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Abstract

Magnetic resonance (MR) diffusion-weighted imaging (DWI) is often used to detect focal

liver lesions (FLLs), though DWI image quality can be limited in the left liver lobe owing to

the pulsatile motion of the nearby heart. Flow-compensated (FloCo) diffusion encoding has

been shown to reduce this pulsation artifact. The purpose of this prospective study was to

intra-individually compare DWI of the liver acquired with conventional monopolar and FloCo

diffusion encoding for assessing metastatic FLLs in non-cirrhotic patients. Forty patients

with known or suspected multiple metastatic FLLs were included and measured at 1.5 T

field strength with a conventional (monopolar) and a FloCo diffusion encoding EPI sequence

(single refocused; b-values, 50 and 800 s/mm2). Two board-certified radiologists analyzed

the DWI images independently. They issued Likert-scale ratings (1 = worst, 5 = best) for pul-

sation artifact severity and counted the difference of lesions visible at b = 800 s/mm2 sepa-

rately for small and large FLLs (i.e., < 1 cm or > 1 cm) and separately for left and right liver

lobe. Differences between the two diffusion encodings were assessed with the Wilcoxon

signed-rank test. Both readers found a reduction in pulsation artifact in the liver with FloCo

encoding (p < 0.001 for both liver lobes). More small lesions were detected with FloCo diffu-

sion encoding in both liver lobes (left lobe: six and seven additional lesions by readers 1 and

2, respectively; right lobe: five and seven additional lesions for readers 1 and 2, respec-

tively). Both readers found one additional large lesion in the left liver lobe. Thus, flow-com-

pensated diffusion encoding appears more effective than monopolar diffusion encoding for

the detection of liver metastases.

Introduction

Diffusion-weighted imaging (DWI) has become an indispensable technique for the detection

of focal liver lesions (FLLs) [1]. The presence or absence of FLL is a key parameter for choosing

the subsequent treatment path in many tumor diseases, e.g. neuroendocrine tumors [2]. In

liver DWI, as in virtually all other fields of clinical DWI, the diffusion encoding is based on

variations of the pulsed gradient approach introduced by Stejskal and Tanner [3], which is for
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good reason; no other gradient time profile can match its b-value efficiency [4, 5], at least if

one compares versions optimized in this regard [6–9]. As a variation of this approach, twice-

refocused diffusion encoding has found widespread application as a means for minimizing

eddy current artifacts [10]. However, to our knowledge, no additional diffusion encodings

have been widely applied in clinical MRI.

Nonetheless, a plethora of available diffusion encodings exist that exhibit fascinating prop-

erties, including oscillating gradients [11, 12], double diffusion encoding [13], and intensity-

modulated two-gradient-pulse encoding [14], which all enable visualization of a range of

microstructural tissue features, such as average cell surface-to-volume ratio [11] or even cell

shape distribution (at least in certain limits) [14]. While extensively explored in a research con-

text, it is presumably the high complexity of these advanced diffusion encodings, the need for

extended scan time, and the rigorous technical demands that have so far prevented their tran-

sition into the broader clinical routine.

One specific diffusion encoding may stand out in this respect: flow-compensated (FloCo)

diffusion encoding [15–20]. It suppresses the effect of signal decays induced by ballistic motion

[15–18, 21] at the price of an increased minimally achievable echo time (TE) and a longer repe-

tition time (TR). Overcoming these signal decays is relevant in several parts of the human

body, but potentially nowhere to the same extent as in the left liver lobe due to its proximity to

the heart [22, 23].

FloCo diffusion encoding can reduce the pulsation artifact considerably, as has been shown

in a series of healthy volunteer investigations [6, 7, 24–26], although to our knowledge, until

now, only one dataset from a single patient with FLLs has been presented [25]. In these patient

images, a lesion was visible in the left liver lobe only with FloCo diffusion encoding. We are

not aware of further studies clinically evaluating FloCo diffusion encodings for the detection

of metastatic FLLs.

We hypothesized that a reduction in pulsation artifacts should lead to a more effective FLL

detection in patients and conducted a prospective study to compare FloCo diffusion encoding

to conventional monopolar diffusion encoding for the detection of liver metastases in onco-

logic patients.

