes or single-nucleotide polymorphisms (SNPs), are
often highly predictive of the risk of developing specific auto-
immune syndromes, such as HLA-DR4 enrichment in type 1
diabetes patients. In a case series of ICB-induced diabetes, HLA-
DR4 was similarly enriched among affected individuals
(Marchand et al., 2019). Furthermore, SNPs in IRs are commonly
associated with autoimmune conditions (Theofilopoulos et al.,
2017), positing the theory that patients experiencing irAEs may
have a genetic predisposition for autoimmunity and yet never
experience an inciting incident. Studies linking SNPs to irAEs
are ongoing.

Additionally, ICB may reveal preexisting, subclinical auto-
immunity. Recent studies estimate that, in healthy mice, as
many as 30% of CD4+ Foxp3– cells may recognize “self” (Cebula
et al., 2019). These cells may be poised for activation following
ICB. Furthermore, a study in non–small cell lung carcinoma
found a positive correlation between nonautoimmune patients
with preexisting autoantibodies and both response to anti-PD1
therapy and the development of irAEs (Toi et al., 2019), sup-
porting the hypothesis that ICB may exacerbate preexisting
autoimmunity. Studies linking subclinical autoimmunity or
genetic predisposition to irAEs are incomplete and represent an
active area of research.

Data regarding patients with preexisting clinical autoim-
mune conditions and treatment with ICB are limited, as initial
clinical trials excluded individuals with a history of autoim-
munity. Retrospective studies show that only a subset of auto-
immune patients treated with ICB developed flares after ICB
treatment, with the exception of those with preexisting gas-
trointestinal or neurological autoimmune diseases (Menzies
et al., 2017), the reason for which is unknown. Interestingly, a
subset of these patients developed new autoimmune symptoms
(Menzies et al., 2017). Taken together, these observations sug-
gest that mechanisms other than simply genetic predisposition
or subclinical autoimmunity contribute to the development of
irAEs. Understanding these clinical observations may reveal the
impact genetics play as well as new mechanisms that contribute
to the development of irAEs.

Mechanism 2: Aberrant presentation of “self” by the tumor
Tumor cells may break peripheral tolerance by aberrantly ex-
pressing self-peptides that are generally restricted during de-
velopment (e.g., cancer testis antigens) or to immune-privileged
sites such as the central nervous system, testes, or eye. In this
mechanism, it is the tumor cells that intrinsically drive the break
in tolerance. Though cancer testis antigens can be exploited to
generate an immune response to a tumor (Wei et al., 2019), it is
conceivable that autoreactive T cells may be activated after ICB

Figure 1. There are several possible mechanisms contributing to irAEs in response to ICB. Importantly, these may occur distal to the tumor, in the
periphery, or within the TME. It is still unclear which mechanism, if any, is the main driver of irAEs or to what degree interplay of these mechanisms contributes
to disease. As irAEs are a critical limitation to cancer immunotherapy, understanding these mechanisms and how to prevent them is essential to the future of
cancer immunotherapeutics.
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treatment and traffic to the physiological site of antigen
expression. For example, vitiligo is associated with increased
response to ICB in melanoma and may represent a tissue-
specific response against a skin antigen that was triggered
by the primary immune response to the tumor (Byrne and
Turk, 2011). Similarly, uveitis, in which inflammation of the
anterior or posterior compartment of the eye occurs after
ICB treatment (Cunningham et al., 2020; Dow et al., 2020),
may reflect aberrant expression of ocular antigens by
tumor cells.

All tumors arise as a series of mutations from normal healthy
cells, though tumors that are most likely to respond to ICB are
often associated with increased mutational burden and pre-
dicted neoantigens (Miao et al., 2018). Indeed, increased diver-
sity of the T cell repertoire has been associated with increased
irAEs after ipilimumab (anti–CTLA-4; Oh et al., 2017). Impor-
tantly, as irAEs are not necessarily specific to the organ of the
primary or metastatic sites of the tumor, immune-mediated
destruction may unleash presentation of self-antigens not pre-
viously seen. One method by which neoantigens may be gen-
erated is through alternative reading frames, leading to
expression of defective ribosomal products, which have been
described in viral infections such as influenza, as a source of
T cell epitopes (Zanker et al., 2019). These alternative reading
frames generating new antigens might activate autoreactive
T cells.

