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A B S T R A C T

Discover potential biomarkers of the response for anti-cancer therapies, including traditional Chinese medicine
(TCM), is a critical but much different task in the field of cancer research. Based on accumulated data and so-
phisticated methods, multi-omics analysis provides a feasible strategy for the discovery of potential therapeutic
biomarkers. Here, we screened the potential therapeutic biomarkers for anti-cancer compounds in TCM through
multi-omics data analysis. Firstly, compounds in TCM were collected from the public databases. Then, the mol-
ecules that those compounds can intervene on cell lines were carefully filtered out from existing drug bioactivity
datasets. Finally, multi-omics analysis including gene mutation analysis, differential expression gene analysis,
copy number variation analysis and clinical survival analysis for pan-cancer were conducted to screen potential
therapeutic biomarkers for compounds in TCM. 13 molecules of compounds in TCM namely ERBB2, MYC, FLT4,
TEK, GLI1, TOP2A, PDE10A, SLC6A3, GPR55, TERT, EGFR, KCNA3 and HDAC4 are differentially expressed, high
frequently mutated, obtain high copy number variation rate and also significant in survival, are considered as the
potential therapeutic biomarkers.
1. Introduction

Cancer is a multifactorial disease which leads to approximately
1,918,030 new cases and 609,360 deaths in the United States alone in
2022 [1]. The treatment of cancer developed greatly, such as surgery,
chemotherapy, radiotherapy and immunotherapy. A broad range of
complementary and alternative medicine interventions are often favored
and are an appropriate option along with or even potentially instead of
standard anti-cancer therapy [2]. Safe and beneficial complementary
therapies should be integrated into regular cancer care to improve pa-
tient quality of life and outcome [3]. According to the nationwide survey
of coverage of the urban basic medical insurance for health service in
China from 2008 to 2010, 42.4% cancer patients have used the
anti-cancer Chinese patent medicines [4]. With increasing scientific ev-
idence in biological, chemical, and medical research, as well as clinical
trials, the use of traditional Chinese medicine (TCM) in cancer treatment
is gradually being recognized as a complementary and alternative ther-
apy all over the world [5]. Actually, TCM for softening hardness to
dissipate stagnation has achieved much progress in treatment of malig-
nant tumors [6]. However, the biomarkers of anti-cancer compounds in
.
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TCM are still unclear, which limits the innovation and development of
complementary and alternative medicine including TCM. Therefore, it is
necessary to dissect cancer-associated genes and identify potential ther-
apeutic biomarkers for anti-cancer compounds in TCM.

With the development of sequencing technology, omics data, e.g.,
gene mutation data, copy number variation data, gene expression data
and clinical data, accumulated greatly, which strongly promotes the
discovery of therapeutic biomarkers. The Cancer Genome Atlas (TCGA) is
a typical public funded project that aims to discover cancer-causing
genome alterations in over 30 human tumors through integrated multi-
dimensional analyses [7]. Meanwhile, the Gene Expression Omnibus
(GEO) provides a friendly academic community to share high-throughput
gene expression data generated mostly by microarray technology [8, 9].
Compared with TCGA, GEO can provide time series data reflecting
different stages of disease, so as to dynamically reflect the occurrence and
development of disease.

