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Background
Genome profiling represents a critical pillar for clinical, translational, and basic research. 
With an ever expanding suite of high-throughput technologies [1], the pace at which 
the scientific community is generating data at scale has rapidly accelerated. This imposes 
demands for specialized expertise to support data processing and analysis [2]. Impor-
tantly, the derivation of novel biological and clinical insights is increasingly reliant 
upon large and statistically powered datasets, rich metadata annotation (clinical, demo-
graphic, treatment, outcome) as well as integration of diverse data modalities generated 
across samples and patients (i.e. genomic, imaging) [3]. Such high-dimensional data 
science is now embedded across disciplines, raising significant hopes for the develop-
ment of artificial intelligence (AI) driven innovation in healthcare and research [3, 4]. 
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However, for this aspiration to fully materialize there is a clear and unmet need for the 
development of AI-ready data architectures or digital biobanks.

Implementation of frameworks that operate in accordance with data processing best 
practices is important to secure governance and provenance of digital assets, ensure 
quality control, and deliver reproducible findings. Analysis Information Management 
Systems (AIMS) [5–9] for Next Generation Sequencing (NGS) data represent integrative 
software solutions to support the lifecycle of genomics projects [5]. While the democ-
ratization of NGS technologies has driven a development boom across data processing 
software [5, 9–12], only a few AIMS’s exist to support the increasing user-bases of NGS 
data and none to our knowledge incorporates multimodal data types in a patient or indi-
vidual centric architecture.

We have developed Isabl, a plug-and-play platform for the processing of individual-
centric multimodal data. Isabl is designed to support: (1) management of data assets 
according to the FAIR [13] principles (Findable, Interoperable, Accessible, Reusable), (2) 
automated deployment of data processing applications following the DATA [7] repro-
ducibility checklist (Documentation, Automation, Traceability, and Autonomy); and, (3) 
advanced integrations with institutional information systems across diverse data types 
(i.e. clinical and biospecimen databases). To support flexible workflows Isabl is built 
upon a customizable framework, that enables end-users to specify metadata and pipe-
line implementation. In addition, we present a pipeline development methodology that 
is guided by the principles of containerization [14], continuous integration, version con-
trol, and the separation of analysis and execution logic. Here we provide a framework for 
the development of digital biobanks—patient-centric ecosystems of structured, anno-
tated, and linked data that is readily computable upon, mined, and visualized.

Implementation
System overview

Platform architecture

Isabl is composed of four main microservices [15] (Fig. 1): (1) Isabl DB, an individual-
centric database designed to track patients, samples, data, and results; (2) Isabl API, a 
RESTful API used to support authentication, interoperability, and integration with data 
processing environments and enterprise systems (e.g. clinical databases, visualization 
platforms; FAIR A1 [13]); (3) Isabl CLI, a Command Line Interface for managing and 
processing digital assets in a scalable data lake (i.e., genomic, imaging); and (4) Isabl 
Web, a frontend single page web application for data interrogation (for further techni-
cal details please refer to Isabl’s documentation https​://docs.isabl​.io/quick​-start​; https​://
githu​b.com/isabl​-io/docs).

Data model

Isabl DB maps workflows for data provenance, processing, and governance (Fig. 2; FAIR R1 
[13]). Metadata is captured across the following 5 thematic categories: (1) patient attrib-
utes; (2) samples, as biological material collected at a given time; (3) data properties includ-
ing experimental technique, platform technology, and related parameters; (4) analytical 
workflows to account for a complete audit trail of versioned algorithms, related execution 
parameters, reference files, status tracking, and results deposition; (5) data governance 

https://docs.isabl.io/quick-start
https://github.com/isabl-io/docs
https://github.com/isabl-io/docs
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information across projects and stakeholders (Additional file 1: Fig. S1; FAIR F2 [13]). All 
database records are assigned a globally unique and persistent identifier (UUID; FAIR F1 
[13]), whilst individuals, samples, and experiments are further annotated with a customiz-
able human friendly identifier (Additional file 1: Fig. S2). All metadata stored in Isabl DB is 
version controlled, all changes are recorded and previous states can be recovered. Manage-
ment of phenotypic data such as disease ontology can be facilitated in three ways. Firstly, 
the disease schema can be customized with additional fields in agreement to end-user 
requirements. Secondly, ontologies from established databases such as OncoTree, (http://
oncot​ree.mskcc​.org) can be integrated (i.e. https​://docs.isabl​.io/data-model​#sync-disea​ses-
with-onco-tree). Lastly, proprietary schemas from institutional databases (i.e. ontologies 
implemented in local electronic medical records) can also be incorporated, thus allowing 
for direct linkage between results and related metadata at an institutional level.

Results
Life cycle of bioinformatic operations

Isabl operations are organized in a three step process: (1) project initiation and meta-
data registration; (2) automated data import and processing; and, (3) results retrieval for 
analyses.