Materials and methods

Study population

Patients aged� 18 years were recruited prospectively from January to August 2020. To maxi-

mize the number of measured FLLs while minimizing the number of total scans, only patients

who were known to have multiple malignant FLLs, or whose medical records made it likely

that multiple malignant FLLs were present, were asked to participate in the study (stage IV

cancer patients). Further inclusion criteria were a high probability that the patient would toler-

ate the examination prolonged by the study sequences, and written informed consent. Exclu-

sion criteria were the presence of active or ferromagnetic implants, claustrophobia, tattoos

close to the eyes, and sedative medications. All participants had a scheduled clinical MR exam-

ination and were recruited during the clinical workflow. The study was approved by the local

Institutional Ethics Committee (study number, 276_19 B).

Magnetic resonance imaging

All measurements were performed on a clinical 1.5 T scanner (MAGNETOM Aera, XQ gradi-

ents with max. gradient strength 45 mT/m and max. slew rate 200 T/m/s, Siemens Healthcare,

Erlangen, Germany) with an 18-channel anterior body coil in combination with a 32-channel

spine array coil.
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A vendor-provided prototype echo planar imaging (EPI) sequence was used featuring

two diffusion encodings: Monopolar and FloCo. Monopolar is the vendor-specific name

for the single-refocused diffusion encoding scheme. The vendor-provided sequence option

‘dynamic field correction’ was used to compensate for eddy current induced image distor-

tions [10]. In the FloCo diffusion encoding used in this work, two pairs of monopolar gra-

dients are placed symmetrically around the single 180˚ refocusing pulse of the spin-echo

EPI sequence. Note that this placement strategy of the diffusion encoding gradients results

in a nulled zeroth gradient moment during the 180˚ pulses and thus makes the use of

crusher gradients necessary that are placed besides the 180˚ pulses even for b-values larger

than zero. These crusher gradients are not flow-compensated (and neither is the EPI read-

out) so that the flow-compensation is not perfect, strictly speaking. In the particular

sequence implementation, the crusher gradients are merged with the diffusion encoding

gradients. The TE of both DWI sequences was matched, to match the contrast-to-noise

ratio (CNR). Table 1 summarizes the diffusion sequence parameters used to collect data

before contrast agent administration.

Additionally, a standard clinical liver MRI protocol was performed for each patient, consist-

ing of a T2-weighted HASTE sequence (repetition time [TR], 1000 ms; echo time [TE], 92 ms;

slice thickness [ST], 5 mm); a fat-saturated T2-weighted TSE sequence (TR, 4848 ms; TE, 102

ms; ST, 5 mm); and fat-saturated T1-weighted GRE sequences (TR, 7.22 ms; TE, 2.39 ms; ST, 5

mm), one taken before and several after contrast agent administration (0.1 mmol/kg body

weight; gadobutrol, Gadovist/Gadavist, Bayer Vital, Leverkusen, Germany). The contrast

agent was administered after the diffusion sequences.

Table 1. MRI sequence parameters for FloCo and monopolar DWI sequences.

Sequence DWI EPI

Repetition time (ms) 12,400

Echo time (ms) 70

Voxel size (mm3) 3.125 × 3.125 × 5 interpolated to 1.6 × 1.6 × 5

Field of view (read × phase; mm2) 400 × 325

Phase direction anterior-posterior

Phase resolution 100%

Partial Fourier 6/8

Matrix 128 × 104

Slice distance 20%

Number of slices 39 (axial)

Parallel imaging GRAPPA ×2, 24 reference lines

Bandwidth (Hz/pixel) 2,790

Echo spacing (ms) 0.49

b-values (s/mm2) 50, 800

Averages (b50, b800) 1, 4

Diffusion mode 3-scan trace

Diffusion scheme Once monopolar, once FloCo

Acquisition time (min:s) 3:43

Trigger free breathing

Surface coil intensity correction yes, the ‘pre-scan normalize’ option was used

Fat saturation SPAIR & gradient reversal

DWI = diffusion-weighted imaging, EPI = echo planar imaging, GRAPPA = GeneRalized Autocalibrating Partial

Parallel Acquisition, FloCo = flow-compensated, SPAIR = Spectral Adiabatic Inversion Recover

https://doi.org/10.1371/journal.pone.0268843.t001
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Image analysis

After an initial quality check, the readers only assessed FLLs that they identified as metastases.