Meanwhile, anti-cancer drug sensitivity data also provides a basis for
the discovery of drug therapeutic biomarkers. The Cancer Cell Line
Encyclopedia 1 (CCLE) [10] and Cancer Genome Project (CGP) [11]
characterize genomes, mRNA expression, and anti-cancer drug
ay 2022
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dose–responses across large numbers of cell lines, promoting the rela-
tionship cellular biochemical context to drug sensitivity. Especially,
ChEMBL offers a large-scale bioactivity for drug discovery [12],
including the compounds in TCM. Actually, public omics data analysis
has contributed to the comprehensive and integrative genomic and mo-
lecular characterization of various cancers [13, 14, 15, 16, 17, 18], as
well as drug target discovery and biomarkers [19, 20]. These progresses
provide a new sight for us to find potential therapeutic biomarkers of
anti-cancer compounds in TCM from the perspective of multi-omics
analysis and many studies have demonstrated the advantages of this
strategy. Li et al. performed multi-platform omics analysis of serial
plasma and urine samples collected from patients during the course of
COVID-19 [19]. By analyzing these omics data, they revealed several
potential therapeutic targets. Further, they chose 25 important molecular
signatures as potential biomarkers for the prediction of disease severity.
They demonstrated that omics data proposed not only potential thera-
peutic targets, but also biomarkers for understanding the pathogenesis of
severe COVID-19. MOGONET integrates multi-omics data using graph
convolutional networks allowing patient classification and biomarker
identification [21]. Yang et al. analyzed 117 primary glioblastoma pa-
tients’ data that contained SNP, DNA copy, DNA methylation, mRNA
expression, and clinical information [22]. They finally divided patients
into HX-1 and HX-2 according the molecular feature. Compared to HX-1
subtype, the HX-2 subtype was identified with higher gene co-occurring
events, tumor mutation burden, and poor median overall survival. Thus,
HX-1 and HX-2 subtypes may make sense as the potential prognostic
biomarkers for patients with glioblastoma. The LinkedOmics database,
which is the first multi-omics database that integrates mass spectrometry
Figure 1. Workflow
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(MS)-based global proteomics data generated by the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) on selected TCGA tumor samples,
contains multi-omics data and clinical data for 32 cancer types and a total
of 11,158 patients from TCGA [23]. Amjad et al. employed three
well-known biomarker identification methods (i.e., ClusterOne, MCODE,
and BioDiscML) to identify the potential breast cancer biomarkers using
omics data. They finally concluded that the descriptive values of gene
biomarkers in terms of their biological aspects that have been determined
by a given methodology and the predictive power of the models devel-
oped based on the identified gene biomarkers should be considered
simultaneously while validating the biomarker identification approaches
[24].

In this study, we screened the potential therapeutic biomarkers for
anti-cancer compounds in TCM through multi-omics data analysis.
Compounds in TCM were firstly collected from the public database, and
then the targets that those compounds can intervene on cell lines were
obtained from ChEMBL, GDSC [25] and DrugBank [26]. Finally, gene
mutation analysis, differential expression gene (DEG) analysis, copy
number variation (CNV) analysis and clinical survival analysis for TCGA
pan-cancer were conducted to screen potential therapeutic biomarkers
for those compounds. The workflow is shown in Figure 1.

2. Results

2.1. Collection of compounds in TCM and corresponding targets

The compounds in TCM and their corresponding targets were
collected from public databases. Total 14522 compounds were collected
of this study.
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from TCMID [27], SymMap [28] and HIT [29] (Figure 2A). Among those
compounds, 792 bioactivity records for 103 compounds were filtered out
from ChEMBL, resulting 322 molecules for those 103 compounds. The
IC50 of these 792 bioactivity records mainly range from 0.018nM to
54.6nM (Figure 2B). The molecular weight of the 103 compounds mainly
range from 200 g/mol to 600 g/mol (Figure 2C). The cells mainly come
from embryonic kidney fibroblasts, cervical adenocarcinoma cells and
ovarian (Figure 2D). The top 3 cells are HEK293, HeLa and Sf9
(Figure 2E). More than 180 targets only relate to only 1 compound,
approximately 100 targets relate to 2 compounds, and approximately 25
targets relate to 3 compounds. The results above show that a large
amount of bioactivity data of compounds in TCM have been accumu-
lated, and these studies involve a variety of diseases and cells. However,
that most of the compounds tend to be associated with only a few targets,
which follows the characteristics of power law distribution (Figure 2F).
EGFR, ERBB, ERBB1 and HER1 get the most number of compounds in the
792 bioactivity records (Figure 2G), while compound ellagic acid gets the
most number of targets (Figure 2H). EGFR is also the target of ellagic
acid, and the expression of EGFR is very sensitive to ellagic acid
(Figure 2I).
Figure 2. Collection of compounds in TCM and the corresponding targets. (A) The n
Distribution of the IC50 of the 792 bioactivity records documented in ChEMBL; (C) Dis
source tissue of the 792 bioactivity records documented in ChEMBL; (E) Cell of the 79
targets of compounds documented in ChEMBL; (G) The number of compounds for tar
the 792 bioactivity records; (I) Compound-target network for EGFR. The width of the
and vice versa.
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2.2. Enrichment analysis of targets of compounds in TCM