Fig. 1  Schematic representation of Isabl’s microservice architecture. Isabl DB provides a patient centric 
relational model for the integration of multimodal data types (i.e., genomic, imaging) and their corresponding 
relationships (individual, sample, aliquot, experiment, analyses). Isabl Web facilitates visualization of results 
and metadata in a single page application. Isabl API powers the linkage to other institutional information 
systems and is agnostic to data storage technologies and computing environments, ensuring metadata 
is accessible even when the data is no longer available (FAIR A2). Isabl CLI is a Command Line Client used 
to process and manage digital assets across computing paradigms (i.e. cloud, cluster). Arrow connectors 
indicate database relationships between Isabl schemas, dashed lines indicate metadata transfer through the 
internet, solid line indicates a data link between the data lake and the web server (e.g. sshfs, s3fs, https)

http://oncotree.mskcc.org
http://oncotree.mskcc.org
https://docs.isabl.io/data-model#sync-diseases-with-onco-tree
https://docs.isabl.io/data-model#sync-diseases-with-onco-tree
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Projects and metadata registration

At project initiation, users specify a title, study description, and define stakehold-
ers using Isabl Web. Individuals, samples and related experiments are registered 
through web forms, Excel batch submissions, or automated HTTP requests. Valida-
tion rules are enforced to ensure content quality, while account permissions and user 
roles guide data governance (project creation, edit, and data queries; see https​://docs.
isabl​.io/produ​ction​-deplo​yment​#multi​user-setup​). To prevent dangling information, 
records can’t be deleted if they are associated with other instances (e.g. a sample can’t 
be removed if it has linked experiments). Furthermore, all database schemas can be 
extended with custom fields in order to address end-user metadata requirements.

Once information is registered, users can interrogate the entire digital real estate 
using Isabl Web. A single page portal is populated with interactive panels that become 
available as new information is requested (Fig.  3; https​://demo.isabl​.io). Tables 
directly wired to Isabl API, provide searching, filtering, and ordering capabilities 
across different schemas and are available throughout the application (e.g. Additional 
file 1: Fig. S3; FAIR F4).

Detail views are retrieved by clicking on any hyper-linked identifier within these 
tables. The project detail panel caters a birds-eye view across all analyses and experi-
ments pertaining to a study (Additional file  1: Fig. S4). Similarly, the samples view 
provides an interactive, patient-centric, tree visualization that enables instant access 
to all assets generated on a given individual (Fig.  3a, b; Additional file  1: Fig. S5). 
Dashboards to explore metadata and access results are also provided (Additional 
file 1: Fig. S6).

Fig. 2  Isabl’s relational model maps workflows for data provenance (e.g. Individuals, Samples, Experiments), 
processing (e.g. Applications, Analyses), and governance (e.g. Projects, Users). a An individual-centric model 
facilitates the tracking of analyses conducted on experimental data obtained from related samples. Analyses 
are results of analytical workflows, or applications. Experiments are analyzed together and grouped in 
projects. Additionally, schemas to track metadata for diseases, experimental techniques, data generation 
platforms, and analyses cohorts are also provided. Lines with one circle represent foreing keys, whilst lines 
with two circles represent many to many relationships. b A brief description of these schemas with examples

https://docs.isabl.io/production-deployment#multiuser-setup
https://docs.isabl.io/production-deployment#multiuser-setup
https://demo.isabl.io
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Data import and registration

After metadata registration, the next step for an Isabl project is data import. Isabl CLI 
explores data deposition directories (i.e. sequencing core, data drives) identifying multi-
modal digital assets (i.e. genomic, imaging) relating to specific experiments and imports 
them into a scalable data directory (move or symlink; Additional file  1: Fig. S7). This 

Fig. 3  Isabl Web is a Single Page Application (SPA) organized in interactive panels (https​://demo.isabl​
.io). a Example of sample level metadata, to include sample ID, corresponding individual ID, experimental 
ID, species, gender, center, data generating platform, experimental technique, disease state at the time 
of sampling, institutional database integrations (i.e. RedCap) and version of corresponding data genome 
assembly. Metadata fields are flexible and customizable. b Tree view representation of an individual assets 
(samples, aliquots, experiments). Users can dynamically explore metadata by clicking the different nodes 
(i.e. from samples, to experiments, to all available analyses under any node). c The Analysis Panel indicates 
execution status, version, run time, storage usage, linked experiments and offers quick access to a selected 
set of results (e.g. BAM files with https​://githu​b.com/igvte​am/igv.js, images, log files, tables)

https://demo.isabl.io
https://demo.isabl.io
https://github.com/igvteam/igv.js
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process ensures that the link between data and metadata is stored in Isabl DB. Upon 
import, access permissions are configured and data related attributes are stored in the 
database (e.g. checksums, usage, location). Import status is updated in Isabl DB and dis-
played in Isabl Web.

In addition to data imported for analyses, Isabl CLI also supports the registration of 
auxiliary assets such as an assembly reference genomes, techniques reference data (e.g. 
BED files), and post-processing files (i.e. data relating to control cohorts). To secure data 
integrity, import operations and data ownership are limited to a single admin user (e.g. 
a shared Linux account managed by Isabl administrators). Importantly, import logic for 
data and auxiliary files is entirely customizable and can be tailored to end-user require-
ments (i.e. cloud storage).

Out of the box, Isabl CLI operates on local file systems using traditional unix com-
mands such as mv, ln, cp, and rsync. Nevertheless, the Isabl data lake can be stored in 
cloud buckets like Amazon S3 (https​://aws.amazo​n.com/s3), Google Storage Buckets 
(https​://cloud​.googl​e.com/stora​ge), or Azure Blobs (https​://azure​.micro​soft.com/servi​
ces/stora​ge/blobs​). Mechanisms to push and pull data to the cloud must be implemented 
by the user, although there are automated solutions such as Amazon FSx for Lustre 
(https​://aws.amazo​n.com/fsx/lustr​e). When data is stored in the cloud, Isabl Web can 
be configured to retrieve and display results from these providers. Importantly, Isabl can 
compute on data located in a local file system, cloud based solutions or hybrid (local and 
cloud).