Concomitant benign lesions (e.g., cysts, hemangiomas) were not scored. The readers used all

available image data and the clinical radiology reports to differentiate the lesions.

Quantitative evaluation. The minimal and maximal lesion size was measured in the

FloCo b = 800 s/mm2 (b800) images using the ruler tool according to the Response Evaluation

Criteria in Solid Tumors (RECIST 1.1 [27]) criteria by a trained physicist (T.F.) under the

supervision of a board-certified radiologist (S.B.). The diameters were measured only in the

FloCo b800 images because the lesions were best visible there.

Under the supervision of two radiologists (M.S. and S.B.), a trained physicist (T.F., 2 years

of experience in abdominal DWI) defined 3D segmentations with the Medical Imaging Inter-

action Toolkit (MITK, v2021.02, Heidelberg, Germany), encompassing the largest lesion in

the left and right liver lobes for both diffusion encodings. The 3D volumes were defined with

enough distance to the lesion borders to avoid partial-volume effects and used to calculate the

apparent diffusion coefficient (ADC). As parallel imaging had been used, the standard devia-

tion (SD) of the noise depended on the position and could not be assessed easily, e.g., using the

SD of the signal in a region outside the body. Thus, following [28–31], the SD of the liver

parenchyma in the specified ROI was used. It was estimated with an approximately 10 cm2 2D

segmentation drawn in a representative slice in the right liver lobe, sparing vessels. The signal-

to-noise ratio (SNR) was then calculated by dividing the average signal in the 3D lesion seg-

mentation by the standard deviation in the 2D liver segmentation.

The ADC was calculated from the signal averaged over the 3D lesion segmentations for

three combinations (FloCo = b50-FloCo and b800-FloCo; Monopolar = b50-Monopolar and

b800-Monopolar; Mixed = b50-Monopolar and b800-FloCo).

Qualitative whole-liver evaluation. Two board-certified radiologists (M.S. and H.S., 13

and 9 years of experience in abdominal imaging, respectively) independently rated the FloCo

and monopolar datasets using 5-point Likert scales (1 = worst, 5 = best). The readers were not

blinded to the acquisition type, as the distinction between the two techniques was obvious

from the image impression.

To evaluate the image quality, the readers rated the following features (c.f. [31] for a detailed

description of the scores):

a. Overall image quality, once for b50 and once for b800, for both liver lobes combined

(1 = very poor, 2 = poor, 3 = acceptable, 4 = good, 5 = very good), following [32–34].

b. Blood signal blackness, once for b50 and once for b800, for both liver lobes combined

(1 = very poor, 2 = poor, 3 = acceptable, 4 = good, 5 = very good).

c. Severity of the cardiac motion artifact, once for the left and once for the right liver lobe, only

for b800 as the artifact becomes only prominent at higher b-values (1 = liver lobe not identifi-

able, 2 = black holes frequently visible, 3 = strong signal loss and sporadic small black holes,

4 = slight signal loss, but no black holes, 5 = no signal loss visible), following [25].

Qualitative liver lesion evaluation. Following [31], the readers rated lesion conspicuity

(Likert scale from 1 to 5) for small lesions (< 1 cm) and large lesions (� 1 cm) in each liver

lobe. Lesion size was estimated visually and confirmed with the viewer’s ruler tool, if

necessary.

Lesion detection performance was evaluated separately for small and large lesions. As

patients with known or expected presence of multiple FLLs were included in this study, the

absolute number of detected lesions was not recorded. Instead, the readers counted the
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number of lesions in the FloCo images and the monopolar images, and the difference in the

number of lesions, expressed as Δlesions, was calculated by subtracting the number of monopo-

lar lesions from the number of FloCo lesions. A positive value indicated that there were more

lesions found with FloCo than with monopolar encoding, while a negative value indicated that

more lesions were found with monopolar than with FloCo encoding. To simplify the evalua-

tion, Δlesions� 3 was set to Δlesions = 3 and Δlesions� -3 was set to Δlesions = -3.