We conducted enrichment analysis of targets of compounds in TCM
and the significant enriched KEGG, GO biological processes (BP), cellular
components (CC) and molecular functions (MF) terms were reserved
(Figure 3). It seems that EGFR related terms are closely related to targets
of compounds in TCM. For example, EGFR tyrosine kinase inhibitor
resistance is significant enriched in KEGG (adj.P ¼ 3.62e-07) and the
many KEGG signaling pathways crosstalk with EGFR related terms are
also enriched, such as MAPK signaling, PI3K-Akt signaling and etc
(Figure 3A), ERK1 and ERK2 cascade (adj.P ¼ 4.88e-08), and positive
regulation of ERK1 and ERK2 cascade (adj.P ¼ 6.90e-08) (Figure 3B).

Meanwhile, as we are concerning the anti-cancer effect of TCM, we
especially analyzed the cancer related terms in the enrichment result.
KEGG Apoptosis (adj.P ¼ 2.57e-07), Cell cycle (adj.P ¼ 1.63e-05)
(Figure 3A), GO BP regulation of epithelial cell proliferation (adj.P ¼
6.90e-08) (Figure 3B) and GO CC cyclin-dependent protein kinase ho-
loenzyme complex (adj.P ¼ 1.54e-04) (Figure 3C) are all cancer related.
The results demonstrated that there is potential to screen therapeutic
biomarkers from those targets recorded in ChEMBL.
umber of total compounds and the number of compounds in each database; (B)
tribution of the molecule weight (g/mol) of the 103 compounds in TCM; (D) Cell
2 bioactivity records documented in ChEMBL; (F) Distribution of the number of
gets in the 792 bioactivity records; (H) The number of targets for compounds in
edge represents the IC50, the larger width of the edge represents the larger IC50,



Figure 3. Enrichment analysis of targets of compounds in TCM. (A) Enriched KEGG terms; (B) Enriched GO biological processes terms; (C) Enriched GO cellular
components terms; (D) Enriched GO molecular functions terms.
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2.3. Compounds in TCM tend to target on genes that weakly differentially
expressed

DEG analysis was performed using the R package TCGAbiolinks [30,
31, 32]. The analysis was performed for 23 TCGA cancers LUSC, CHOL,
GBM, KICH, UCEC, COAD, KIRP, KIRC, READ, LUAD, BRCA, LIHC,
HNSC, BLCA, STAD, PCPG, THCA, PRAD, CESC, ESCA, SARC, PAAD and
THYM. The genes were considered differential expressed at a false dis-
covery rate (FDR) < 0.01, and abs (logFC2 Þ � 1 as a cut-off.

The DEGs in each cancer are shown in Figure 4. Many cancers are
observed to both have upregulated and downregulated genes
(Figure 4A). Based on the statistic of the number of DEGs, LUSC and GBM
have the most downregulated genes, whereas LUSC have the most
upregulated genes. The upregulated and downregulated genes are help-
ful for us to study the effect of TCM and its compounds on the expression
of them in tumor models. The top DEGs found in no less than 18 cancers
are listed in Figure 4B. The most upregulated genes include MCM10,
PRC1, BUB1, KIF20A, IQGAP3, KIF4A, DTL, SPC24, UHRF1, FAM111B,
CDKN3, CDC45, CKAP2L, CDC25C, CLSPN, NEIL3, RDM1, GPR19,
PPEF1, TOP2A and TERT. On the other hand, the most downregulated
genes include CRHBP, DPT and TNXB. We also note that many genes are
only upregulated or only downregulated across many cancers, such as
MCM10, PRC1, BUB1, KIF20A, IQGAP3, KIF4A, DTL, SPC24, UHRF1,
FAM111B, CDKN3, CDC45, CKAP2L, CDC25C, CLSPN, NEIL3, RDM1,
GPR19, TOP2A and TERT are only upregulated in many cancers, while
CRHBP, DPT and TNXB are only downregulated in many cancers. We
speculate that genes with this characteristic may contribute to the clas-
sification of cancer, and deserve our attention in the further analysis.