Deploying data processing tools at scale with Isabl applications

Isabl is a horizontally integrated digital biobank onto which existing or bespoke ana-
lytical applications can be docked and integrated in a way that confers sample-centric 
traceability to the analytical results. Upon data import, Isabl applications enable stand-
ardized deployment of data processing pipelines with a Software Development Kit (SDK; 
Fig. 4). Guided by experimental metadata in Isabl DB, applications construct, validate, 
and deploy execution commands into a compute environment of choice (e.g. local, clus-
ter, cloud; Fig. 4a). Isabl applications are defined using python classes (Additional file 1: 
Fig. S8).

For example, variant calling applications will tailor execution parameters and refer-
ence datasets given the nature of the data (i.e. targeted gene sequencing, whole genome 
sequencing, etc.). Application results are stored as analyses (Fig.  4b). Each analysis is 
linked to results files and specific execution parameters. Analyses can compute on data 
for one or more targets and references experiments (e.g. single-target, tumor-normal 
pairs, target vs. pool of normals, etc.). Furthermore, analyses can also track numeric, 
Boolean, and text results using a PostgreSQL JSON Field. To warrant a full audit trail 
of results provenance and foster reproducibility, Isabl stores all analyses configurations 
(parameters, reference datasets, tool versions, etc.).

Upon completion of an analytical workflow, ownership of output files is automati-
cally transferred to the admin user and write permissions are removed (see https​://docs.
isabl​.io/writi​ng-appli​catio​ns#appli​catio​ns-run-by-multi​ple-users​). Once implemented, 
applications can be deployed system wide, on an entire project, or any subset of experi-
ments in the database. A user-defined selection of results can be accessed through Isabl 

https://aws.amazon.com/s3
https://cloud.google.com/storage
https://azure.microsoft.com/services/storage/blobs
https://azure.microsoft.com/services/storage/blobs
https://aws.amazon.com/fsx/lustre
https://docs.isabl.io/writing-applications#applications-run-by-multiple-users
https://docs.isabl.io/writing-applications#applications-run-by-multiple-users
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Web, which also indicates execution status, version, run time, storage usage, and linked 
experiments (Fig. 3c; Additional file 1: Fig. S3). If an analysis has already been executed, 
the system will prevent it’s resubmission to minimize computing usage and prevent 
duplication.

Operational automations

To automate downstream analyses Isabl applications define logic to combine results 
at a project or individual level (Additional file 1: Fig. S9). For example, quality control 
reports, variant calls, or any other kind of result are merged within a single report (for 
each result type). The merge operation, at the project or individual level, is triggered 
automatically and runs only when required (i.e. not executed if other to-be-merged anal-
yses are ongoing). Aggregated outputs are dynamically updated as new experiments are 
processed by the application. All auto-merge analyses are versioned and stored in Isabl 
DB.

Isabl CLI facilitates automations using signals, python functions triggered on status 
changes to execute subsequent tasks (Additional file  1: Fig. S9). For instance, a signal 
can be configured to deploy quality control applications upon data import. At QC suc-
cess, another signal could deploy a complete suite of applications tailored to the nature 

Fig. 4  Isabl applications enable systematic processing of experimental data. a Guided by metadata, Isabl 
applications construct, validate, and deploy computing commands across experiments. Applications differ 
from Workflow Management Systems in that they don’t execute the analytical logic but construct and submit 
a command. b Isabl applications can be assembly aware, this means that they can be versioned not only 
as a function of their name, but also as a function of the genome assembly they are configured for. This 
is important because NGS results are comparable when produced with the same genome version. The 
unique combination of targets and references, such as tumor-normal pairs, results in analyses. The figure 
panel illustrates applications with different experimental designs, such as paired analyses, multi-targets, 
single-target, etc. Importantly, applications are agnostic to the underlying tool or pipeline being executed
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of the experimental data. In case of automation failure, Isabl will send notifications to 
engineers via email, with error logs and instructions on how to restart the automation. 
Furthermore, Isabl API is equipped with an asynchronous tasks functionality useful to 
schedule backend work. For example, a task can be configured to sync metadata from 
institutional systems every 2 h.

Data access and results retrieval

Users can retrieve results using three main mechanisms: (1) visualization through Isabl 
Web; (2) programmatic data access with Isabl CLI; and, (3) direct data lake access (https​
://docs.isabl​.io/retri​eve-data). For each analysis, job execution status (i.e. pending, in 
progress, complete), as well as a defined list of results can be directly accessed through 
Isabl Web (with support for strings, numbers, text files, images, PDF, BAM, FASTA, 
VCF, PNG, HTML, amongst others; Additional file 1: Fig. S3). Isabl Web access to NGS 
data is further enabled using IGV.js (https​://githu​b.com/igvte​am/igv.js; Fig.  3c). Addi-
tionally, Isabl CLI represents a programmatic means of entry to the entire data capital. 
A suite of command line utilities for metadata, data, and results retrieval is readily avail-
able. For example, queries can be constructed to identify samples of interest matching 
a range of attributes (i.e. patients, samples, analyses metadata) and retrieve specified 
results files (e.g. VCF files).

The codebase powering Isabl’s client can be imported as a python package fostering 
systematic administration of data and analyses. For example, an analyst can import the 
SDK into a Jupyter [16] notebook to automatically access versioned algorithmic output 
for downstream post-processing, ensuring a full audit trail of data provenance from raw 
data to analysis and post-processing results. Moreover, Isabl CLI automatically creates 
and maintains easily accessible project directories with symbolic links pointing to all 
data and results, thus allowing access independently from the RESTful API (Additional 
file 1: Fig. S7c).