Statistical analysis

Statistical analysis was performed with MATLAB Release 2017b (The MathWorks, Inc.,

Natick, MA, USA). Significant differences in the absolute qualitative Likert scores between

FloCo and monopolar diffusion encoding were tested using the non-parametric Wilcoxon

signed-rank test. To assess the differences in SNR and ADC values between FloCo and

Fig 1. Participant flow diagram. Footnote: FloCo = Flow-compensated. DWI = diffusion-weighted imaging.

https://doi.org/10.1371/journal.pone.0268843.g001
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monopolar diffusion encoding, the Shapiro–Wilk test was performed to test for normality.

Subsequently, either a one-way ANOVA or a parametric test was performed (Wilcoxon

signed-rank test or Kruskal–Wallis test). Additionally, post hoc tests were performed using

Tukey’s honestly significant difference procedure. The inter-reader agreement was assessed by

computing Cohen’s kappa (κ). A p-value < 0.05 was considered significant. The SNR, ADC,

and smallest and largest visible lesions were described with descriptive statistics.

Results

Patients

Forty consecutive patients were enrolled in this study (27 males, 13 females). The mean partici-

pant age was 60 ± 9 years (range: 34–74 years). All liver MRI scans were successfully and

completely performed and passed the initial quality check. Quantitative and qualitative evalua-

tions were performed for all participants. FLLs were present in all participants. Fig 1 displays

the participant inclusion flow diagram and Table 2 summarizes further participant demo-

graphics and disease characteristics.

Representative images

Figs 2–5 illustrate representative cases. In all four examples, lesions were reported in the FloCo

datasets and were missed or much less visible in the monopolar datasets.

Quantitative image analysis

Table 3 and Fig 6 summarize the quantitative and test statistics for the SNR in the largest

lesion present in the right and left liver lobes measured with monopolar and FloCo acquisi-

tion at b800. Furthermore, the results for ADC and the diameter of the smallest and largest

visible lesions in the left and right liver lobes are given. Small lesions were regularly present.

A significant difference was found between the lesion SNRs measured with the two diffu-

sion encodings for both liver lobes (one-way ANOVA for the left liver lobe; Wilcoxon

signed-rank test for right liver lobe used because of failed Shapiro–Wilk test). The mean,

median, minimum, quartile 1, quartile 3, and maximum SNR in the left liver lobe lesions

Table 2. Patient demographics and disease characteristics.

Disease Number of patients

Neuroendocrine tumor 21/40 (52.5%)

Colorectal cancer 10/40 (25.0%)

Thyroid cancer 4/40 (10.0%)

Melanoma 2/40 (5.0%)

Mixed adeno-neuroendocrine carcinoma 1/40 (2.5%)

Pancreatic cancer 1/40 (2.5%)

Non-small cell lung cancer 1/40 (2.5%)

No evaluation of right liver lobe due to hemihepatectomy 3

No evaluation of left liver lobe due to hemihepatectomy 1

At least one lesion < 1 cm present in right liver lobe 34

At least one lesion > 1 cm present in right liver lobe 31

At least one lesion < 1 cm present in left liver lobe 32

At least one lesion > 1 cm present in left liver lobe 30

The disease type was confirmed histologically, though not for each assessed lesion.

https://doi.org/10.1371/journal.pone.0268843.t002
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were approximately 30% higher with FloCo than with monopolar encoding. In the right

liver lobe, the effect size was less, with approximately 10% to 15% increased SNR with FloCo

than with monopolar encoding. The quantitative difference between the monopolar and

FloCo ADCs was small, but the mixed ADC (calculated with b50-Monopolar and

b800-FloCo) was reduced by approximately 15%. The differences between the three ADCs

(Monopolar, FloCo, and Mixed) were significant (for the left and right liver lobe). The post

hoc evaluation revealed no significant differences between monopolar and FloCo ADCs (in

Fig 2. Diffusion-weighted b800 images of the liver in a 42-year-old patient with metastatic medullary thyroid carcinoma. Three adjacent slices, left-side flow-

compensated (FloCo), right-side conventional monopolar diffusion encoding. There are considerable pulsation artifacts with monopolar diffusion encoding, which

mask focal lesions in the left liver lobe (thick arrows). One of the arrow-marked small lesions was not reported by either of the two readers in the monopolar dataset.

The other arrow-marked small lesion was not reported by one of the readers in the monopolar dataset.

https://doi.org/10.1371/journal.pone.0268843.g002
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left and right liver lobes), but a significant difference was found between FloCo and mixed

ADC (for left and right liver lobes).