Similarly, epitope spreading, defined as an immune response
to a new epitope distinct from the primary epitope of immune
reactivity, often triggers autoimmunity in response to tissue
trauma and propagates existing autoimmunity (Powell and
Black, 2001; Vanderlugt and Miller, 2002). Interestingly, epi-
tope spreading has been cited as a mechanism of action in many
immunotherapies (Brossart, 2020). While epitope spreading
toward tumor antigens is clearly beneficial, it is conceivable that
T cell–mediated tumor destruction may reveal previously un-
exposed epitopes, some of which may trigger autoreactivity.
Further studies are required to ensure tumor-specific epitope
spreading occurs while limiting nonspecific T cell activation that
may propagate autoimmunity.

In this vein, autoimmune syndromes might be expected to
arise in the setting of malignancy. Indeed, the association be-
tween certain cancers and autoimmune syndromes is well
documented. Small cell lung cancer or thymoma is associated
with specific paraneoplastic syndromes (Graus and Dalmau,
2019), and the onset of scleroderma with autoantibodies di-
rected against RNA polymerase III has been linked to the de-
velopment of cancer (Shah and Casciola-Rosen, 2015). The
mechanisms linking cancers and autoimmunity are unclear but
raise the question whether the process of tumorigenesis, at least
for certain tumors, can drive immunity directed toward auto-
antigens. Taken together, these observations suggest that, by
nature, a tumor may promote the aberrant expression and
recognition of self-antigens in an inflammatory setting that
would otherwise induce a tolerogenic response. Future studies
aimed at identifying T cells in tumors with specificities match-
ing self-antigens expressed in other organs would confirm these
hypotheses.

Mechanism 3: Loss of tolerance driven by the tissue or tumor
microenvironment (TME)
The TME uniquely contributes to successful immune evasion
and tumor growth (Junttila and de Sauvage, 2013) and may itself
contribute to the loss of tolerance seen in irAEs. In this mech-
anism, it is the TME that drives the break in tolerance extrin-
sically from the tumor cells. It is also possible that certain tissue
locations may impart unique environmental characteristics that
could impact the probability of loss of tolerance (e.g., sites of
environmental interface, such as the colon). Single-cell RNA
sequencing of immune cells in ICB-associated colitis demon-
strated shared TCRs between a cytotoxic effector CD8+ popula-
tion and CD8+ resident memory T cells, suggesting that these
CD8+ resident memory T cells may contribute to early-onset
colitis either directly or through the recruitment of other
T cell populations (Luoma et al., 2020). Indeed, the generally
harsh and inflammatory environment of the TME may con-
tribute to immune activation and breaks in peripheral tolerance.

Furthermore, within the TME, nonhematopoietic cells may
contribute to irAEs such as cancer-associated fibroblasts (CAFs)
and tumor vasculature. While vital to supporting the tumor,
CAFs and tumor vasculature also interact with and influence
immune cell function (Hendry et al., 2016; Monteran and Erez,
2019). Importantly, CAFs and tumor vasculature directly express
PD-L1 and PD-L2 to suppress effector T cells in the TME (Hendry
et al., 2016; Monteran and Erez, 2019; Skowera et al., 2015).
Treatment with ICB anti–PD-L1 may then enhance generalized
inflammation and T cell effector function, providing an optimal
environment for nonspecific T cell activation, possibly against
autoantigens.

Importantly, it is worth noting that many nonhematopoietic
tissues throughout the body express IR ligands as a mechanism
of peripheral tolerance, such as pancreatic islets expressing PD-
L1 (Pauken et al., 2019a). Treatment with anti–PD-L1 (pem-
brolizumab, nivolumab, or cemiplimab) therefore represents a
direct break in peripheral tolerance in which previously re-
strained autoantigen-specific T cells may become activated. Al-
ternatively, IRs expressed on nonhematopoietic tissues may lead
to toxicities; for example, CTLA-4 expression on the pituitary
gland likely contributes to hypophysitis after anti–CTLA-4 (ipi-
limumab) treatment (Iwama et al., 2014). In this scenario, ICB
anti–CTLA-4 bound to CTLA-4 on the pituitary gland was found
to form immune complexes and activate the classical comple-
ment pathway, thereby propagating tissue damage (Iwama et al.,
2014).

Preexisting nonautoimmune inflammation in the underlying
organ tissue may also predispose patients to irAEs. For example,
in lung cancer patients, a population enriched for smoking-
related inflammation before cancer diagnosis, higher rates of
pneumonitis have been documented after ICB (Nishino et al.,
2016).