Integration of analytical applications into Isabl

Isabl as a bioinformatics framework is completely agnostic to bioinformatics pipelines 
and does not include pre-built applications (e.g. variant callers such as Pindel [17], 
Strelka [18]) or Workflow Management Systems (WMS; e.g. Bpipe [19], Toil [20]). Nev-
ertheless, end-users can package, install, and deploy applications of choice in accordance 
with their data and operational requirements (e.g. https​://githu​b.com/isabl​-io/demo). 
This enables full leverage of Isabl functionality while maintaining complete independ-
ence and flexibility in analytical workflows.

To facilitate seamless integration and rapid iteration of data processing pipelines into 
Isabl, we developed Toil Container and Cookiecutter Toil (Additional file  1: Fig. S10). 
Cookiecutter Toil (https​://githu​b.com/papae​mmela​b/cooki​ecutt​er-toil) is a templating 
utility that creates tools or pipelines with built-in software development best practices 
(i.e. version control, containerization, cloud testing, packaging, documentation; Addi-
tional file  1: Fig. S10a). On the other hand, Toil Container (https​://githu​b.com/papae​
mmela​b/toil-conta​iner) enables Toil [20] class-based [10] pipelines to perform contain-
erized system calls with both Docker and Singularity [21] without source code changes 
(Additional file  1: Fig. S10b). Toil Container ensures that analytical logic remains 

https://docs.isabl.io/retrieve-data
https://docs.isabl.io/retrieve-data
https://github.com/igvteam/igv.js
https://github.com/isabl-io/demo
https://github.com/papaemmelab/cookiecutter-toil
https://github.com/papaemmelab/toil-container
https://github.com/papaemmelab/toil-container
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independent of execution logic by keeping pipelines agnostic to containerization tech-
nology or compute environment (e.g. an application can run using Docker in the cloud 
or Singularity in LSF; Additional file 1: Fig. S10c).

User roles and permissions

There are two levels to Isabl data access: interaction with metadata, and interaction with 
data.

Metadata. Users can create, retrieve, update, and delete metadata using Isabl Web 
and Isabl API. In order to manage these interactions, Isabl relies on Django Permissions 
(https​://docs.djang​oproj​ect.com/en/3.1/topic​s/auth/defau​lt/#permi​ssion​s-and-autho​
rizat​ion). By assigning users to groups, the Isabl administrator can manage the actions 
granted towards different resources. Isabl offers 3 main roles: (1) Managers are users 
who can register samples, (2) analysts can run analyses, and (3) engineers can do both, 
register samples and run analyses. These roles are optional and customizable. Permis-
sions can also be modified to each user specifically.

Data. The Isabl data lake can reside in the cloud or in a local file system. Access to 
these resources is not managed by Isabl but by a system administrator (i.e. Unix, Cloud). 
Users that have access to the data lake can execute applications if they have the right 
metadata permissions (e.g. create and update analyses). Once data is imported and anal-
yses are finished, Isabl removes write permissions to prevent accidental deletion of data. 
Permissions to download and access data through Isabl Web are managed using Django 
Permissions.

Case studies

We charted the end-to-end processes of bioinformatic operations and designed Isabl 
to address the major challenges in production-grade computational workflows. This 
includes the disruption of data silos, flexible integration to metadata sources, dynamic 
access and visualization of data, version control, audit trail, data harmonization, scalabil-
ity, automation of analytical workflows and resource management (personnel as well as 
compute). We showcase how Isabl address these issues with the following case studies:

Case study 1: scalability and audit trail

Isabl has served as the bioinformatics backbone in our center, allowing us to scale up 
and compute upon data from 60K patients, organized in 200 independent projects. Isabl 
has supported the deployment of 300K analyses linked to 90 different data process-
ing applications operating on + 300 TB of data—all in a versioned controlled data lake 
(Fig. 5a) [22–30]. Our Isabl instance maintains a real time audit trail of each step in the 
data generation process (Additional file  1: Video 1). Results and related metadata are 
accessible and visualized through Isabl CLI and Isabl Web. Figure 3a indicates the sus-
tained growth in data footprint across time which by leveraging Isabl automations did 
not impose further demands on personnel.

Case study 2: meta analyses, data harmonization, and bugs correction

Meta analyses of existing data sets represent a powerful means to derive new insights. 
Datasets may be combined to improve statistical power or new algorithms can be 

https://docs.djangoproject.com/en/3.1/topics/auth/default/#permissions-and-authorization
https://docs.djangoproject.com/en/3.1/topics/auth/default/#permissions-and-authorization
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executed across projects for novel readouts. For example, Isabl facilitated the fast reg-
istration and processing of + 35K patients from the MSK-IMPACT [31] cohort using a 
novel copy number analysis tool.

Samples metadata was ingested with Isabl API in less than an hour. Subsequently, the 
deployment of the new tool involved a two step process: (1) application registration; and 
(2) execution across samples that matched a specific criteria (i.e. targeted sequencing 
technique equals IMPACT [31]). More than 35K analyses were submitted with a sin-
gle command and processed in 3  days with a + 5K cpu HPC cluster (Fig.  5b). Result-
ing output files were harmonized (same version) and organized under a specified project 
directory.

Similarly, these principles apply to error correction in analytical workflows. Upon dis-
covery of an error or “bug”, Isabl enables the identification of all affected experimental 
data, re-execution of analyses with a corrected application, and identification of all rele-
vant stakeholders for notification of data status. The pre-existing analyses are transferred 
to a time-stamped legacy directory. During results retrieval end-users have automatic 
access to the latest version of each analyses run, but if desired, can retrieve older analy-
ses files from the legacy directory.

