
Isabl Platform, a digital biobank
for processing multimodal patient data
Juan S. Medina‑Martínez1,2, Juan E. Arango‑Ossa1, Max F. Levine1, Yangyu Zhou1, Gunes Gundem1,
Andrew L. Kung1 and Elli Papaemmanuil1* 

Background
Genome profiling represents a critical pillar for clinical, translational, and basic research.
With an ever expanding suite of high-throughput technologies [1], the pace at which
the scientific community is generating data at scale has rapidly accelerated. This imposes
demands for specialized expertise to support data processing and analysis [2]. Impor-
tantly, the derivation of novel biological and clinical insights is increasingly reliant
upon large and statistically powered datasets, rich metadata annotation (clinical, demo-
graphic, treatment, outcome) as well as integration of diverse data modalities generated
across samples and patients (i.e. genomic, imaging) [3]. Such high-dimensional data
science is now embedded across disciplines, raising significant hopes for the develop-
ment of artificial intelligence (AI) driven innovation in healthcare and research [3, 4].

Abstract 

Background:  The widespread adoption of high throughput technologies has democ‑
ratized data generation. However, data processing in accordance with best practices
remains challenging and the data capital often becomes siloed. This presents an
opportunity to consolidate data assets into digital biobanks—ecosystems of readily
accessible, structured, and annotated datasets that can be dynamically queried and
analysed.

Results:  We present Isabl, a customizable plug-and-play platform for the processing
of multimodal patient-centric data. Isabl’s architecture consists of a relational database
(Isabl DB), a command line client (Isabl CLI), a RESTful API (Isabl API) and a frontend
web application (Isabl Web). Isabl supports automated deployment of user-validated
pipelines across the entire data capital. A full audit trail is maintained to secure data
provenance, governance and ensuring reproducibility of findings.

Conclusions:  As a digital biobank, Isabl supports continuous data utilization and
automated meta analyses at scale, and serves as a catalyst for research innovation, new
discoveries, and clinical translation.

Keywords:  Data processing, Analysis information management system, Next
generation sequencing, Genomics, Image processing, Software engineering,
Multimodal data

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​
cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549
https://doi.org/10.1186/s12859-020-03879-7

*Correspondence:
papaemme@mskcc.org
1 Memorial Sloan Kettering
Cancer Center, New York,
NY, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-1709-8983
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03879-7&domain=pdf

Page 2 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549

However, for this aspiration to fully materialize there is a clear and unmet need for the
development of AI-ready data architectures or digital biobanks.

Implementation of frameworks that operate in accordance with data processing best
practices is important to secure governance and provenance of digital assets, ensure
quality control, and deliver reproducible findings. Analysis Information Management
Systems (AIMS) [5–9] for Next Generation Sequencing (NGS) data represent integrative
software solutions to support the lifecycle of genomics projects [5]. While the democ-
ratization of NGS technologies has driven a development boom across data processing
software [5, 9–12], only a few AIMS’s exist to support the increasing user-bases of NGS
data and none to our knowledge incorporates multimodal data types in a patient or indi-
vidual centric architecture.

We have developed Isabl, a plug-and-play platform for the processing of individual-
centric multimodal data. Isabl is designed to support: (1) management of data assets
according to the FAIR [13] principles (Findable, Interoperable, Accessible, Reusable), (2)
automated deployment of data processing applications following the DATA [7] repro-
ducibility checklist (Documentation, Automation, Traceability, and Autonomy); and, (3)
advanced integrations with institutional information systems across diverse data types
(i.e. clinical and biospecimen databases). To support flexible workflows Isabl is built
upon a customizable framework, that enables end-users to specify metadata and pipe-
line implementation. In addition, we present a pipeline development methodology that
is guided by the principles of containerization [14], continuous integration, version con-
trol, and the separation of analysis and execution logic. Here we provide a framework for
the development of digital biobanks—patient-centric ecosystems of structured, anno-
tated, and linked data that is readily computable upon, mined, and visualized.

Implementation
System overview

Platform architecture

Isabl is composed of four main microservices [15] (Fig. 1): (1) Isabl DB, an individual-
centric database designed to track patients, samples, data, and results; (2) Isabl API, a
RESTful API used to support authentication, interoperability, and integration with data
processing environments and enterprise systems (e.g. clinical databases, visualization
platforms; FAIR A1 [13]); (3) Isabl CLI, a Command Line Interface for managing and
processing digital assets in a scalable data lake (i.e., genomic, imaging); and (4) Isabl
Web, a frontend single page web application for data interrogation (for further techni-
cal details please refer to Isabl’s documentation https​://docs.isabl​.io/quick​-start​; https​://
githu​b.com/isabl​-io/docs).

Data model

Isabl DB maps workflows for data provenance, processing, and governance (Fig. 2; FAIR R1
[13]). Metadata is captured across the following 5 thematic categories: (1) patient attrib-
utes; (2) samples, as biological material collected at a given time; (3) data properties includ-
ing experimental technique, platform technology, and related parameters; (4) analytical
workflows to account for a complete audit trail of versioned algorithms, related execution
parameters, reference files, status tracking, and results deposition; (5) data governance

https://docs.isabl.io/quick-start
https://github.com/isabl-io/docs
https://github.com/isabl-io/docs

Page 3 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549 	

information across projects and stakeholders (Additional file 1: Fig. S1; FAIR F2 [13]). All
database records are assigned a globally unique and persistent identifier (UUID; FAIR F1
[13]), whilst individuals, samples, and experiments are further annotated with a customiz-
able human friendly identifier (Additional file 1: Fig. S2). All metadata stored in Isabl DB is
version controlled, all changes are recorded and previous states can be recovered. Manage-
ment of phenotypic data such as disease ontology can be facilitated in three ways. Firstly,
the disease schema can be customized with additional fields in agreement to end-user
requirements. Secondly, ontologies from established databases such as OncoTree, (http://
oncot​ree.mskcc​.org) can be integrated (i.e. https​://docs.isabl​.io/data-model​#sync-disea​ses-
with-onco-tree). Lastly, proprietary schemas from institutional databases (i.e. ontologies
implemented in local electronic medical records) can also be incorporated, thus allowing
for direct linkage between results and related metadata at an institutional level.

Results
Life cycle of bioinformatic operations

Isabl operations are organized in a three step process: (1) project initiation and meta-
data registration; (2) automated data import and processing; and, (3) results retrieval for
analyses.