S1 Fig shows ADC maps computed with monopolar b50 data combined once with FloCo

b800 data (i.e., mixed) and once with monopolar b800 data (i.e., monopolar) as well as ADC

maps computed from FloCo data alone (i.e., FloCo). The mixed and monopolar maps are of

similar quality, but the quality of the FloCo map is somewhat lower. This indicates that the

proposed mixed-acquisition protocol (i.e., acquiring b50 monopolar and b800 FloCo data)

may also yield ADC maps of sufficient quality.

An extended evaluation of the ADC maps was not performed because many ADC maps

were corrupted by breathing motion (the influence of which is visible at the thick arrow). The

use of navigator triggering might have mitigated this breathing-related problem but was not

possible with the prototype sequence.

Qualitative image analysis

Fig 7 shows histograms of the Likert score evaluation for monopolar and FloCo diffusion

encoding, with the pooled data of the two readers presented. Tables 4 and 5 show the individ-

ual reader data. The overall image quality was significantly better with the FloCo diffusion

encoding at both b-values (for both readers). The black-blood state was reached significantly

better at b50 with monopolar diffusion encoding (for both readers), but no significant differ-

ence was observed at b800 (p� 0.25 for both readers). In contrast, the pulsation artifact was

significantly less with FloCo diffusion encoding at both b-values (for both readers).

No negative values were calculated for Δlesions, indicating that more or equal numbers of

lesions were detected with FloCo diffusion encoding than with monopolar diffusion encoding

for all participants. In the left liver lobe with FloCo diffusion encoding, readers 1 and 2 found

six and seven additional small lesions, respectively, and one additional large FLL both. In the

right liver lobe, readers 1 and 2 found five and seven additional small lesions, respectively,

with FloCo diffusion encoding, and no additional large lesions.

Cohen’s κ was� 0.67 in all considered cases, indicating substantial or almost perfect agree-

ment according to Landis and Koch [35].

Discussion

We evaluated the suitability of conventional monopolar and flow-compensated (FloCo) diffu-

sion encoding for the detection of focal liver lesions in oncologic patients. With flow-compen-

sated encoding, the pulsation artifact was reduced and more lesions were detected. Moreover,

the overall image quality was superior and the blood was sufficiently dark at b800. Thus, flow-

compensated encoding appears to be better suited for the detection of focal liver lesions.

Different techniques have been described to reduce pulsation artifacts in the liver. In this

work we focused on a modified DWI sequence with FloCo diffusion encoding. Yet, there are

alternative approaches, one of which is electrocardiogram (ECG) triggers [36, 37]. However,

several drawbacks of ECG triggering impede its widespread use in clinical DWI. It is cumber-

some to use the ECG trigger, and the rapid switching of diffusion gradient often degrades the

ECG signal quality. Breathing navigator triggers have also been recommended, particularly for

the detection of small FLLs [31]. However, using ECG and breathing triggers simultaneously

would presumably extend the scan time to an unacceptable degree.

Fig 3. Diffusion-weighted b800 images of the liver in a 39-year-old patient with a metastatic neuroendocrine tumor of the jejunum. Four adjacent slices,

left-side flow-compensated (FloCo), right-side monopolar diffusion encoding. The arrow-marked large lesion was detected by both readers but is much less

visible in the monopolar dataset.

https://doi.org/10.1371/journal.pone.0268843.g003
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The pulsation artifact can also be reduced with postprocessing techniques. Ichikawa et al.

and Liau et al. proposed two approaches involving averaging multiple acquired images such

that stronger signal intensities are more heavily weighted [38, 39]. This reduces the signal void,

a characteristic of the pulsation artifact, in the averaged images. Similar methods could be

applied to FloCo diffusion encoding data, but a straightforward application might be difficult

to achieve. For example, the blood signal was sufficiently dark at b800 in the averaged images

investigated in our study, but this is not necessarily true for each acquired FloCo image, unlike

for the monopolar images [25]. The described weighted average approaches could then lead to

a bright blood signal at some image positions. Thus, we did not use advanced postprocessing

approaches in our current study, although we deem it likely that they could lead to further

improvements if carefully adapted.

