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The possibility of a “post-antibiotic era” in the 21st century, in
which common infections may kill, has prompted research into
radically new antimicrobials. CO-releasing molecules (CORMs),
mostly metal carbonyl compounds, originally developed for
therapeutic CO delivery in animals, are potent antimicrobial
agents. Certain CORMs inhibit growth and respiration, reduce
viability, and release CO to intracellular hemes, as predicted,
but their actions are more complex, as revealed by transcrip-
tomic datasets and modeling. Progress is hindered by difficul-
ties in detecting CO release intracellularly, limited understand-
ing of the biological chemistry of CO reactions with non-heme
targets, and the cytotoxicity of some CORMs to mammalian
cells.

It is axiomatic that metal ions are essential in biology, but also
toxic in unregulated concentrations or locations. A corollary is
that selectively toxic metal compounds (such as compounds of
silver for infections resulting from burns and bismuth in fight-
ing Helicobacter pylori) have long been used as antimicrobial
compounds, antiseptics, and disinfectants (1). It is therefore
paradoxical that metal compounds are the most abundant class
of compounds for delivering carbon monoxide (CO) for thera-
peutic purposes in higher organisms. Although CO is a respira-
tory poison, it has “come of age” since the discovery that CO is
a cytoprotective and homeostatic molecule and a vasodilator,
anti-inflammatory, anti-apoptotic, and anti-proliferative agent
(2– 4). The biological chemistry of CO is relatively simple
(when compared with O2 and the “gasotransmitters” NO and
H2S) (5, 6). Its most important property is reaction with metals,
famously ferrous heme proteins, although some heme-indepen-
dent reactions are known, such as binding to iron in hydroge-
nases (7) and to binuclear copper sites, for example in hemo-
cyanins (8). In CO dehydrogenase, which oxidizes CO to CO2,
CO interacts with the nickel ion in one of the metalloclusters
(“C-cluster”) (9). Here we review the effects of CO and CO-re-

leasing molecules (CORMs)2 on microorganisms, experiments
that demonstrate the potential of CORMs, and highlight prob-
lems and prospects.

Development and Applications of CORMs

Resistance to antibiotics now threatens the effective preven-
tion and treatment of microbial infections (10). This scenario is
not an apocalyptic fantasy, and has promoted research into the
development of new antimicrobial agents. CORMs, originally
developed for therapeutic delivery (3, 4), have recently been
investigated for their antimicrobial activities, initially pre-
sumed to be mediated by CO. If the delivery of CO to targets
could be controlled and enhanced, it might be toxic to micro-
organisms; indeed, CO-supplemented gas atmospheres pre-
serve meat from bacterial spoilage (11). However, microbes
may also be relatively insensitive to the gas. Airborne bacteria
survive high urban CO concentrations (12), and bacterial cul-
tures may be bubbled with the gas (13); 250 ppm of CO is not
toxic (14). Furthermore, CO per se is not selectively toxic to
microbes; it is tolerated at about 3 mg/kg for 1 h in humans, and
no toxic effects are evident in animal models at efficacious
doses of the gas (when carbonmonoxyhemoglobin levels reach
�20%) (4).

The key to the use of CORMs as antimicrobials is that they
are far more toxic to microbes than is CO, but the basis of this
toxicity is poorly understood. Mann (3) authoritatively reviews
the discovery and development of CORMs. Early biological
studies investigated binding to heme proteins, vasodilation,
inhibition of NO production by macrophages (because CO
deactivates inducible NO synthase while activating guanylyl
cyclase), and survival of animals after organ transplantation (3,
15). Antimicrobial effects were not considered. Numerous
CORMs have been reported and synthesized, but here and in
Table 1, we describe only those that have been used against
microbes or hold particular promise (16 –26). Two ruthenium
compounds have been extensively used: CORM-2 and
CORM-3. The former has long been commercially available,
but the latter has only recently been marketed. Although
CORM-2 is soluble in dimethyl sulfoxide, the outstanding
merit of CORM-3 is water solubility (27, 28). However, it has
complex solution chemistry, and many aspects of its biological
fate and CO release remain unresolved. In water, CO release is
slow so that solutions can be prepared and administered with
ease, but CORM-3 releases CO rapidly in the standard assay
that uses ferrous myoglobin as acceptor, leading to the descrip-
tion of CORM-3 as a rapid CO releaser (27) (but see below).