Fig. 1  Schematic representation of Isabl’s microservice architecture. Isabl DB provides a patient centric
relational model for the integration of multimodal data types (i.e., genomic, imaging) and their corresponding
relationships (individual, sample, aliquot, experiment, analyses). Isabl Web facilitates visualization of results
and metadata in a single page application. Isabl API powers the linkage to other institutional information
systems and is agnostic to data storage technologies and computing environments, ensuring metadata
is accessible even when the data is no longer available (FAIR A2). Isabl CLI is a Command Line Client used
to process and manage digital assets across computing paradigms (i.e. cloud, cluster). Arrow connectors
indicate database relationships between Isabl schemas, dashed lines indicate metadata transfer through the
internet, solid line indicates a data link between the data lake and the web server (e.g. sshfs, s3fs, https)

http://oncotree.mskcc.org
http://oncotree.mskcc.org
https://docs.isabl.io/data-model#sync-diseases-with-onco-tree
https://docs.isabl.io/data-model#sync-diseases-with-onco-tree

Page 4 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549

Projects and metadata registration

At project initiation, users specify a title, study description, and define stakehold-
ers using Isabl Web. Individuals, samples and related experiments are registered
through web forms, Excel batch submissions, or automated HTTP requests. Valida-
tion rules are enforced to ensure content quality, while account permissions and user
roles guide data governance (project creation, edit, and data queries; see https​://docs.
isabl​.io/produ​ction​-deplo​yment​#multi​user-setup​). To prevent dangling information,
records can’t be deleted if they are associated with other instances (e.g. a sample can’t
be removed if it has linked experiments). Furthermore, all database schemas can be
extended with custom fields in order to address end-user metadata requirements.

Once information is registered, users can interrogate the entire digital real estate
using Isabl Web. A single page portal is populated with interactive panels that become
available as new information is requested (Fig. 3; https​://demo.isabl​.io). Tables
directly wired to Isabl API, provide searching, filtering, and ordering capabilities
across different schemas and are available throughout the application (e.g. Additional
file 1: Fig. S3; FAIR F4).

Detail views are retrieved by clicking on any hyper-linked identifier within these
tables. The project detail panel caters a birds-eye view across all analyses and experi-
ments pertaining to a study (Additional file 1: Fig. S4). Similarly, the samples view
provides an interactive, patient-centric, tree visualization that enables instant access
to all assets generated on a given individual (Fig. 3a, b; Additional file 1: Fig. S5).
Dashboards to explore metadata and access results are also provided (Additional
file 1: Fig. S6).

Fig. 2  Isabl’s relational model maps workflows for data provenance (e.g. Individuals, Samples, Experiments),
processing (e.g. Applications, Analyses), and governance (e.g. Projects, Users). a An individual-centric model
facilitates the tracking of analyses conducted on experimental data obtained from related samples. Analyses
are results of analytical workflows, or applications. Experiments are analyzed together and grouped in
projects. Additionally, schemas to track metadata for diseases, experimental techniques, data generation
platforms, and analyses cohorts are also provided. Lines with one circle represent foreing keys, whilst lines
with two circles represent many to many relationships. b A brief description of these schemas with examples

https://docs.isabl.io/production-deployment#multiuser-setup
https://docs.isabl.io/production-deployment#multiuser-setup
https://demo.isabl.io

Page 5 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549 	

Data import and registration

After metadata registration, the next step for an Isabl project is data import. Isabl CLI
explores data deposition directories (i.e. sequencing core, data drives) identifying multi-
modal digital assets (i.e. genomic, imaging) relating to specific experiments and imports
them into a scalable data directory (move or symlink; Additional file 1: Fig. S7). This

Fig. 3  Isabl Web is a Single Page Application (SPA) organized in interactive panels (https​://demo.isabl​
.io). a Example of sample level metadata, to include sample ID, corresponding individual ID, experimental
ID, species, gender, center, data generating platform, experimental technique, disease state at the time
of sampling, institutional database integrations (i.e. RedCap) and version of corresponding data genome
assembly. Metadata fields are flexible and customizable. b Tree view representation of an individual assets
(samples, aliquots, experiments). Users can dynamically explore metadata by clicking the different nodes
(i.e. from samples, to experiments, to all available analyses under any node). c The Analysis Panel indicates
execution status, version, run time, storage usage, linked experiments and offers quick access to a selected
set of results (e.g. BAM files with https​://githu​b.com/igvte​am/igv.js, images, log files, tables)

https://demo.isabl.io
https://demo.isabl.io
https://github.com/igvteam/igv.js

Page 6 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549

process ensures that the link between data and metadata is stored in Isabl DB. Upon
import, access permissions are configured and data related attributes are stored in the
database (e.g. checksums, usage, location). Import status is updated in Isabl DB and dis-
played in Isabl Web.

In addition to data imported for analyses, Isabl CLI also supports the registration of
auxiliary assets such as an assembly reference genomes, techniques reference data (e.g.
BED files), and post-processing files (i.e. data relating to control cohorts). To secure data
integrity, import operations and data ownership are limited to a single admin user (e.g.
a shared Linux account managed by Isabl administrators). Importantly, import logic for
data and auxiliary files is entirely customizable and can be tailored to end-user require-
ments (i.e. cloud storage).

Out of the box, Isabl CLI operates on local file systems using traditional unix com-
mands such as mv, ln, cp, and rsync. Nevertheless, the Isabl data lake can be stored in
cloud buckets like Amazon S3 (https​://aws.amazo​n.com/s3), Google Storage Buckets
(https​://cloud​.googl​e.com/stora​ge), or Azure Blobs (https​://azure​.micro​soft.com/servi​
ces/stora​ge/blobs​). Mechanisms to push and pull data to the cloud must be implemented
by the user, although there are automated solutions such as Amazon FSx for Lustre
(https​://aws.amazo​n.com/fsx/lustr​e). When data is stored in the cloud, Isabl Web can
be configured to retrieve and display results from these providers. Importantly, Isabl can
compute on data located in a local file system, cloud based solutions or hybrid (local and
cloud).

Deploying data processing tools at scale with Isabl applications

Isabl is a horizontally integrated digital biobank onto which existing or bespoke ana-
lytical applications can be docked and integrated in a way that confers sample-centric
traceability to the analytical results. Upon data import, Isabl applications enable stand-
ardized deployment of data processing pipelines with a Software Development Kit (SDK;
Fig. 4). Guided by experimental metadata in Isabl DB, applications construct, validate,
and deploy execution commands into a compute environment of choice (e.g. local, clus-
ter, cloud; Fig. 4a). Isabl applications are defined using python classes (Additional file 1:
Fig. S8).

For example, variant calling applications will tailor execution parameters and refer-
ence datasets given the nature of the data (i.e. targeted gene sequencing, whole genome
sequencing, etc.). Application results are stored as analyses (Fig. 4b). Each analysis is
linked to results files and specific execution parameters. Analyses can compute on data
for one or more targets and references experiments (e.g. single-target, tumor-normal
pairs, target vs. pool of normals, etc.). Furthermore, analyses can also track numeric,
Boolean, and text results using a PostgreSQL JSON Field. To warrant a full audit trail
of results provenance and foster reproducibility, Isabl stores all analyses configurations
(parameters, reference datasets, tool versions, etc.).