In all cancers, the number of upregulated DEGs is more than that of
the downregulated DEGs. Meanwhile, we sorted the DEGs according to
the sum of upregulated and downregulated cancers. Compared with the
compounds in TCM, targets of western anti-cancer drugs cover more
4

DEGs before the top 2050. But after top 2050, the targets of compounds
in TCM cover more DEGs than western anti-cancer drug. However, the
coverage of compounds in TCM and western anti-cancer drugs are all
lower than the that of the known cancer genes (KCGs) (Figure 4C and D).
This indicates that compounds in TCM are more likely to target genes
weakly differential expressed. In TCM theory, a TCM formulae may
regulate the disease-related network by “tiny and multiple effects”, and
thus lead to a “emerging” effect [33]. This attribute of TCM is consistent
with the that the TCM are likely to target DEGs after 2050.
2.4. CNV analysis reveals that targets of compounds in TCM play similar
role as targets of western anti-cancer drug and KCGs

Copy number variation (CNV) is a major contribution to the genome
variability among individuals, which alter the diploid status of DNA. CNV
includes deletions and duplications. CNV analysis was performed for all
TCGA cancers. The genes were sorted by the CNV rate in descending
order. It is estimated that 4.8–9.5% of the human genome contributes to
CNV depending on the level of stringency of the human genome CNV
map [34]. As a reference, the top 1% genes for each cancer type were
reserved as the genes with high CNV rate and involved in the further
analysis. In all TCGA cancers, we find that the frequency of deletion is
significantly higher than that of amplification (Figure 5A). However, the
KCGs and targets of anti-cancer western drugs are amplified more often,
although not significantly (Figures 5B and 5C). While, the targets of
compounds in TCM obtain more amplification significantly than deletion
(Figure 5D).

27 targets of compounds in TCM MYC, PTK2, CCND1, CNR1, FLT4,
DRD1, ADRA1B, KCNA3, EGFR, TEK, CDK4, GLI1, TERT, GPR35,
SLC6A3, KCNH2, TUBB2A, TUBB2B, GPR55, CNR2, HDAC4, TUBA4A,
ERBB2, TUBB4B, TOP2A, PDE10A and NFKBIA are found to have high
CNV rate in 16 cancers PAAD, ESCA, PRAD, KIRC, PCPG, HNSC, GBM,



Figure 4. DEG analysis across all TCGA cancer and comparison of effect on the DEGs of compounds in TCM and western anti-cancer drugs. (A) The number of
upregulated genes and downregulated genes observed in cancers; (B) The number of cancers observed in upregulated genes and downregulated genes; (C) Comparison
of the coverage of DEGs; (D) Comparison of the coverage of DEGs.
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KICH, THYM, BLCA, BRCA, COAD, CESC, STAD, SKCM and LUAD
(Figure 5E). Some genes are mainly amplified in various cancers, such as
CCND1 in BLCA, ESCA, BRCA and HNSC, MYC in BRCA, ESCA, PAAD and
STAD, EGFR in GBM and TOP2A in STAD. While, some genes are mainly
deleted in various cancers, such as TERT in KICH, GPR35 in BLCA, CESC
and KICH, GPR55, HDAC4 and TUBA4A in CESC. When considered the
targets of compounds in TCM, 9 cancers are mainly amplified, while the
remaining 7 cancers are mainly deleted.

2.5. Gene mutation analysis reveals that targets of compounds in TCM
have comparable coverage with targets of western anti-cancer drugs

The mutation frequency for each gene in each cancer type was
defined as the times of mutation divided by the sample size of the
annotation file. The genes were sorted by the mutation frequency in
descending order. The top 5% genes for each cancer type were reserved
5

as the genes with high mutation frequency and involved in the further
analysis. For each gene, we counted the cancers that it appears to have
high mutation frequency and reserved the top 30 genes that have the
most cancers. Finally, the cancers UCEC, STAD, SKCM, SARC, LUSC,
LIHC, HNSC, ESCA, CESC, BRCA and BLCA get the most frequently
mutated genes (Figure 6A), and genes TTN, MUC16 and LRP1B get the
most frequently mutated cancers (Figure 6B).