Case study 3: automation of analytical workflows

Isabl was used to implement an automated production-grade workflow for whole 
genome (WGS) and RNA analysis, executing > 30 independent algorithms automat-
edly (Fig.  6). Briefly, Isabl CLI and institutional API integrations facilitated the regis-
tration of FASTQ files from a sequencing core. Upon import, Isabl automations were 
used to deploy data processing applications (e.g. alignment, gene counts). Intermedi-
ate applications were subsequently executed as prior dependencies were satisfied (e.g. 

Fig. 5  Isabl fosters autonomy, automation, audit trail, and scalable deployment of data processing tools in 
a system-wide approach. a Panel showcases exponential increase in data generation (colored lines indicate 
categories for registered applications, projects, individuals, experiments, and analyses output). b Isabl 
facilitated the registration and processing of + 35K patients from the MSK-IMPACT cohort using a novel tool. 
Metadata was ingested with Isabl API in less than an hour, whilst + 35K analyses were submitted with a single 
command and processed in three days
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quality-control, variant calling). Last, derivation of summary statistics such as micro-
satellite instability [32] and homologous DNA recombination scores [33] that depend 
on primary data extraction (i.e. indels) were executed. Select data was embedded in a 
patient-centric report accessible through Isabl Web. Termed as the no-click genome, the 
entire process is executed with no manual intervention. In our center, these automations 
have enabled the discovery of novel diagnostic and therapy informing biomarkers within 
clinically relevant timeframes [24, 26].

Case study 4: multimodal data integration

Whilst Isabl was primarily designed for use cases derived from sequencing data, both 
platform and analysis paradigms make no assumptions about the nature of the data 
being registered. For a given individual, sequencing data as well as pathology data 
can be linked to specific samples [34] (Additional file 1: Fig. S2). The same is true for 
analysis applications, for example a tiling preprocessing step [35] could be production-
ized for new pathology images for a biopsy for which whole genome sequencing data is 
also produced. Analysis output files from image and whole genome sequencing variant 
calls are linked for a given individual. In this way, Isabl can facilitate the integration of 
diverse data modalities for downstream correlative analyses, which represents an area of 
increasing research focus.

Comparison to other platforms

Beyond Isabl, we have identified four published open source AIMS, (1) the Genome 
Modeling System (GMS) [5], (2) SeqWare [36], (3) QuickNGS [6] and (4) HTS-flow [9]. 
Table 1 presents how these platforms compare across five main topics: Metadata Capa-
bilities, Assets Management, Operational Automations, Results Accessibility, and Code-
base Status. Although related, the One Touch Pipeline (OTP) [8], SevenBridges [37], 

Fig. 6  Isabl supports the implementation of production-ready workflows. The no-click genome has 
completed reports at a rate of 4.5 ± 2 days / report (mean ± standard deviation; n = 20; mean depth coverage 
80 ± 20) using a 3000-cores High Performance Computing multi-user cluster. Processing duration is primarily 
driven by the longest-running application at each parallel block as well as compute availability (i.e. cluster 
congestion)
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FireCloud [38], and other service-based approaches are not considered here as their 
underlying infrastructures are private. We consider that Omics Pipe [39], Chipster [40], 
and GenePattern [41] are tools rather than AIMS frameworks. However, we recommend 
reviewing previous comparisons conducted by Ressinger [8], Bianchi [9], and Wagle [6].

Upon consideration of the comparison outlined in Table 1 and Additional file 1: Notes 
1, Isabl’s main differentiators are: (1) integration of a "RESTful API first" approach, (2) 
support for multimodal data, (3) an implementation agnostic to specific pipelines, work-
flow management systems, and storage and compute architectures, and 4. it’s “plug and 
play” deployability and extensive documentation. Note that independently these features 
might not be unique to Isabl, yet the consolidation of all of these features into a single 
platform is. Importantly, Isabl does not provide integrations to LIMS systems out of the 
box, and deployment to cloud storage and compute systems require adaptation to the 
linked architectures.

To showcase Isabl’s functionality we developed “10  min to Isabl” (https​://docs.isabl​
.io/quick​-start​), a tutorial that guides end-users with a personal computer through plat-
form installation, project registration, data import, application execution, and results 
retrieval.

Discussion
The collective resources and funding required to support biospecimen collection and 
data generation in research is formidable. These efforts culminate in data that are mined 
to answer fundamental questions about human development, population attributes, dis-
ease biology and clinical decision support. Whilst sample collections are finite, the data 
capital if accessible in computable format can be leveraged across time. In the present 
study we propose the development of digital biobanks as companion infrastructures to 
support dynamic data access, processing and visualization of the growing data capital in 
research and healthcare.

To this end, we developed Isabl to support end-to-end bioinformatics operations. We 
showcase that with Isabl, real world challenges in computational biology, such as qual-
ity and version control, analysis audit trails, error correction, scalability, automation, 
and meta analyses can be readily addressed. To reduce the adoption barrier, the data-
base schema can be customized and analysis tools can be added as Applications per end 
user specifications. To facilitate integration of analytical pipelines in accordance with 
best practices we further developed and made available Toil Container and Cookiecut-
ter Toil. These templating utilities can be extended to include analyses pipelines for any 
data modality (NGS, single cell, imaging, etc.). Lastly, to position Isabl as a platform that 
facilitates and automates large scope institutional initiatives, we have developed a fully 
documented RESTful API and CLI for integration with biospecimens databases, clini-
cal resources, visualization platforms, sequencing cores, and laboratory information 
management systems. Although Isabl adheres to the FAIR principles to a great extent, 
we recognize that the platform could adopt a standardized ontology like FHIR (https​://
www.hl7.org/fhir/) in the future.