Upon completion of an analytical workflow, ownership of output files is automati-
cally transferred to the admin user and write permissions are removed (see https​://docs.
isabl​.io/writi​ng-appli​catio​ns#appli​catio​ns-run-by-multi​ple-users​). Once implemented,
applications can be deployed system wide, on an entire project, or any subset of experi-
ments in the database. A user-defined selection of results can be accessed through Isabl

https://aws.amazon.com/s3
https://cloud.google.com/storage
https://azure.microsoft.com/services/storage/blobs
https://azure.microsoft.com/services/storage/blobs
https://aws.amazon.com/fsx/lustre
https://docs.isabl.io/writing-applications#applications-run-by-multiple-users
https://docs.isabl.io/writing-applications#applications-run-by-multiple-users

Page 7 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549 	

Web, which also indicates execution status, version, run time, storage usage, and linked
experiments (Fig. 3c; Additional file 1: Fig. S3). If an analysis has already been executed,
the system will prevent it’s resubmission to minimize computing usage and prevent
duplication.

Operational automations

To automate downstream analyses Isabl applications define logic to combine results
at a project or individual level (Additional file 1: Fig. S9). For example, quality control
reports, variant calls, or any other kind of result are merged within a single report (for
each result type). The merge operation, at the project or individual level, is triggered
automatically and runs only when required (i.e. not executed if other to-be-merged anal-
yses are ongoing). Aggregated outputs are dynamically updated as new experiments are
processed by the application. All auto-merge analyses are versioned and stored in Isabl
DB.

Isabl CLI facilitates automations using signals, python functions triggered on status
changes to execute subsequent tasks (Additional file 1: Fig. S9). For instance, a signal
can be configured to deploy quality control applications upon data import. At QC suc-
cess, another signal could deploy a complete suite of applications tailored to the nature

Fig. 4  Isabl applications enable systematic processing of experimental data. a Guided by metadata, Isabl
applications construct, validate, and deploy computing commands across experiments. Applications differ
from Workflow Management Systems in that they don’t execute the analytical logic but construct and submit
a command. b Isabl applications can be assembly aware, this means that they can be versioned not only
as a function of their name, but also as a function of the genome assembly they are configured for. This
is important because NGS results are comparable when produced with the same genome version. The
unique combination of targets and references, such as tumor-normal pairs, results in analyses. The figure
panel illustrates applications with different experimental designs, such as paired analyses, multi-targets,
single-target, etc. Importantly, applications are agnostic to the underlying tool or pipeline being executed

Page 8 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549

of the experimental data. In case of automation failure, Isabl will send notifications to
engineers via email, with error logs and instructions on how to restart the automation.
Furthermore, Isabl API is equipped with an asynchronous tasks functionality useful to
schedule backend work. For example, a task can be configured to sync metadata from
institutional systems every 2 h.

Data access and results retrieval

Users can retrieve results using three main mechanisms: (1) visualization through Isabl
Web; (2) programmatic data access with Isabl CLI; and, (3) direct data lake access (https​
://docs.isabl​.io/retri​eve-data). For each analysis, job execution status (i.e. pending, in
progress, complete), as well as a defined list of results can be directly accessed through
Isabl Web (with support for strings, numbers, text files, images, PDF, BAM, FASTA,
VCF, PNG, HTML, amongst others; Additional file 1: Fig. S3). Isabl Web access to NGS
data is further enabled using IGV.js (https​://githu​b.com/igvte​am/igv.js; Fig. 3c). Addi-
tionally, Isabl CLI represents a programmatic means of entry to the entire data capital.
A suite of command line utilities for metadata, data, and results retrieval is readily avail-
able. For example, queries can be constructed to identify samples of interest matching
a range of attributes (i.e. patients, samples, analyses metadata) and retrieve specified
results files (e.g. VCF files).

The codebase powering Isabl’s client can be imported as a python package fostering
systematic administration of data and analyses. For example, an analyst can import the
SDK into a Jupyter [16] notebook to automatically access versioned algorithmic output
for downstream post-processing, ensuring a full audit trail of data provenance from raw
data to analysis and post-processing results. Moreover, Isabl CLI automatically creates
and maintains easily accessible project directories with symbolic links pointing to all
data and results, thus allowing access independently from the RESTful API (Additional
file 1: Fig. S7c).

Integration of analytical applications into Isabl

Isabl as a bioinformatics framework is completely agnostic to bioinformatics pipelines
and does not include pre-built applications (e.g. variant callers such as Pindel [17],
Strelka [18]) or Workflow Management Systems (WMS; e.g. Bpipe [19], Toil [20]). Nev-
ertheless, end-users can package, install, and deploy applications of choice in accordance
with their data and operational requirements (e.g. https​://githu​b.com/isabl​-io/demo).
This enables full leverage of Isabl functionality while maintaining complete independ-
ence and flexibility in analytical workflows.

To facilitate seamless integration and rapid iteration of data processing pipelines into
Isabl, we developed Toil Container and Cookiecutter Toil (Additional file 1: Fig. S10).
Cookiecutter Toil (https​://githu​b.com/papae​mmela​b/cooki​ecutt​er-toil) is a templating
utility that creates tools or pipelines with built-in software development best practices
(i.e. version control, containerization, cloud testing, packaging, documentation; Addi-
tional file 1: Fig. S10a). On the other hand, Toil Container (https​://githu​b.com/papae​
mmela​b/toil-conta​iner) enables Toil [20] class-based [10] pipelines to perform contain-
erized system calls with both Docker and Singularity [21] without source code changes
(Additional file 1: Fig. S10b). Toil Container ensures that analytical logic remains

https://docs.isabl.io/retrieve-data
https://docs.isabl.io/retrieve-data
https://github.com/igvteam/igv.js
https://github.com/isabl-io/demo
https://github.com/papaemmelab/cookiecutter-toil
https://github.com/papaemmelab/toil-container
https://github.com/papaemmelab/toil-container

Page 9 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549 	

independent of execution logic by keeping pipelines agnostic to containerization tech-
nology or compute environment (e.g. an application can run using Docker in the cloud
or Singularity in LSF; Additional file 1: Fig. S10c).

User roles and permissions

There are two levels to Isabl data access: interaction with metadata, and interaction with
data.

Metadata. Users can create, retrieve, update, and delete metadata using Isabl Web
and Isabl API. In order to manage these interactions, Isabl relies on Django Permissions
(https​://docs.djang​oproj​ect.com/en/3.1/topic​s/auth/defau​lt/#permi​ssion​s-and-autho​
rizat​ion). By assigning users to groups, the Isabl administrator can manage the actions
granted towards different resources. Isabl offers 3 main roles: (1) Managers are users
who can register samples, (2) analysts can run analyses, and (3) engineers can do both,
register samples and run analyses. These roles are optional and customizable. Permis-
sions can also be modified to each user specifically.

Data. The Isabl data lake can reside in the cloud or in a local file system. Access to
these resources is not managed by Isabl but by a system administrator (i.e. Unix, Cloud).
Users that have access to the data lake can execute applications if they have the right
metadata permissions (e.g. create and update analyses). Once data is imported and anal-
yses are finished, Isabl removes write permissions to prevent accidental deletion of data.
Permissions to download and access data through Isabl Web are managed using Django
Permissions.