We sorted the genes according to the number of cancers that they
were frequently mutated. The targets of compounds in TCM have a
comparable coverage with the targets of western anti-cancer drugs. The
coverage of targets of compounds in TCM and targets of western anti-
cancer drugs are all lower than the that of KCGs (Figure 6C). Targets of
compounds in TCM are most frequent significantly mutated in SKCM,
BRCA, LUAD and HNSC (Figure 6D). These results show that there is no
significant difference in the level of gene mutation between targets of
compounds in TCM and targets of western anti-cancer drugs.



Figure 5. CNV analysis across all TCGA cancer. (A) Variation type statistics of the genes in all cancer; (B) Variation type statistics of the KCGs in all cancer; (C)
Variation type statistics of the targets of western anti-cancer drug; (D) Variation type statistics of targets of compounds in TCM; (E) CNV analysis result for the targets
of compounds in TCM in all related cancers.
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2.6. Survival analysis to screen potential therapeutic biomarkers for
compounds in TCM

Survival analysis was performed for all genes in all cancers, and a p-
value �0.05 was used as the cut-off to select significant genes. ACC,
KICH, MESO, LGG and KIRC have the most number of genes that are
significant in survival (Figure 7A). While, TGCT, DLBC and UCS have the
least genes that are significant in survival (Figure 7A). 49 genes are
significant in survival in more than 13 TCGA cancers. HOXC5, VGF and
ERCC6L are top 3 genes that have the most cancers in which they are
significant in survival (Figure 7B).

We sorted the genes according to the number of cancers that they are
significant in survival. The targets of compounds in TCM also have a
6

comparable coverage with the targets of western anti-cancer drugs. The
coverage of targets of compounds in TCM and targets of western anti-
cancer drugs are all also lower than the that of KCGs (Figure 7C). 13
targets of compounds in TCM, namely ERBB2, MYC, FLT4, TEK, GLI1,
TOP2A, PDE10A, SLC6A3, GPR55, TERT, EGFR, KCNA3 and HDAC4,
differentially expressed, high frequently mutated, obtain high CNV rate
and also significant in survival (Figure 7D). As shown in Figure 7E, EGFR
is the common target of 15 compounds, GLI1 is the target of 3 com-
pounds, HDAC4 is the target of 2 compounds, and the others are targets
of only 1 compound. These targets are expected to be therapeutic bio-
markers of the corresponding compounds.

We also investigated the role of several commonly genes in patient
survival (Figure 8). In BLCA and HNSC, the overexpression of EGFR is



Figure 6. Gene mutation analysis across all TCGA cancer. (A) The number of significant mutated genes in all cancers; (B) The number of cancers corresponding to
significant mutated genes; (C) Comparison of the coverage for the genes that are significant mutated for KCGs, targets of western anti-cancer drugs and targets of
compounds in TCM; (D) The number of the targets of compounds in TCM that are significantly mutated for each cancer.
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found to be significant in lower overall survival, suggesting its use as a
therapeutic biomarker in BLCA and HNSC patients (Figure 8A and B).
TERT was found to be upregulated in 18 TCGA cancers (Figure 4B). The
overexpression of TERT in HNSC is also found to be significantly in
higher overall survival (Figure 8C). While in MESO, the overexpression of
TERT is found to be significant in lower overall survival, suggesting its
use as a therapeutic biomarker in MESO patients (Figure 8D).

3. Discussion

TCM plays an important role in health maintenance for the people
[35]. Scientific studies have showed that TCM could prevent and treat
various diseases, such as cancer, cardiovascular diseases, infection and so
on [36, 37, 38, 39, 40]. During the pandemic of COVID-19, TCM also
plays an essential role in the prevention and treatment of pneumonia
caused by SARS-CoV2 [41,42]. Even with a large number of microscopic
experimental detection techniques [43, 44], the usage of TCM is still
mainly limited to the macro level, and there is a huge demand to quantify
the efficacy of TCM in the treatment of diseases, such as cancer. TCM is
gradually being recognized as a complementary and alternative therapy
all over the world in cancer treatment [5]. However, how to find thera-
peutic molecular biomarkers for anti-cancer compounds in TCM is always
a huge challenge.
7