Finally, similar to traditional autoimmunity (Zhang et al.,
2020), the antitumor response to both anti–CTLA-4 and anti–PD-
1 may be influenced by the microbiome (Gopalakrishnan et al.,
2018); studies have linked a relationship between irAE colitis and
specific bacterial phyla, such as Firmicutes. It is unclear whether
the effect of the microbiome separately drives the antitumor
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response or irAEs, but it is clear the microbiome plays a role in
driving both systemic and local autoimmunity (Zhang et al., 2020).
As the gut is a known modulator of specific T cell subsets (such as
skewing toward T regulatory cell versus helper T cell type 17
phenotype; Gopalakrishnan et al., 2018), altering the microbiome
may alter the naturally tolerogenic environment of the gut.
Ultimately, understanding how the environment of the tumor
or distal sites, such as the gut, impacts the development of
irAEs could lead to approaches that can predict and/or limit this
process.

Conclusions and future directions
Although posited as separate mechanisms, overlap exists among
these hypotheses. For example, a genetic predisposition, such as
a particular HLA haplotype, may be sufficient on its own or may
also require the inflammatory milieu of the TME to induce au-
toreactive T cells or epitope spreading. Furthermore, more than
one of these mechanisms may contribute to the irAEs observed
in each individual patient. As irAEs are a critical limitation of
cancer immunotherapy, it is paramount to understand the
pathogenesis and treatment of irAEs. Future studies should fo-
cus on the questions described in the following paragraphs.

Who is at risk? As genetic predisposition to spontaneous
autoimmunity is incompletely predictive of irAEs (mechanism
1), larger epidemiological studies may elucidate novel suscepti-
bilities. Likewise, developing tumor models in autoimmune-
prone mice may provide insight into mechanisms related to
genetic susceptibility or the role of epitope spreading.

What are the mechanisms that lead to irAEs, and are they
unique or overlapping? High-resolution characterization of hu-
man samples both before and after irAEs through multi-
parametric flow cytometry, single-cell RNA sequencing, and
TCR or B cell receptor sequencing is important to elucidate po-
tential mechanisms and to pinpoint the contributions of specific
cell populations.

Is there a relationship between antitumor immunity and
autoimmunity? irAEs and other published evidence suggest this
relationship exists. There are many shared features between
autoimmunity and antitumor immunity, including several
common phenotypes in immune cells. Of particular interest is
the similarity in transcriptional signature observed in two cell
types: tumor-derived exhausted CD8+ T cells and activated helper
T cell type 17 cells that drive an autoimmune phenotype (Schnell
et al., 2020). Furthermore, some single cells in this study show
enrichment for both signatures, which suggests that shared
transcriptional programs are involved in the development of these
T cell fates and may be subject to similar immunoregulation
(Chihara et al., 2018). Dissecting these differences may poten-
tially provide a therapeutic strategy to enhance antitumor
immunity without increasing autoimmunity. Research is on-
going to better understand this relationship. Deep immune and
transcriptomic analysis will aid in our understanding of this
relationship and possibly suggest novel approaches for the treat-
ment of cancer and autoimmunity.

Can treatment of irAEs be achieved without reducing the
beneficial effects of ICB on antitumor immunity? Most treat-
ments for autoimmunity or irAEs involve immunosuppression,

such as corticosteroids (Brahmer et al., 2018). However, data are
accumulating to suggest that corticosteroid treatment for irAEs
may be detrimental to eliciting an antitumor response (Pauken
et al., 2019b). Can irAEs be effectively treated without com-
promising the efficacy of ICB? Development of novel immuno-
therapeutic approaches for the treatment of autoimmunity may
provide alternative treatments for irAEs. In fact, immunother-
apeutic prophylactic anti-TNF has been shown to be effective in
diminishing irAEs without compromising antitumor immunity
in mice, thereby showing that irAEs can be uncoupled from
antitumor immunity (Perez-Ruiz et al., 2019). Further studies
are warranted to translate these findings to patients.

To conclude, ICB has revolutionized the current treatment
and outlook for multiple cancer types, though therapeutic tox-
icity is restricted by irAEs. Ongoing efforts to better understand
mechanisms driving irAEs and to treat them will undoubtedly
advance cancer immunotherapy and allow the treatment of
more patients.
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