Case studies

We charted the end-to-end processes of bioinformatic operations and designed Isabl
to address the major challenges in production-grade computational workflows. This
includes the disruption of data silos, flexible integration to metadata sources, dynamic
access and visualization of data, version control, audit trail, data harmonization, scalabil-
ity, automation of analytical workflows and resource management (personnel as well as
compute). We showcase how Isabl address these issues with the following case studies:

Case study 1: scalability and audit trail

Isabl has served as the bioinformatics backbone in our center, allowing us to scale up
and compute upon data from 60K patients, organized in 200 independent projects. Isabl
has supported the deployment of 300K analyses linked to 90 different data process-
ing applications operating on + 300 TB of data—all in a versioned controlled data lake
(Fig. 5a) [22–30]. Our Isabl instance maintains a real time audit trail of each step in the
data generation process (Additional file 1: Video 1). Results and related metadata are
accessible and visualized through Isabl CLI and Isabl Web. Figure 3a indicates the sus-
tained growth in data footprint across time which by leveraging Isabl automations did
not impose further demands on personnel.

Case study 2: meta analyses, data harmonization, and bugs correction

Meta analyses of existing data sets represent a powerful means to derive new insights.
Datasets may be combined to improve statistical power or new algorithms can be

https://docs.djangoproject.com/en/3.1/topics/auth/default/#permissions-and-authorization
https://docs.djangoproject.com/en/3.1/topics/auth/default/#permissions-and-authorization

Page 10 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549

executed across projects for novel readouts. For example, Isabl facilitated the fast reg-
istration and processing of + 35K patients from the MSK-IMPACT [31] cohort using a
novel copy number analysis tool.

Samples metadata was ingested with Isabl API in less than an hour. Subsequently, the
deployment of the new tool involved a two step process: (1) application registration; and
(2) execution across samples that matched a specific criteria (i.e. targeted sequencing
technique equals IMPACT [31]). More than 35K analyses were submitted with a sin-
gle command and processed in 3 days with a + 5K cpu HPC cluster (Fig. 5b). Result-
ing output files were harmonized (same version) and organized under a specified project
directory.

Similarly, these principles apply to error correction in analytical workflows. Upon dis-
covery of an error or “bug”, Isabl enables the identification of all affected experimental
data, re-execution of analyses with a corrected application, and identification of all rele-
vant stakeholders for notification of data status. The pre-existing analyses are transferred
to a time-stamped legacy directory. During results retrieval end-users have automatic
access to the latest version of each analyses run, but if desired, can retrieve older analy-
ses files from the legacy directory.

Case study 3: automation of analytical workflows

Isabl was used to implement an automated production-grade workflow for whole
genome (WGS) and RNA analysis, executing > 30 independent algorithms automat-
edly (Fig. 6). Briefly, Isabl CLI and institutional API integrations facilitated the regis-
tration of FASTQ files from a sequencing core. Upon import, Isabl automations were
used to deploy data processing applications (e.g. alignment, gene counts). Intermedi-
ate applications were subsequently executed as prior dependencies were satisfied (e.g.

Fig. 5  Isabl fosters autonomy, automation, audit trail, and scalable deployment of data processing tools in
a system-wide approach. a Panel showcases exponential increase in data generation (colored lines indicate
categories for registered applications, projects, individuals, experiments, and analyses output). b Isabl
facilitated the registration and processing of + 35K patients from the MSK-IMPACT cohort using a novel tool.
Metadata was ingested with Isabl API in less than an hour, whilst + 35K analyses were submitted with a single
command and processed in three days

Page 11 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549 	

quality-control, variant calling). Last, derivation of summary statistics such as micro-
satellite instability [32] and homologous DNA recombination scores [33] that depend
on primary data extraction (i.e. indels) were executed. Select data was embedded in a
patient-centric report accessible through Isabl Web. Termed as the no-click genome, the
entire process is executed with no manual intervention. In our center, these automations
have enabled the discovery of novel diagnostic and therapy informing biomarkers within
clinically relevant timeframes [24, 26].

Case study 4: multimodal data integration

Whilst Isabl was primarily designed for use cases derived from sequencing data, both
platform and analysis paradigms make no assumptions about the nature of the data
being registered. For a given individual, sequencing data as well as pathology data
can be linked to specific samples [34] (Additional file 1: Fig. S2). The same is true for
analysis applications, for example a tiling preprocessing step [35] could be production-
ized for new pathology images for a biopsy for which whole genome sequencing data is
also produced. Analysis output files from image and whole genome sequencing variant
calls are linked for a given individual. In this way, Isabl can facilitate the integration of
diverse data modalities for downstream correlative analyses, which represents an area of
increasing research focus.

Comparison to other platforms

Beyond Isabl, we have identified four published open source AIMS, (1) the Genome
Modeling System (GMS) [5], (2) SeqWare [36], (3) QuickNGS [6] and (4) HTS-flow [9].
Table 1 presents how these platforms compare across five main topics: Metadata Capa-
bilities, Assets Management, Operational Automations, Results Accessibility, and Code-
base Status. Although related, the One Touch Pipeline (OTP) [8], SevenBridges [37],

Fig. 6  Isabl supports the implementation of production-ready workflows. The no-click genome has
completed reports at a rate of 4.5 ± 2 days / report (mean ± standard deviation; n = 20; mean depth coverage
80 ± 20) using a 3000-cores High Performance Computing multi-user cluster. Processing duration is primarily
driven by the longest-running application at each parallel block as well as compute availability (i.e. cluster
congestion)

Page 12 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549

FireCloud [38], and other service-based approaches are not considered here as their
underlying infrastructures are private. We consider that Omics Pipe [39], Chipster [40],
and GenePattern [41] are tools rather than AIMS frameworks. However, we recommend
reviewing previous comparisons conducted by Ressinger [8], Bianchi [9], and Wagle [6].

Upon consideration of the comparison outlined in Table 1 and Additional file 1: Notes
1, Isabl’s main differentiators are: (1) integration of a "RESTful API first" approach, (2)
support for multimodal data, (3) an implementation agnostic to specific pipelines, work-
flow management systems, and storage and compute architectures, and 4. it’s “plug and
play” deployability and extensive documentation. Note that independently these features
might not be unique to Isabl, yet the consolidation of all of these features into a single
platform is. Importantly, Isabl does not provide integrations to LIMS systems out of the
box, and deployment to cloud storage and compute systems require adaptation to the
linked architectures.

To showcase Isabl’s functionality we developed “10 min to Isabl” (https​://docs.isabl​
.io/quick​-start​), a tutorial that guides end-users with a personal computer through plat-
form installation, project registration, data import, application execution, and results
retrieval.