The discovery of a targeted therapeutic compound along with its
companion predictive biomarker is a major goal of clinical development
for a personalized anti-cancer therapy to date. As a widely used platform,
GDSC provides a unique resource incorporating large drug sensitivity and
genomic datasets to facilitate the discovery of new therapeutic bio-
markers for cancer therapies [25]. GDSC currently contains drug sensi-
tivity data for almost 75,000 experiments, describing response to 138
anti-cancer drugs across almost 700 cancer cell lines. As a case study,
previous study has showed that dsRNA mediates its therapeutic effect
through TLR3 expressed on tumor cells, and could therefore represent an
effective targeted treatment in patients with TLR3-positive cancers [45].
Thus, TLR3 as a biomarker for the therapeutic efficacy of dsRNA in breast
cancer. Analysis of the biological basis also promote the discovery of
therapeutic biomarkers of TCM for cancer treatment [43], as well as
potential therapeutic biomarkers of TCM for the treatment of COVID-19
related cytokine storm [46, 47]. Therefore, the discovery of therapeutic
biomarkers of anti-cancer compounds in TCM has a well scientific basis
and exactly has obtained the attraction of researchers around the world.

Here we presented the evidence of the predictive value of therapeutic
biomarkers, e.g., EGFR for BLCA and HNSC, TERT for HNSC and MESO.
Although few conformed in clinical trials, several EGFR-pathway inhib-
itor biomarkers still been researched for HNSC, and the predictive value
is obvious to all [48]. We also note that EGFR can be used as a prognostic



Figure 7. Survival analysis across all TCGA cancer. (A) The number of genes significant in survival in all cancers; (B) The number of cancers corresponding to genes
that are significant in survival; (C) Comparison of the coverage of genes significant in survival for KCGs, targets of western anti-cancer drugs and targets of compounds
in TCM; (D) Intersection of the targets of compounds in TCM, DEGs, CNV genes, mutation genes and survival genes; (E) Compound-target network for the 13 selected
therapeutic biomarkers.
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Figure 8. Role of EGFR and TERT in therapeutics. (A) Survival plot of EGFR high vs. low gene expression for BLCA; (B) Survival plot of EGFR high vs. low gene
expression for HNSC; (C) Survival plot of TERT high vs. low gene expression for HNSC; (D) Survival plot of TERT high vs. low gene expression for MESO.
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biomarker in BLCA due to the significant association of EGFR over-
expression with tumor grade, muscularis propria invasion and recurrence
[49]. TCM compound Quercetin treatment suppressed cell growth by
inducing G2 arrest and apoptosis in EGFR-overexpressing HNSC cancer
cells [50]. Meanwhile, we found that TERT may be a potential biomarker
for HNSC by multi-omics analysis, case-control study also discovered that
HNSC cases, especially oral cancer cases, had shorter telomere length
than controls, and rs2736100 (TERT SNP) related to relative telomere
length (RTL) in European was associated with both telomere length and
HNSC risk in this southeast Chinese population [51].

In the analysis of multi-omics data, we sorted the genes in descending
order according to the number of cancers. However, the genes with high
rank in DEGs, genes differentially mutated, genes significant in survival
and genes copy number variated get lower overlap. For example, only
one gene ASPM appears in all the top 100 genes of DEGs, genes differ-
entially mutated, genes significant in survival and genes copy number
variated. This is contrary to our expectation that the genes screened out
will rank higher in all multi-omics data. Therefore, it is not compre-
hensive to only consider the number of cancers in the process of
biomarker screening. Although there is no well consistency in the rank of
9

gene in multi-omics data, it does indicate that some outlier signals can be
found by integrating different levels of omics data, which may help us to
find new therapeutic biomarkers.

In the future, we will improve our study in several aspects. First, we
will discuss the relationship between different levels of omics data, e.g.,
the correlation analysis of different levels of omics data. This may help us
to filter out results with more stringent conditions. Second, the scope of
external verification should be expanded, such as using gene expression
data in GEO for external verification. Third, more analysis, e.g., single
nucleotide polymorphism analysis and infiltrated immune cells estimate
need to be conducted for more comprehensively analysis. Finally, ex-
periments should be conducted to verify our findings.