Other CORMs are covered below where they have been used
as antimicrobial agents. Newer compounds with desirable ther-
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tested microbiologically (29, 30). Of particular interest are
CORMs in which the CO release can be precisely controlled
both spatially and temporally, either by triggering the inactive
“prodrug” with light (photoCORMs) (31) or by enzyme activa-
tion (32).

Analytical Methods as a Bottleneck in Understanding
CORM Toxicity

CO is generally assayed in environmental, clinical, or exper-
imental situations by measuring the characteristic absorbance
spectrum on reaction with myoglobin (above), or by GC-ther-
mal conductivity detection (33, 34), solution IR spectroscopy
(35), gas-phase IR absorption spectroscopy (36), attenuated
total reflection IR spectroscopy of a metal carbonyl (37), chro-
mogenic probes (38, 39), or metal oxide semiconductors (40).
The CO electrode produced by World Precision Instruments is
potentially useful but has been little used to date (22). An
amperometric microsensor simultaneously measures NO and
CO in mouse kidneys (40), but such electrodes are currently
unsuitable for detecting and quantifying CO released inside
microbes by CORMs.

The standard laboratory method for detecting CORM-de-
rived CO in vitro is the myoglobin assay (18) in which the lib-
erated CO reacts with ferrous myoglobin to give a distinct CO
adduct. The method compares favorably with GC-thermal con-
ductivity detection of CO (41). Refinements to the myoglobin
assay were proposed (42), but we demonstrated that it is the
reducing agent for myoglobin, sodium dithionite, that pro-
motes CO release (43); CO is not released from CORM-3 in the
absence of the reductant (43). It might be explained by the fact
that dithionite is not pure and contains a significant quantity of
sulfite, which is in equilibrium with sulfur dioxide, a good
ligand for transition metals. This fits with the observation that,
on dissolution in buffers in a closed vial, only CO2, resulting
from the water-gas shift reaction, can be detected (by GC) (33).
The mechanism of CO release from CORM-3 remains un-
known as its chemistry is complex (28), but decomposition
products of CORM-3 react with exposed His residues on
protein to give metalloproteins that spontaneously release
CO (44). Thus, in biological situations where dithionite (or
sulfite, metabisulfite, or perhaps other species) are absent,
the myoglobin assay overestimates the rate of CO release.
Likewise, CORM-3 does not release CO to the purified fla-
vohemoglobin (Hmp) when reduced with NADH but does so
in the presence of dithionite (45). These findings probably
explain the discrepancy noted between the myoglobin assay
and the CO electrode (22), previously attributed to the need
for certain CORMs to interact “with biological components
to trigger the release of CO” (22). An alternative assay that
obviates the need for dithionite uses oxyhemoglobin (43).
Such globin assays could in principle be applied to CO assays
within bacteria; indeed Escherichia coli Hmp expressed at
high copy number is a sensitive monitor of CO liberated
inside bacteria from CORMs (45).

Newer methods with unrealized potential include FTIR and
photothermally induced resonance to detect an organometallic
carbonyl compound (not a CORM) in breast cancer cells (46).
More promising is Raman microspectroscopy to detect a man-
ganese CORM [(Mn(tpm)(CO)3]Cl (tpm � tris(1-pyrazolyl)-
methane) in colon cancer cells (47). A genetically constructed
fluorescent probe (COSer) comprises the CO binding selectiv-
ity of CooA, a dimeric CO-sensing heme protein from Rho-
dospirillum rubrum, and a fluorescent peptide to report con-
formational changes on binding CO (48). Transfection of HeLa
cells with COSer allowed intracellular imaging of CO after
treatment with CO or 1–10 �M CORM-2. A new fluorescent
probe (COP-1) based on palladium-mediated carbonylation
allowed selective CO detection in cells after CORM-3 treat-
ment (49). COP-1 has also been used in vitro to demonstrate
CO release from a photoCORM in the presence of endothelial
cells (35). Zobi et al. (50) have shown via synchrotron FTIR
spectromicroscopy that a photoactivated CORM conjugated to
vitamin B12 is taken up by fibroblasts. A photoCORM that is
also luminescent could be tracked by confocal fluorescence
microscopy (51). These methods have not been tested in bacte-
ria, but the attainable spatial resolution appears at present inad-
equate for subcellular localization.

TABLE 1
CORMs referred to in this review
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CO Metabolism in Microorganisms: Implications for
Pathogenesis

To understand the possible mechanisms of action of
CORMs, it is clearly important to appreciate how CO per se
impacts on microorganisms. DNA replication is inhibited by
CO (52), and the inhibition by CO of respiratory oxidases and
globins at heme targets has been known since the days of War-
burg and Keilin (reviewed in Ref. 53). However, CO also binds
to the di-iron site in bacterial NO reductases (54, 55) and to
iron, copper, and nickel sites in certain microbial proteins,
notably CO dehydrogenase (see above).