At b50, the black-blood property received mostly high ratings (i.e., Likert scores of 4 and 5,

c.f. Fig 7) for both diffusion encoding methods, though monopolar generally performed better.

At b800, this difference virtually disappeared. This is consistent with Rauh et al.’s [25] proposal

to use monopolar diffusion encoding for b50 images and FloCo diffusion encoding for b800

images. ADC maps might then be computed from b50-Monopolar and b800-FloCo data (S1

Fig). In our setup, images acquired with two consecutively run sequences were combined for

this purpose. As readjustments between the sequences may potentially alter image intensities,

a more favorable approach in future implementations would be to acquire all data within one

sequence thus avoiding potentially occurring biases due to readjustments between the

sequences. An alternative approach to suppress the blood signal at low b-values is to use par-

tially flow-compensated diffusion encoding [26, 40].

The finding that the SNR was increased with FloCo diffusion encoding may be interpreted

as a reduction of the pulsation artifact. But this interpretation is limited in so far as the signal

decay due to the IVIM effect is also reduced for FloCo diffusion encoding. [18].

Concerning the ADC, the different temporal spectrum of the monopolar and FloCo diffu-

sion encoding [11, 12, 41] might have some influence altering the ADC, although we believe

that the quantitative impact on the ADC should be small, i.e. on the order of below 10%, given

the similar slopes of the signal decay curves observed by Wetscherek et al. in the liver for

monopolar and FloCo diffusion encoding [18]. The occurrence of the smaller ADC values

observed for the mixed approach can be well explained by the IVIM model in the ballistic limit

[17]. The monopolar signal at b50 experiences the IVIM-related signal drop, but the FloCo sig-

nal at b800 does not (in the ballistic limit). Hence, the signal drops less from b50 to b800 com-

pared to the “not mixed” approach–and the ensuing ADC is decreased.

We used the minimal TE achievable with the FloCo sequence at b800 both for FloCo and

monopolar diffusion encoding (i.e., TE = 70 ms, TE = 46 ms would have been possible with

monopolar diffusion encoding). The TE of 70 ms lies within the values used in other patient

studies, which range from 49.7 ms to 82 ms at 1.5 T [42–46]. Although Taouli and Koh [47]

suggested in their review to use the minimal achievable TE, which they found to be approxi-

mately 71 ms with their system, it seems reasonable to maximize the CNR. Assuming that the

proton density and the noise are identical in liver and lesion, the respective optimal TE is

achieved when the contrast between liver and lesion becomes maximal, i.e. at

TEopt ¼
1

T � 1
2;liver � T � 1

2;lesion
log

T2;lesion

T2;liver
;

Fig 4. Diffusion-weighted b800 images of the liver in a 61-year-old patient with a metastatic neuroendocrine tumor of the ileum. Four adjacent slices, left-side flow-

compensated (FloCo), right-side monopolar diffusion encoding. The arrow-marked small lesion was not reported by either of the two readers in the monopolar dataset.

The adjacent lesion is barely visible in the monopolar dataset.

https://doi.org/10.1371/journal.pone.0268843.g004
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with the transversal relaxation times T2,liver and T2,lesion of liver tissue and lesion, respectively.

For example, Cieszanowski et al. reported T2,liver = 54 ms and T2,lesion = 85 ms at 1.5 T. Conse-

quently, TEopt� 67 ms, which is very close to the setting that we had used (TE = 70 ms).

Thus, the fact that the minimally achievable echo time is prolonged with the FloCo diffusion

encoding is presumably not a decisive disadvantage in clinical practice.

The difference in found lesions, Δlesions, was rated significantly different between the two

acquisition schemes by reader 1 for small lesions in the right liver lobe (but not by reader 2).

Both readers did not find a significant difference for the left liver lobe. This is somewhat aston-

ishing, since the left liver lobe is more prone to the pulsation artifact, but may be explained by

the smaller size of the left liver lobe and the therewith reduced total number of lesions. The p-

value was indeed only slightly above the significance threshold (p = 0.063) for the left liver

lobe. Thus, although not significant, the probability that this result occurred by chance is only

6.3% (with the null hypothesis that no effect was present).