Discussion
The collective resources and funding required to support biospecimen collection and
data generation in research is formidable. These efforts culminate in data that are mined
to answer fundamental questions about human development, population attributes, dis-
ease biology and clinical decision support. Whilst sample collections are finite, the data
capital if accessible in computable format can be leveraged across time. In the present
study we propose the development of digital biobanks as companion infrastructures to
support dynamic data access, processing and visualization of the growing data capital in
research and healthcare.

To this end, we developed Isabl to support end-to-end bioinformatics operations. We
showcase that with Isabl, real world challenges in computational biology, such as qual-
ity and version control, analysis audit trails, error correction, scalability, automation,
and meta analyses can be readily addressed. To reduce the adoption barrier, the data-
base schema can be customized and analysis tools can be added as Applications per end
user specifications. To facilitate integration of analytical pipelines in accordance with
best practices we further developed and made available Toil Container and Cookiecut-
ter Toil. These templating utilities can be extended to include analyses pipelines for any
data modality (NGS, single cell, imaging, etc.). Lastly, to position Isabl as a platform that
facilitates and automates large scope institutional initiatives, we have developed a fully
documented RESTful API and CLI for integration with biospecimens databases, clini-
cal resources, visualization platforms, sequencing cores, and laboratory information
management systems. Although Isabl adheres to the FAIR principles to a great extent,
we recognize that the platform could adopt a standardized ontology like FHIR (https​://
www.hl7.org/fhir/) in the future.

From a strategic and operational perspective, implementation of computable digital
biobanks is set to minimize costs by efficiently managing compute resources, reduc-
ing time to analyses and importantly demands for hands on operator time to process

https://docs.isabl.io/quick-start
https://docs.isabl.io/quick-start
https://www.hl7.org/fhir/
https://www.hl7.org/fhir/

Page 13 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549 	

Table 1  Five open source Analysis Information Management Systems (AIMS) compared
across 5 categories: (1) metadata capabilities, (2) support for assets management, (3)
features for systematic data processing, (4) mechanisms for results retrieval, and (5)
availability and codebase status

Challenge Feature Isabl GMS SeqWare QuickNGS HTS-flow

Metadata
capabilities

Metadata
infrastruc‑
ture

Relational
database,
RESTful
API + Swag‑
ger docs

Relational
database

Relational
database,
RESTful
API + online
docs

Relational
database

Relational
database

Data model
(ID system)

Individuals
Samples
Experiments
(See Fig. 1)

Individuals
Samples
Experiments
(UUIDs)

Individuals
Samples
Experiments
(User Defined)

Experiments
(User

Defined)

Experiments
(User Defined)

Metadata
ingestion

Excel batch,
Web Forms,
REST API

Command
line

Client

Web Form, CLI
batch

CSV batch SMITH LIMS
integration

Assets man‑
agement

Data import CLI batch CLI one by
one

CLI batch and
web

Manual
symlink

LIMS integra‑
tion

Reference
data import

Genomes,
BED files,
Arbitrary
resources

Genomes,
varia‑
tion lists,
Ensembl

– Download
scripts
for public
databases

Genomes
download

Data multi‑
modality

✓ – – – –

Data organi‑
zation

Hash-based
directory
structure

UUID based
directory
structure

S3 buckets,
user defined
locations

– –

Data process‑
ing

Apps
included

– ✓ ✓ ✓ ✓

New Apps
registration

Python class Perl compo‑
nents

Java compo‑
nents

Shell scripts R modules

WMS
(Deploy‑
ment Sup‑
port)

WMS Agnostic
(Local, LSF)*

Custom WMS
(LSF, Open‑
Lava)

Pegasus,
Oozie (SGE,
AWS)

Shell scripting
(SLURM)

Custom WMS
(SGE)

Operational
automa‑
tions

Signals,
Project Level
auto-merge

– – CRON Jobs –

Results acces‑
sibility

Software
develop‑
ment kit

Python pack‑
age

Perl library – – –

Data provi‑
sioning

CLI, file
system,
download

CLI, file
system

CLI, file
system,
download

Download CLI, file system,
R objects

Purpose of
user inter‑
face

Metadata
search and
ingestion,
status
monitor‑
ing, results
access

Metadata
search, sta‑
tus monitor‑
ing, results
access

Metadata
search and
ingestion,
status moni‑
toring

Metadata
search, end-
user access
to results

Metadata
search, apps
deployment
and configu‑
ration

Page 14 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549

data. These automations at the same time maximize data deliverables, utilization of the
data capital and reproducibility of findings. With the increasing aspiration to develop
AI-driven approaches in healthcare and research, we showcase that the development of
digital biobanks as AI-ready infrastructures will represent critical catalysts for research
innovation, new discoveries, and clinical translation.

Availability and requirements
Project name: Isabl Platform

Project home page: https​://githu​b.com/isabl​-io
Operating system(s): platform independent
Programming language: Python, Javascript
Other requirements: Docker Compose
Licence: ad hoc license, free for academic and non-profit institutions
Any restrictions to use by non-academics: licence needed

Methods
Architecture and codebase

Isabl architecture is built upon separate codebases, which are loosely coupled and can be
deployed independently in a plug-and-play fashion. For example, Isabl Web services only
dependency is Docker Compose (https​://docs.docke​r.com/compo​se; version 1.25.5),
while the command line client is distributed using the Python Package Index (PyPi; https​
://pypi.org). Furthermore, Isabl’s metadata infrastructure is decoupled and agnostic of
compute and data storage environments (e.g. local, cluster, cloud). This functionality
separates dependencies, fosters interoperability across data processing environments,
and ensures that metadata is accessible even when the data is no longer available (FAIR
A2 [13]). Isabl API is documented with ReDoc (https​://platf​orm.isabl​.io/redoc​/; https​://
githu​b.com/Rebil​ly/ReDoc​ version 2.0.0; FAIR I3 [13]) following OpenAPI specifications
(https​://www.opena​pis.org; FAIR I2 [13]; FAIR R1.2 [13]).

Furthermore, Isabl is a framework. This means that Isabl API and Isabl CLI are
installed as external dependencies, guaranteeing compatibility with future upgrades.
As a result, end-users don’t have to alter Isabl’s source code to extend or modify the

Table 1  (continued)

Challenge Feature Isabl GMS SeqWare QuickNGS HTS-flow

Availability
and code‑
base quality

Availability Docker com‑
pose, PyPi
(300 MB)

Vagrant VM
(200 GB)

Vagrant VM
(2 GB)

Manual Install
(4 MB)

Manual Install
(1 MB)

Last Commit
(Github
Stars)

2019 2015 (65) 2016 (26) Last release
2016

2016 (1)

Continuous
integration

✓ – ✓ – –

Docs status ✓ ✓ ✓ ✓ ✓

Programming
Languages

Python, Vue,
Javascript

Perl, Ruby Java, JavaS‑
cript

Bash, PHP PHP, R, JavaS‑
cript

https://github.com/isabl-io
https://docs.docker.com/compose
https://pypi.org
https://pypi.org
https://platform.isabl.io/redoc/
https://github.com/Rebilly/ReDoc
https://github.com/Rebilly/ReDoc
https://www.openapis.org

Page 15 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549 	

platform functionality (i.e. adding support for diverse data modalities such as imaging,
radiology etc.).