In summary, we conducted multi-omics analysis including gene mu-
tation analysis, differential expression gene analysis, copy number vari-
ation analysis and clinical survival analysis for pan-cancers to screen
potential therapeutic biomarkers for compounds in TCM. Finally, 13
molecules of compounds in TCM are considered as the potential thera-
peutic biomarkers. This strategy may be a potential way to screen ther-
apeutic biomarkers for anti-cancer therapy including complementary and
alternative therapy.
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4. Materials and methods

4.1. Collection of compounds in TCM

The compounds of TCM were obtained from public database TCMID
[27], SymMap [28] and HIT [29]. The number of compounds in those
databases were 11525, 4103 and 489 separately. After removing dupli-
cated ones, 14522 compounds were finally reserved.

4.2. Molecules related to the compounds in TCM

We collected the molecules related to the compounds in TCM from
databases ChEMBL [12] and GDSC [25]. For the 14522 compounds, 103
have activity data in ChEMBL database, filtering by the following rules:
(1) assay conducted in Homo sapiens cell line; (2) assay with IC50; (3) the
investigational agent has CID and ChEMBL ID; (4) the investigational
gene has gene symbol. 322 molecules related to the 103 compounds were
reserved. In addition, TOP1, XIAP, AKT1, AKT2, AKT3 and AMPK are
documented as the target of some compounds in GDSC database. Finally,
326 molecules were reserved as the (potential) targets of compounds in
TCM.

4.3. KCGs and targets of western anti-cancer drugs

In this study, we compared the KCGs with targets of compounds in
TCM and targets of western anti-cancer drugs from the perspective of
multi-omics analysis. Targets already known to be related to certain
cancer are referred as golden standard. 711 expert-curated KCGs are
obtained from NCG [52]. The western anti-cancer drugs and the 314
corresponding targets are obtained from GDSC [25].

4.4. DEG analysis

DEG analysis was performed using the Bioconductor tool TCGAbio-
links [30, 31, 32]. We firstly downloaded gene expression quantification
data for 33 cancers from TCGA. Then, we filtered the samples with low
correlation according to the spearman correlation coefficient with cut-off
0.6. The mRNA transcripts were normalized using EDASeq package. We
removed the genes with low counts according the quantile cut-off 0.25.
Finally, FDR cut-off of 0.01, and an absolute log2 fold change cut off 1
were used to obtain the list of DEGs.

4.5. Survival analysis

Survival analysis was carried out using R tools, survival and surv-
miner in the background, for the gene expression data. Patients were
segregated into high and low expression groups based on the expression
mean value for each cancer. Kaplan-Meier (KM) analysis was performed,
and a p-value � 0.05 was used as the cut-off to select significant genes.

4.6. CNV analysis

For analyzing CNV, gene level copy number scores data for 24 types of
cancers were downloaded from TCGA using TCGAbiolinks. Both ampli-
fied and deleted genes were collected, and we defined the CNV rate of a
certain gene as the ratio of sample size the gene was amplified or deleted
to the total sample size in a specific cancer. Only the tumor samples were
analyzed. The genes were sorted by the CNV rate in descending order.
The top 1% genes for each cancer type were reserved as the genes with
high CNV rate and involved in the further analysis.

4.7. Gene mutation analysis

We processed mutation annotation files downloaded from TCGA
using TCGAbiolinks. The mutation frequency for each gene in each
cancer type was defined as the times of mutation divided by the sample
10
size of the annotation file. The genes were sorted by the mutation fre-
quency. The top 5% genes for each cancer type were reserved as the
genes with high mutation frequency and involved in the further analysis.

4.8. Enrichment analysis

Enrichment analysis was conducted using R tool clusterProfiler [53].
Significant enriched terms of KEGG, biological processes (BP), molecular
functions (MF) and cellular components (CC) related to given genes were
calculated in the background of org.Hs.eg.db. The p-value cut-off was set
as 0.01.
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