This study has several limitations. First, the acquisition was performed in the free-

breathing mode because the prototype sequence did not allow for breathing navigator trig-

gering. Particularly for smaller lesions, the use of breathing navigator triggering would pre-

sumably have been advantageous [31]. However, both DWI sequences were scanned in free

breathing allowing for a fair comparison. Second, the TR was relatively long due to FloCo

diffusion encoding posing high demands on the gradient system cooling rate. This draw-

back will likely become less severe as new generations of high-performance gradient systems

are developed. Third, only one scanner from one vendor at one site was used in this study,

potentially reducing the generalizability of the obtained results. Yet, we used a widespread

Fig 5. Diffusion-weighted b800 images of the liver in a 70-year-old patient with a metastatic neuroendocrine tumor of unknown

primary. Four adjacent slices, left-side flow-compensated (FloCo), right-side monopolar diffusion encoding. The conspicuity was rated

higher for the FloCo data by both readers (with a Likert score of 2).

https://doi.org/10.1371/journal.pone.0268843.g005

Table 3. Descriptive statistics of the quantitative lesion evaluation.

Liver

lobe

Diffusion

encoding

Mean ± Standard

deviation

Minimum Median [Q1 Q3] Maximum p-value

(Shapiro–

Wilk)

p-value

(Mp vs

FC)

p-value (post hoc test)

(ADC: Mp vs FC, Mp vs

mixed, FC vs mixed)

Lesion SNR

(b800)

Left Monopolar 15.24 ± 6.84 3.56 13.83 [10.17 20.01] 33.07 0.61 0.007

FloCo 20.20 ± 7.47 6.22 20.17 [16.56 25.85] 37.16 0.67

Right Monopolar 19.62 ± 7.96 7.13 19.60 [13.32 24.12] 48.37 < 0.01 < 0.001

FloCo 23.46 ± 9.02 9.74 23.19 [16.68 28.39] 47.26 0.047

Lesion ADC

(μm2/ms)

Left Monopolar 1.52 ± 0.61 0.81 1.34 [1.08 1.69] 3.53 < 0.001 0.0175 Mp/FC: 0.97 Mp/mixed:

0.028 FC/mixed: 0.0499FloCo 1.45 ± 0.51 0.85 1.33 [1.14 .47] 3.27 < 0.001

Mixed 1.24 ± 0.45 0.68 1.12 [0.96 1.33] 2.81 < 0.001

Right Monopolar 1.16 ± 0.40 0.21 1.19 [0.92 1.34] 2.56 0.02 0.0159 Mp/FC: 0.87 Mp/mixed:

0.071 FC/mixed: 0.019FloCo 1.20 ± 0.31 0.71 1.13 [1.00 1.34] 2.48 < 0.001

Mixed 1.03 ± 0.35 0.34 0.96 [0.84 1.09] 2.41 < 0.001

Diameter

(smallest lesion;

mm)

Left FloCo 6.99 ± 3.87 3.88 5.86 [5.05 6.99] 20.37

Right 8.15 ± 7.31 3.72 5.68 [4.94 7.57] 40.02

Diameter

(largest lesion;

mm)

Left 32.47 ± 24.19 4.65 25.01 [15.22 42.70] 102.65

Right 35.54 ± 29.38 3.95 26.12 [13.48 52.63] 118.78

Significant p-values are in bold font. Mixed ADC was calculated with b50 monopolar and b800 FloCo data. The parametric test was the Wilcoxon signed-rank test for

the SNR and the Kruskal–Wallis test for the ADC. Q1 = Quartile 1, Q3 = Quartile 3. FC = FloCo = Flow-compensated. Mp = monopolar.

https://doi.org/10.1371/journal.pone.0268843.t003
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Fig 6. Individual subject ADC values for monopolar, FloCo, and mixed diffusion schemes.

https://doi.org/10.1371/journal.pone.0268843.g006
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1.5 T MRI scanner from a large vendor. Finally, the malignancy of the lesions was not con-

firmed histologically for all lesions, causing us to rely on radiological classification. How-

ever, the read was performed by board-certified radiologists with extensive clinical

experience in classification of liver lesions. The remaining uncertainty on the true lesion

status should not be a major limitation of our study, which was focused on lesion conspicu-

ity rather than on differentiating lesion types.