Isabl API and CLI

Isabl’s backend (Isabl API) was written in Python (http://www.pytho​n.org; version 3.7)
using the Django (https​://djang​oproj​ect.com; version 2.1.3) web framework as a reus-
able application (https​://docs.djang​oproj​ect.com/en/2.1/ref/appli​catio​ns) so that users
can install it as a dependency without the need to fork out from source code in order to
extend their services. The django package was bootstrapped using Cookiecutter (https​
://githu​b.com/audre​yr/cooki​ecutt​er; version 1.7.2) from Cookiecutter Django Package
(https​://githu​b.com/pydan​ny/cooki​ecutt​er-djang​opack​age; version 2.0.2). PostgreSQL
(https​://www.postg​resql​.org; version 10.1) was used to deliver Isabl’s database. Django
Taggit (https​://githu​b.com/alex/djang​o-taggi​t; version 0.23.0) was used to support tag-
ging capabilities. The RESTful API was implemented using Django REST Framework
(DRF; www.djang​o-rest-frame​work.org; version 3.8.2). The RESTful API swagger docu-
mentation was made available using drf-yasg (https​://githu​b.com/axnsa​n12/drf-yasg;
version 1.16.1). Django Filter, DRF Filters, and DRF Query Fields were used to support
advanced API filtering (https​://githu​b.com/phili​pn/djang​o-rest-frame​work-filte​rs ver-
sion 1.0.0, https​://githu​b.com/carlt​ongib​son/djang​o-filte​r version 2.0.0, and https​://
githu​b.com/wimgl​enn/djang​orest​frame​work-query​field​s version 1.0.0, respectively).
RESTful API authentication was supported by Django Rest Auth (https​://githu​b.com/
Tivix​/djang​o-rest-auth; version 0.9.2). Django Reversion was used to provide metadata
version control (https​://githu​b.com/etian​en/djang​o-rever​sion; version 4.0.4). Excel files
processing was conducted using XlsxWriter (https​://githu​b.com/jmcna​mara/XlsxW​riter​
; version 0.9.8). Isabl CLI was also bootstrapped with Cookiecutter from Cookiecutter
PyPackage (https​://githu​b.com/audre​yr/cooki​ecutt​er-pypac​kage; version 0.1.1). Com-
mand line functionalities were provided by Click (https​://githu​b.com/palle​ts/click​; ver-
sion 7.0) while mechanisms to conduct HTTP operations were brought by Requests
(http://docs.pytho​n-reque​sts.org; version 2.23.0).

Isabl web

The user interface was developed as an interactive single-page application using Vue
(https​://vuejs​.org; version 2.5.16), a javascript web development framework. It’s deliv-
ered as a node (https​://nodej​s.org) package through NPM (https​://www.npmjs​.com), so
it can be consumed by any developer in it’s own web page. Currently, it comes by default
when Isabl’s cookiecutter (https​://githu​b.com/isabl​-io/cooki​ecutt​er-api) is used to gen-
erate a ready-to-go sample django project. As a Vue package, Isabl Web uses vue’s most
common libraries, such as vue-cli for local development (https​://cli.vuejs​.org; version
3.3.0), vuex for state and data management (https​://vuex.vuejs​.org; version 3.0.1), vue-
router (https​://route​r.vuejs​.org; version 3.0.1) for page browsing, vuetify (https​://vueti​
fyjs.com; version 1.1.9) as a styled-components framework based on google’s Material
Design (https​://mater​ial.io/desig​n), and several other open-source packages for specific
desired features within the interface: vue-gallery, vue-json-excel, vue-upload-compo-
nent, vue-clipboard, vuex-router-sync, v-hotkey, among others, all available from the
NPM registry. Moment (https​://momen​tjs.com; version 2.22.2) is used to parse dates

http://www.python.org
https://djangoproject.com
https://docs.djangoproject.com/en/2.1/ref/applications
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter
https://github.com/pydanny/cookiecutter-djangopackage
https://www.postgresql.org
https://github.com/alex/django-taggit
http://www.django-rest-framework.org
https://github.com/axnsan12/drf-yasg
https://github.com/philipn/django-rest-framework-filters
https://github.com/carltongibson/django-filter
https://github.com/wimglenn/djangorestframework-queryfields
https://github.com/wimglenn/djangorestframework-queryfields
https://github.com/Tivix/django-rest-auth
https://github.com/Tivix/django-rest-auth
https://github.com/etianen/django-reversion
https://github.com/jmcnamara/XlsxWriter
https://github.com/audreyr/cookiecutter-pypackage
https://github.com/pallets/click
http://docs.python-requests.org
https://vuejs.org
https://nodejs.org
https://www.npmjs.com
https://github.com/isabl-io/cookiecutter-api
https://cli.vuejs.org
https://vuex.vuejs.org
https://router.vuejs.org
https://vuetifyjs.com
https://vuetifyjs.com
https://material.io/design
https://momentjs.com

Page 16 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549

and times, and D3 (https​://d3js.org; version 5.9.7) to create interactive components to
show results and reports, such as the Individual-Experiment-Sample tree. Within devel-
opment, a handful amount of libraries are used to boost capabilities of javascript, HTML
and CSS; babel (https​://babel​js.io; version 7.0.0) allows to use the latest ES6 features by
compiling modern javascript into browser-compatible one, sass (https​://sass-lang.com)
extends CSS and facilitate its use, webpack (https​://webpa​ck.js.org; version 4.0.0) is used
to create a single-page bundle to publish, and finally jest (https​://jestj​s.io; version 23.0.1)
and cypress (https​://www.cypre​ss.io; version 1.10.1) are used to create unit and end-to-
end tests, without extensive configuration.

Continuous integration, testing, and documentation

The RESTful API, database, and Web App were orchestrated using Docker Compose
(https​://docs.docke​r.com/compo​se; version 1.25.5) while all dependencies were resolved
using Docker (https​://www.docke​r.com; version 19.03.8). The Isabl CLI dependencies
were limited to python libraries ensuring that the project was pip-installable (https​://
pypi.org/proje​ct/pip; version 20.1). All code repositories were Continuously Integrated
(CI) using Travis CI (https​://travi​s-ci.org), small code changes were merged frequently—
rather than large changes at the end of development cycles. This was ensured by auto-
matically running tests in the cloud upon every new code change. Testing was conducted
and implemented with Pytest (https​://docs.pytes​t.org; version 3.7.4) and tox (https​://
pypi.org/proje​ct/tox; version 2.9.1). Moreover, + 90% test coverage was guaranteed
and automatically evaluated on the cloud using Coverage.py (https​://pypi.org/proje​ct/
cover​age; version 4.4.2) and Codecov (https​://codec​ov.io) for python projects. Extensive
checks on documentation and code quality standards were ensured using ESLint (https​
://eslin​t.org; version 4.19.1), Pylint (https​://www.pylin​t.org; version 1.8.1), and Pydoc-
style (https​://pypi.org/proje​ct/pydoc​style​; version 2.1.1). Production code was homog-
enized and formatted with Black (https​://githu​b.com/ambv/black​; version 18.9b0) and
Prettier (https​://prett​ier.io; version 1.12.1). Continuous Deployment (CD) of the com-
ponents to their respective package managers and hosting sites was automatically con-
ducted upon new releases. Both Isabl API and Isabl CLI were deployed to the Python
Package Index (PyPi; https​://pypi.org), while Isabl Web was deployed to npm (https​://
www.npmjs​.com). Isabl’s documentation is stored on GitHub (https​://githu​b.com/isabl​
-io/docs) and can be browsed at https​://docs.isabl​.io.