From a strategic and operational perspective, implementation of computable digital 
biobanks is set to minimize costs by efficiently managing compute resources, reduc-
ing time to analyses and importantly demands for hands on operator time to process 

https://docs.isabl.io/quick-start
https://docs.isabl.io/quick-start
https://www.hl7.org/fhir/
https://www.hl7.org/fhir/
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Table 1  Five open source Analysis Information Management Systems (AIMS) compared 
across  5 categories: (1) metadata capabilities, (2) support for  assets management, (3) 
features for  systematic data processing, (4) mechanisms for  results retrieval, and  (5) 
availability and codebase status

Challenge Feature Isabl GMS SeqWare QuickNGS HTS-flow

Metadata 
capabilities

Metadata 
infrastruc‑
ture

Relational 
database, 
RESTful 
API + Swag‑
ger docs

Relational 
database

Relational 
database, 
RESTful 
API + online 
docs

Relational 
database

Relational 
database

Data model 
(ID system)

Individuals
Samples
Experiments
(See Fig. 1)

Individuals
Samples
Experiments
(UUIDs)

Individuals
Samples
Experiments
(User Defined)

Experiments
(User 

Defined)

Experiments
(User Defined)

Metadata 
ingestion

Excel batch, 
Web Forms, 
REST API

Command 
line

Client

Web Form, CLI 
batch

CSV batch SMITH LIMS 
integration

Assets man‑
agement

Data import CLI batch CLI one by 
one

CLI batch and 
web

Manual 
symlink

LIMS integra‑
tion

Reference 
data import

Genomes, 
BED files, 
Arbitrary 
resources

Genomes, 
varia‑
tion lists, 
Ensembl

– Download 
scripts 
for public 
databases

Genomes 
download

Data multi‑
modality

✓ – – – –

Data organi‑
zation

Hash-based 
directory 
structure

UUID based 
directory 
structure

S3 buckets, 
user defined 
locations

– –

Data process‑
ing

Apps 
included

– ✓ ✓ ✓ ✓

New Apps 
registration

Python class Perl compo‑
nents

Java compo‑
nents

Shell scripts R modules

WMS 
(Deploy‑
ment Sup‑
port)

WMS Agnostic 
(Local, LSF)*

Custom WMS 
(LSF, Open‑
Lava)

Pegasus, 
Oozie (SGE, 
AWS)

Shell scripting 
(SLURM)

Custom WMS 
(SGE)

Operational 
automa‑
tions

Signals, 
Project Level 
auto-merge

– – CRON Jobs –

Results acces‑
sibility

Software 
develop‑
ment kit

Python pack‑
age

Perl library – – –

Data provi‑
sioning

CLI, file 
system, 
download

CLI, file 
system

CLI, file 
system, 
download

Download CLI, file system, 
R objects

Purpose of 
user inter‑
face

Metadata 
search and 
ingestion, 
status 
monitor‑
ing, results 
access

Metadata 
search, sta‑
tus monitor‑
ing, results 
access

Metadata 
search and 
ingestion, 
status moni‑
toring

Metadata 
search, end-
user access 
to results

Metadata 
search, apps 
deployment 
and configu‑
ration
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data. These automations at the same time maximize data deliverables, utilization of the 
data capital and reproducibility of findings. With the increasing aspiration to develop 
AI-driven approaches in healthcare and research, we showcase that the development of 
digital biobanks as AI-ready infrastructures will represent critical catalysts for research 
innovation, new discoveries, and clinical translation.

Availability and requirements
Project name: Isabl Platform

Project home page: https​://githu​b.com/isabl​-io
Operating system(s): platform independent
Programming language: Python, Javascript
Other requirements: Docker Compose
Licence: ad hoc license, free for academic and non-profit institutions
Any restrictions to use by non-academics: licence needed

Methods
Architecture and codebase

Isabl architecture is built upon separate codebases, which are loosely coupled and can be 
deployed independently in a plug-and-play fashion. For example, Isabl Web services only 
dependency is Docker Compose (https​://docs.docke​r.com/compo​se; version 1.25.5), 
while the command line client is distributed using the Python Package Index (PyPi; https​
://pypi.org). Furthermore, Isabl’s metadata infrastructure is decoupled and agnostic of 
compute and data storage environments (e.g. local, cluster, cloud). This functionality 
separates dependencies, fosters interoperability across data processing environments, 
and ensures that metadata is accessible even when the data is no longer available (FAIR 
A2 [13]). Isabl API is documented with ReDoc (https​://platf​orm.isabl​.io/redoc​/; https​://
githu​b.com/Rebil​ly/ReDoc​ version 2.0.0; FAIR I3 [13]) following OpenAPI specifications 
(https​://www.opena​pis.org; FAIR I2 [13]; FAIR R1.2 [13]).

Furthermore, Isabl is a framework. This means that Isabl API and Isabl CLI are 
installed as external dependencies, guaranteeing compatibility with future upgrades. 
As a result, end-users don’t have to alter Isabl’s source code to extend or modify the 

Table 1  (continued)

Challenge Feature Isabl GMS SeqWare QuickNGS HTS-flow

Availability 
and code‑
base quality

Availability Docker com‑
pose, PyPi 
(300 MB)

Vagrant VM 
(200 GB)

Vagrant VM 
(2 GB)

Manual Install 
(4 MB)

Manual Install 
(1 MB)

Last Commit 
(Github 
Stars)

2019 2015 (65) 2016 (26) Last release 
2016

2016 (1)

Continuous 
integration

✓ – ✓ – –

Docs status ✓ ✓ ✓ ✓ ✓

Programming 
Languages

Python, Vue, 
Javascript

Perl, Ruby Java, JavaS‑
cript

Bash, PHP PHP, R, JavaS‑
cript

https://github.com/isabl-io
https://docs.docker.com/compose
https://pypi.org
https://pypi.org
https://platform.isabl.io/redoc/
https://github.com/Rebilly/ReDoc
https://github.com/Rebilly/ReDoc
https://www.openapis.org
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platform functionality (i.e. adding support for diverse data modalities such as imaging, 
radiology etc.).