Conclusions

In conclusion, the use of liver diffusion-weighted imaging with flow-compensated diffusion

encoding is feasible on a currently widespread clinical 1.5 T MR scanner. The previously

observed reduction in pulsation artifacts with flow-compensated diffusion encoding in healthy

young volunteers was reproduced in older patients with focal liver lesions. We found that arti-

fact reduction supported the detection of focal liver lesions compared to the conventional

monopolar diffusion encoding by increasing the number of visible lesions.

Fig 7. Histograms of the qualitative lesion evaluation. The scales in a) to d) range from 1 (worst) to 5 (best).

Difference in number of visible lesions (Δlesions) is plotted in e) and calculated as number of lesions visible with flow-

compensated (FloCo) minus number of lesions visible with monopolar diffusion encoding. A positive score indicates

that more lesions were found with FloCo diffusion encoding.

https://doi.org/10.1371/journal.pone.0268843.g007

Table 4. Qualitative Likert score evaluation by reader 1 and reader 2 (same data as in Fig 7).

Liver lobe b-value Diffusion encoding Reader 1 2 3 4 5 p-value R1 p-value R2 κ

Image quality Left & right b50 Monopolar R1 0 1 12 20 7 0.008 0.001 0.62

R2 0 0 10 24 6

FloCo R1 0 1 3 25 11 0.49

R2 0 0 3 23 14

Left & right b800 Monopolar R1 0 0 14 19 7 < 0.001 < 0.001 0.51

R2 0 0 14 21 5

FloCo R1 0 0 3 19 18 0.68

R2 0 0 1 22 17

Black-blood

signal

Left & right b50 Monopolar R1 0 0 2 9 29 < 0.001 < 0.001 0.82

R2 0 0 0 12 28

FloCo R1 0 3 6 19 12 0.72

R2 0 1 6 22 11

Left & right b800 Monopolar R1 0 0 0 0 40 .50 .25 1.00

R2 0 0 0 0 40

FloCo R1 0 0 0 2 38 0.79

R2 0 0 0 3 37

Pulsation artifact Left b800 Monopolar R1 0 5 25 7 2 < 0.001 < 0.001 0.67

R2 0 4 24 9 2

FloCo R1 0 0 4 24 11 0.75

R2 0 0 2 25 12

Right b800 Monopolar R1 0 0 1 28 8 < 0.001 < 0.001 0.81

R2 0 0 1 25 11

FloCo R1 0 0 0 2 35 1.00

R2 0 0 0 2 35

Significant p-values are printed in bold font.

https://doi.org/10.1371/journal.pone.0268843.t004
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Table 5. Lesion conspicuity and the difference in detectable lesions (Δlesions) (same data as in Fig 7).

Liver lobe b-value Diffusion encoding Lesion size Reader -3 -2 -1 0 1 2 3 p-value κ

Lesion conspicuity Left b800 FloCo vs monopolar Small R1 0 1 1 22 3 4 1 0.078 0.81

R2 0 1 2 22 3 3 1 0.197

FloCo vs monopolar Large R1 0 0 0 29 0 1 0 1.000 1.00

R2 0 0 0 29 0 1 0 1.000

Right b800 FloCo vs monopolar Small R1 0 0 2 28 2 1 1 0.375 0.91

R2 0 0 2 28 3 0 1 0.531

FloCo vs monopolar Large R1 0 0 0 30 1 0 0 1.000 1.00

R2 0 0 0 30 1 0 0 1.000

Δlesions Left b800 FloCo vs monopolar Small R1 0 0 0 27 4 1 0 0.063 0.89

R2 0 0 0 27 3 2 0 0.063

FloCo vs monopolar Large R1 0 0 0 29 1 0 0 1.000 1.00

R2 0 0 0 29 1 0 0 1.000

Right b800 FloCo vs monopolar Small R1 0 0 0 29 5 0 0 0.063 0.79

R2 0 0 0 28 5 1 0 0.031

FloCo vs monopolar Large R1 0 0 0 31 0 0 0 1.000 1.00

R2 0 0 0 31 0 0 0 1.000

Significant p-values are printed in bold font. Lesion conspicuity: scores larger than zero indicate lesions that were better visible with FloCo encoding. Δlesions: values

larger than zero indicate that more lesions were detectable with FloCo encoding.

https://doi.org/10.1371/journal.pone.0268843.t005
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