Cookiecutter toil and toil container

Cookiecutter Toil (https​://githu​b.com/papae​mmela​b/cooki​ecutt​er-toil) was forked from
Cookiecutter PyPackage. Similarly to Isabl CLI, Toil Container (https​://githu​b.com/
papae​mmela​b/toil_conta​iner) was bootstrapped with Cookiecutter PyPackage. The
mechanisms to perform Docker (https​://www.docke​r.com) and Singularity (https​://
singu​larit​y.lbl.gov; version 2.6) system calls were implemented as adaptations of Toil’s
apiDockerCall (https​://githu​b.com/DataB​iosph​ere/toil/blob/d23f7​ec46d​2006c​136a2​
a5b4e​57ead​fb44a​606b7​/src/toil/lib/docke​r.py#L199) and Toil-vg’s singularityCall (https​
://githu​b.com/vgtea​m/toil-vg/blob/48645​cbf9c​1e36c​73abf​2f731​b3f06​60718​5a5e9​/src/
toil_vg/singu​larit​y.py#L22). Toil Container was developed following the same standards

https://d3js.org
https://babeljs.io
https://sass-lang.com
https://webpack.js.org
https://jestjs.io
https://www.cypress.io
https://docs.docker.com/compose
https://www.docker.com
https://pypi.org/project/pip
https://pypi.org/project/pip
https://travis-ci.org
https://docs.pytest.org
https://pypi.org/project/tox
https://pypi.org/project/tox
https://pypi.org/project/coverage
https://pypi.org/project/coverage
https://codecov.io
https://eslint.org
https://eslint.org
https://www.pylint.org
https://pypi.org/project/pydocstyle
https://github.com/ambv/black
https://prettier.io
https://pypi.org
https://www.npmjs.com
https://www.npmjs.com
https://github.com/isabl-io/docs
https://github.com/isabl-io/docs
https://docs.isabl.io
https://github.com/papaemmelab/cookiecutter-toil
https://github.com/papaemmelab/toil_container
https://github.com/papaemmelab/toil_container
https://www.docker.com
https://singularity.lbl.gov
https://singularity.lbl.gov
https://github.com/DataBiosphere/toil/blob/d23f7ec46d2006c136a2a5b4e57eadfb44a606b7/src/toil/lib/docker.py#L199
https://github.com/DataBiosphere/toil/blob/d23f7ec46d2006c136a2a5b4e57eadfb44a606b7/src/toil/lib/docker.py#L199
https://github.com/vgteam/toil-vg/blob/48645cbf9c1e36c73abf2f731b3f06607185a5e9/src/toil_vg/singularity.py#L22
https://github.com/vgteam/toil-vg/blob/48645cbf9c1e36c73abf2f731b3f06607185a5e9/src/toil_vg/singularity.py#L22
https://github.com/vgteam/toil-vg/blob/48645cbf9c1e36c73abf2f731b3f06607185a5e9/src/toil_vg/singularity.py#L22

Page 17 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549 	

and testing procedures of Isabl. Alike Isabl CLI, Cookiecutter Toil and Toil Container
were deployed to PyPi.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03879​-7.

Additional file 1. Supplementary figures and notes related to this manuscript.

Abbreviations
AIMS: Analysis information management system; WGS: Whole genome sequencing; NGS: Next generation sequencing;
CLI: Command line interface; SPA: Single page application; HPC: High performance computing; AI: Artificial intelligence;
UUID: Universally unique identifier; SDK: Software development kit; WMS: Workflow management system.

Acknowledgements
We would like to acknowledge Gaelle Ougourni, Franck Rappaport, Ross Levine, Minal Patel, Kristina Jack, Erin McGovern,
Chris Famulare, Irene Sanchez, Nancy Bouvier, Andrew McPherson, Arfath Pasha, Daniel Leongonmornlet, Nicole Rusk
and members of the Papaemmanuil Laboratory, Computational Oncology, Center for Heme Malignancies and Depart‑
ment of Pediatrics for input on system design, functionality and system testing.

Authors’ contributions
JSM and EP designed Isabl’s architecture and wrote the manuscript. JSM developed Isabl DB, Isabl API, and Isabl CLI. JSM
and JEA developed Isabl Web, Toil Container, and Cookiecutter Toil. JSM, JEA, MFL, YZ, and GG integrated analyses appli‑
cations, implemented the no-click genome, related integrations, visualization features, and wrote documentation. EP, GG,
and AK offered scientific guidance throughout the implementation of the study. All authors reviewed and approved the
manuscript.

Funding
Isabl’s development was supported by the Sohn Conference Foundation and the Olayan Fund for Precision Pediatric
Cancer Medicine and institutional funds to support bioinformatics operations for the center for heme malignancies at
Memorial Sloan Kettering Cancer Center. Elli Papaemmanuil is a Josie Robertson Investigator and is supported by the
European Hematology Association, American Society of Hematology, Gabrielle’s Angels Foundation, the V Foundation,
The Geoffrey Beene Foundation and is a recipient of a Damon Runyon-Rachleff Innovators award. The declared funding
provided salary support to support Bioinformatics operations for the Department of Pediatrics and the Center for Hema‑
tological Malignancies at Memorial Sloan Kettering Cancer Center. The funding bodies were not involved in study design
collection, analysis and interpretation of data or in writing the manuscript.

Availability of data and materials
Isabl Platform is free for academic and non-profit institutions, source code can be requested at licenses@isabl.io.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
JSM, EP, and AK are founders of Isabl a whole genome analytics company.

Author details
1 Memorial Sloan Kettering Cancer Center, New York, NY, USA. 2 Isabl Inc., New York, NY, USA.

Received: 5 April 2020 Accepted: 13 November 2020

References
	1.	 Torkamani A, Andersen KG, Steinhubl SR, Topol EJ. High-definition medicine. Cell. 2017;170:828–43.
	2.	 Riba M, Sala C, Toniolo D, Tonon G. Big data in medicine, the present and hopefully the future. Front Med.

2019;6:263.
	3.	 Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med.