Isabl API and CLI

Isabl’s backend (Isabl API) was written in Python (http://www.pytho​n.org; version 3.7) 
using the Django (https​://djang​oproj​ect.com; version 2.1.3) web framework as a reus-
able application (https​://docs.djang​oproj​ect.com/en/2.1/ref/appli​catio​ns) so that users 
can install it as a dependency without the need to fork out from source code in order to 
extend their services. The django package was bootstrapped using Cookiecutter (https​
://githu​b.com/audre​yr/cooki​ecutt​er; version 1.7.2) from Cookiecutter Django Package 
(https​://githu​b.com/pydan​ny/cooki​ecutt​er-djang​opack​age; version 2.0.2). PostgreSQL 
(https​://www.postg​resql​.org; version 10.1) was used to deliver Isabl’s database. Django 
Taggit (https​://githu​b.com/alex/djang​o-taggi​t; version 0.23.0) was used to support tag-
ging capabilities. The RESTful API was implemented using Django REST Framework 
(DRF; www.djang​o-rest-frame​work.org; version 3.8.2). The RESTful API swagger docu-
mentation was made available using drf-yasg (https​://githu​b.com/axnsa​n12/drf-yasg; 
version 1.16.1). Django Filter, DRF Filters, and DRF Query Fields were used to support 
advanced API filtering (https​://githu​b.com/phili​pn/djang​o-rest-frame​work-filte​rs ver-
sion 1.0.0, https​://githu​b.com/carlt​ongib​son/djang​o-filte​r version 2.0.0, and https​://
githu​b.com/wimgl​enn/djang​orest​frame​work-query​field​s version 1.0.0, respectively). 
RESTful API authentication was supported by Django Rest Auth (https​://githu​b.com/
Tivix​/djang​o-rest-auth; version 0.9.2). Django Reversion was used to provide metadata 
version control (https​://githu​b.com/etian​en/djang​o-rever​sion; version 4.0.4). Excel files 
processing was conducted using XlsxWriter (https​://githu​b.com/jmcna​mara/XlsxW​riter​
; version 0.9.8). Isabl CLI was also bootstrapped with Cookiecutter from Cookiecutter 
PyPackage (https​://githu​b.com/audre​yr/cooki​ecutt​er-pypac​kage; version 0.1.1). Com-
mand line functionalities were provided by Click (https​://githu​b.com/palle​ts/click​; ver-
sion 7.0) while mechanisms to conduct HTTP operations were brought by Requests 
(http://docs.pytho​n-reque​sts.org; version 2.23.0).

Isabl web

The user interface was developed as an interactive single-page application using Vue 
(https​://vuejs​.org; version 2.5.16), a javascript web development framework. It’s deliv-
ered as a node (https​://nodej​s.org) package through NPM (https​://www.npmjs​.com), so 
it can be consumed by any developer in it’s own web page. Currently, it comes by default 
when Isabl’s cookiecutter (https​://githu​b.com/isabl​-io/cooki​ecutt​er-api) is used to gen-
erate a ready-to-go sample django project. As a Vue package, Isabl Web uses vue’s most 
common libraries, such as vue-cli for local development (https​://cli.vuejs​.org; version 
3.3.0), vuex for state and data management (https​://vuex.vuejs​.org; version 3.0.1), vue-
router (https​://route​r.vuejs​.org; version 3.0.1) for page browsing, vuetify (https​://vueti​
fyjs.com; version 1.1.9) as a styled-components framework based on google’s Material 
Design (https​://mater​ial.io/desig​n), and several other open-source packages for specific 
desired features within the interface: vue-gallery, vue-json-excel, vue-upload-compo-
nent, vue-clipboard, vuex-router-sync, v-hotkey, among others, all available from the 
NPM registry. Moment (https​://momen​tjs.com; version 2.22.2) is used to parse dates 

http://www.python.org
https://djangoproject.com
https://docs.djangoproject.com/en/2.1/ref/applications
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter
https://github.com/pydanny/cookiecutter-djangopackage
https://www.postgresql.org
https://github.com/alex/django-taggit
http://www.django-rest-framework.org
https://github.com/axnsan12/drf-yasg
https://github.com/philipn/django-rest-framework-filters
https://github.com/carltongibson/django-filter
https://github.com/wimglenn/djangorestframework-queryfields
https://github.com/wimglenn/djangorestframework-queryfields
https://github.com/Tivix/django-rest-auth
https://github.com/Tivix/django-rest-auth
https://github.com/etianen/django-reversion
https://github.com/jmcnamara/XlsxWriter
https://github.com/audreyr/cookiecutter-pypackage
https://github.com/pallets/click
http://docs.python-requests.org
https://vuejs.org
https://nodejs.org
https://www.npmjs.com
https://github.com/isabl-io/cookiecutter-api
https://cli.vuejs.org
https://vuex.vuejs.org
https://router.vuejs.org
https://vuetifyjs.com
https://vuetifyjs.com
https://material.io/design
https://momentjs.com
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and times, and D3 (https​://d3js.org; version 5.9.7) to create interactive components to 
show results and reports, such as the Individual-Experiment-Sample tree. Within devel-
opment, a handful amount of libraries are used to boost capabilities of javascript, HTML 
and CSS; babel (https​://babel​js.io; version 7.0.0) allows to use the latest ES6 features by 
compiling modern javascript into browser-compatible one, sass (https​://sass-lang.com) 
extends CSS and facilitate its use, webpack (https​://webpa​ck.js.org; version 4.0.0) is used 
to create a single-page bundle to publish, and finally jest (https​://jestj​s.io; version 23.0.1) 
and cypress (https​://www.cypre​ss.io; version 1.10.1) are used to create unit and end-to-
end tests, without extensive configuration.