2019;25:44–56.
	4.	 Filipp FV. Opportunities for artificial intelligence in advancing precision medicine. Curr Genet Med Rep.

2019;7:208–13.
	5.	 Griffith M, et al. Genome modeling system: a knowledge management platform for genomics. PLoS Comput Biol.

2015;11:e1004274.
	6.	 Wagle P, Nikolić M, Frommolt P. QuickNGS elevates next-generation sequencing data analysis to a new level of

automation. BMC Genom. 2015;16:487.

https://doi.org/10.1186/s12859-020-03879-7

Page 18 of 18Medina‑Martínez et al. BMC Bioinformatics (2020) 21:549

	7.	 Quilez J, et al. Parallel sequencing lives, or what makes large sequencing projects successful. bioRxiv. 2017. https​://
doi.org/10.1101/13635​8.

	8.	 Reisinger E, et al. OTP: an automatized system for managing and processing NGS data. J Biotechnol. 2017;261:53–62.
	9.	 Bianchi V, et al. Integrated systems for NGS data management and analysis: open issues and available solutions.

Front Genet. 2016;7:75.
	10.	 Leipzig J. A review of bioinformatic pipeline frameworks. Brief Bioinform. 2017;18:530–6.
	11.	 Cohen-Boulakia S, et al. Scientific workflows for computational reproducibility in the life sciences: status, challenges

and opportunities. Future Gener Comput Syst. 2017;75:284–98.
	12.	 Kulkarni P, Frommolt P. Challenges in the setup of large-scale next-generation sequencing analysis workflows.

Comput Struct Biotechnol J. 2017;15:471–7.
	13.	 Wilkinson MD, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data.

2016;3:160018.
	14.	 Pittard WS, Li S. The essential toolbox of data science: Python, R, Git, and Docker. Methods Mol Biol.

2020;2104:265–311.
	15.	 Chen, L. Microservices: architecting for continuous delivery and DevOps. In: 2018 IEEE International conference on

software architecture (ICSA) (2018). https​://doi.org/10.1109/icsa.2018.00013​.
	16.	 Perez F, Granger BE. IPython: a system for interactive scientific computing. Comput Sci Eng. 2007;9:21–9.
	17.	 Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large dele‑

tions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25:2865–71.
	18.	 Saunders CT, et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs.

Bioinformatics. 2012;28:1811–7.
	19.	 Sadedin SP, Pope B, Oshlack A. Bpipe: a tool for running and managing bioinformatics pipelines. Bioinformatics.

2012;28:1525–6.
	20.	 Vivian J, et al. Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol. 2017;35:314–6.
	21.	 Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific containers for mobility of compute. PLoS ONE.

2017;12:e0177459.
	22.	 Rustad EH, et al. Stability and uniqueness of clonal immunoglobulin CDR3 sequences for MRD tracking in multiple

myeloma. Am J Hematol. 2019a. https​://doi.org/10.1002/ajh.25641​.
	23.	 Rustad EH, et al. Baseline identification of clonal V(D)J sequences for DNA-based minimal residual disease detection

in multiple myeloma. PLoS ONE. 2019b;14:e0211600.
	24.	 Slotkin EK, et al. Patient-driven discovery, therapeutic targeting, and post-clinical validation of a novel fusion-driven

cancer. Cancer Discov. 2019;9:605–16.
	25.	 Kazandjian D, et al. Molecular underpinnings of clinical disparity patterns in African American vs. Caucasian Ameri‑

can multiple myeloma patients. Blood Cancer J. 2019;9:15.
	26.	 Diolaiti D, et al. A recurrent novel fusion identifies a new subtype of high-grade spindle cell sarcoma. Cold Spring

Harb Mol Case Stud. 2018;4:a003194.
	27.	 Ledergor G, et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma.

Nat Med. 2018;24:1867–76.
	28.	 Xiao W, et al. Mutations are enriched in distinct subgroups of mixed phenotype acute leukemia with T-lineage dif‑

ferentiation. Blood Adv. 2018;2:3526–39.
	29.	 Bolton KL, et al. Oncologic therapy shapes the fitness landscape of clonal hematopoiesis. bioRxiv. 2019. https​://doi.

org/10.1101/84873​9.
	30.	 Bernard E, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelod‑

ysplastic syndromes. bioRxiv. 2019. https​://doi.org/10.1101/2019.12.19.86884​4.
	31.	 Zehir A, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000

patients. Nat Med. 2017;23:703–13.
	32.	 Niu B, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics.

2014;30:1015–6.
	33.	 Davies H, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med.

2017;23:517–25.
	34.	 Fu Y, et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat

Cancer. 2020. https​://doi.org/10.1101/81354​3.
	35.	 Barker J, Hoogi A, Depeursinge A, Rubin DL. Automated classification of brain tumor type in whole-slide digital

pathology images using local representative tiles. Med Image Anal. 2016;30:60–71.
	36.	 O’Connor BD, Merriman B, Nelson SF. SeqWare query engine: storing and searching sequence data in the cloud.

BMC Bioinform. 2010;11(12):S2.
	37.	 Correction: The cancer genomics cloud: collaborative, reproducible, and democratized-a new paradigm in large-

scale computational research. Cancer Res. 2018;78:5179.
	38.	 Birger C, et al. FireCloud, a scalable cloud-based platform for collaborative genome analysis: strategies for reducing

and controlling costs. bioRxiv. 2017. https​://doi.org/10.1101/20949​4.
	39.	 Fisch KM, et al. Omics Pipe: a community-based framework for reproducible multi-omics data analysis. Bioinformat‑

ics. 2015;31:1724–8.
	40.	 Kallio MA, et al. Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC

Genom. 2011;12:507.
	41.	 Reich M, et al. GenePattern 2.0. Nat Genet. 2006;38:500–1.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/136358
https://doi.org/10.1101/136358
https://doi.org/10.1109/icsa.2018.00013
https://doi.org/10.1002/ajh.25641
https://doi.org/10.1101/848739
https://doi.org/10.1101/848739
https://doi.org/10.1101/2019.12.19.868844
https://doi.org/10.1101/813543
https://doi.org/10.1101/209494

	Isabl Platform, a digital biobank for processing multimodal patient data
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	System overview
	Platform architecture
	Data model

	Results
	Life cycle of bioinformatic operations
	Projects and metadata registration
	Data import and registration
	Deploying data processing tools at scale with Isabl applications
	Operational automations
	Data access and results retrieval
	Integration of analytical applications into Isabl
	User roles and permissions

	Case studies
	Case study 1: scalability and audit trail
	Case study 2: meta analyses, data harmonization, and bugs correction
	Case study 3: automation of analytical workflows
	Case study 4: multimodal data integration

	Comparison to other platforms

	Discussion
	Availability and requirements
	Methods
	Architecture and codebase
	Isabl API and CLI
	Isabl web
	Continuous integration, testing, and documentation
	Cookiecutter toil and toil container

	Acknowledgements
	References