Continuous integration, testing, and documentation

The RESTful API, database, and Web App were orchestrated using Docker Compose 
(https​://docs.docke​r.com/compo​se; version 1.25.5) while all dependencies were resolved 
using Docker (https​://www.docke​r.com; version 19.03.8). The Isabl CLI dependencies 
were limited to python libraries ensuring that the project was pip-installable (https​://
pypi.org/proje​ct/pip; version 20.1). All code repositories were Continuously Integrated 
(CI) using Travis CI (https​://travi​s-ci.org), small code changes were merged frequently—
rather than large changes at the end of development cycles. This was ensured by auto-
matically running tests in the cloud upon every new code change. Testing was conducted 
and implemented with Pytest (https​://docs.pytes​t.org; version 3.7.4) and tox (https​://
pypi.org/proje​ct/tox; version 2.9.1). Moreover, + 90% test coverage was guaranteed 
and automatically evaluated on the cloud using Coverage.py (https​://pypi.org/proje​ct/
cover​age; version 4.4.2) and Codecov (https​://codec​ov.io) for python projects. Extensive 
checks on documentation and code quality standards were ensured using ESLint (https​
://eslin​t.org; version 4.19.1), Pylint (https​://www.pylin​t.org; version 1.8.1), and Pydoc-
style (https​://pypi.org/proje​ct/pydoc​style​; version 2.1.1). Production code was homog-
enized and formatted with Black (https​://githu​b.com/ambv/black​; version 18.9b0) and 
Prettier (https​://prett​ier.io; version 1.12.1). Continuous Deployment (CD) of the com-
ponents to their respective package managers and hosting sites was automatically con-
ducted upon new releases. Both Isabl API and Isabl CLI were deployed to the Python 
Package Index (PyPi; https​://pypi.org), while Isabl Web was deployed to npm (https​://
www.npmjs​.com). Isabl’s documentation is stored on GitHub (https​://githu​b.com/isabl​
-io/docs) and can be browsed at https​://docs.isabl​.io.

Cookiecutter toil and toil container

Cookiecutter Toil (https​://githu​b.com/papae​mmela​b/cooki​ecutt​er-toil) was forked from 
Cookiecutter PyPackage. Similarly to Isabl CLI, Toil Container (https​://githu​b.com/
papae​mmela​b/toil_conta​iner) was bootstrapped with Cookiecutter PyPackage. The 
mechanisms to perform Docker (https​://www.docke​r.com) and Singularity (https​://
singu​larit​y.lbl.gov; version 2.6) system calls were implemented as adaptations of Toil’s 
apiDockerCall (https​://githu​b.com/DataB​iosph​ere/toil/blob/d23f7​ec46d​2006c​136a2​
a5b4e​57ead​fb44a​606b7​/src/toil/lib/docke​r.py#L199) and Toil-vg’s singularityCall (https​
://githu​b.com/vgtea​m/toil-vg/blob/48645​cbf9c​1e36c​73abf​2f731​b3f06​60718​5a5e9​/src/
toil_vg/singu​larit​y.py#L22). Toil Container was developed following the same standards 

https://d3js.org
https://babeljs.io
https://sass-lang.com
https://webpack.js.org
https://jestjs.io
https://www.cypress.io
https://docs.docker.com/compose
https://www.docker.com
https://pypi.org/project/pip
https://pypi.org/project/pip
https://travis-ci.org
https://docs.pytest.org
https://pypi.org/project/tox
https://pypi.org/project/tox
https://pypi.org/project/coverage
https://pypi.org/project/coverage
https://codecov.io
https://eslint.org
https://eslint.org
https://www.pylint.org
https://pypi.org/project/pydocstyle
https://github.com/ambv/black
https://prettier.io
https://pypi.org
https://www.npmjs.com
https://www.npmjs.com
https://github.com/isabl-io/docs
https://github.com/isabl-io/docs
https://docs.isabl.io
https://github.com/papaemmelab/cookiecutter-toil
https://github.com/papaemmelab/toil_container
https://github.com/papaemmelab/toil_container
https://www.docker.com
https://singularity.lbl.gov
https://singularity.lbl.gov
https://github.com/DataBiosphere/toil/blob/d23f7ec46d2006c136a2a5b4e57eadfb44a606b7/src/toil/lib/docker.py#L199
https://github.com/DataBiosphere/toil/blob/d23f7ec46d2006c136a2a5b4e57eadfb44a606b7/src/toil/lib/docker.py#L199
https://github.com/vgteam/toil-vg/blob/48645cbf9c1e36c73abf2f731b3f06607185a5e9/src/toil_vg/singularity.py#L22
https://github.com/vgteam/toil-vg/blob/48645cbf9c1e36c73abf2f731b3f06607185a5e9/src/toil_vg/singularity.py#L22
https://github.com/vgteam/toil-vg/blob/48645cbf9c1e36c73abf2f731b3f06607185a5e9/src/toil_vg/singularity.py#L22
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and testing procedures of Isabl. Alike Isabl CLI, Cookiecutter Toil and Toil Container 
were deployed to PyPi.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03879​-7.

Additional file 1. Supplementary figures and notes related to this manuscript.
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