The relationship between CO and disease is complex, but
clues come from the observation that cigarette smoking and
CO, a component of smoke, have anti-inflammatory effects
against ulcerative colitis (56). However, the major CO source in
mammals is CO endogenously produced by heme oxygenase
(HO)-1 (57). Several bacteria also possess HO enzymes that
function to degrade heme that is imported for use as an iron
source (58, 59). HO activity contributes to pathogenesis in cer-
tain bacteria by scavenging iron from heme (58, 60).

There is extensive literature on sensing of gases (O2, NO,
CO) by mycobacteria and its role in dormancy. Mycobacterium
tuberculosis infection of macrophages and mice induces host
HO-1 expression (61). The CO thus produced, together with
iNOS-derived NO, stimulates expression (via the heme two-
component sensor kinases DosS and DosT and the cognate
response regulator DosR) of the bacterial dormancy regulon, a
group of about 50 genes with diverse functions (61, 62). A
recently described CO resistance gene (cor) in M. tuberculosis
appears important in dictating the outcome of the host-bacte-
rium battle; the virulence of a cor mutant is attenuated in a
mouse model of tuberculosis. Expression of the Cor protein in
E. coli is claimed to rescue it from CO toxicity, but the resis-
tance demonstrated was to CORM-2 not CO (63).

The HO (Hmx1) of the pathogenic yeast Candida albicans
and its product, CO, also contribute to pathogenesis (64);
mutagenesis of the HMX1 gene results in decreased virulence in
murine candidiasis, whereas exposure of mice to therapeutic
levels of CO increases C. albicans virulence. Inhaled CO par-
tially reverses the virulence defect of the null strain, and so the
data are consistent with CO-mediated suppression of acute
host inflammatory responses (64).

Heme Oxygenases of Mammalian Cells: Implications for
Infection

Mice deficient in HO-1 are susceptible to oxidant-induced
tissue injury, but administration of CO to animals exposed to
endotoxin decreases inflammation. HO-1- or CORM-2-de-
rived CO rescues mice from lethal endotoxemia and sepsis (65).
However, the role of CO in tackling a pathogen is less clear (66,
67). Indeed, suppression of inflammation might compromise
the immune system. Otterbein et al. (68) showed that CO gas
enhances phagocytosis, and Chung et al. (69) showed that CO
derived from HO-1 enhanced the host defense response to
polymicrobial sepsis in mice and contributed to bacterial clear-
ing by stimulating phagocytosis.

Enterohemorrhagic E. coli (EHEC) stimulate the rapid in-
ducible expression of the human enterocyte HMOX-1 gene that
encodes HO-1, and its activity is a critical modulator of the
innate immune response (70). Because HO-1 activity inhibits
iNOS induction, EHEC effectively suppresses NO generation,
and thus host antimicrobial activity. The CO donor CORM-2
also inhibited iNOS mRNA expression, thus identifying CO,
not bilirubin (another product of HO-1 activity), as the effective
species (but see caveats below regarding the non-equivalence of
CORMs and CO). Up-regulation of HO-1 was shown to offer
protection in mice against infection by Mycobacterium avium
or M. tuberculosis, whereas HO-deficient mice were more sus-
ceptible (71). Thus, HO-1 may be an important cytoprotective
protein in sepsis and inflammation.

CO is also implicated in the pathogenesis of Clostridium dif-
ficile. Inhibition of host HO activity by administering Zn pro-
toporphyrin IX to mice exacerbated the histopathological alter-
ations elicited by C. difficile toxin A; conversely, pretreatment
of mice with a CO donor (dimanganese decacarbonyl) reduced
the effect (60).

In a recent study, enteric microbiota isolated from pathogen-
free mice induced production of HO-1 in colons of wild-type
mice but not in colitis-prone interleukin (Il)10�/� animals (72).
However, pharmacological induction of HO-1 by Co(III) pro-
toporphyrin IX chloride protects interleukin� mice from
microbiota (Salmonella enterica serovar Typhimurium)-in-
duced colitis. Moreover, HO-derived CO reduced the numbers
of live bacteria recovered from various organs, whereas knock-
down of HO-1 in macrophages impaired bactericidal activity.
Thus, HO-1 and CO ameliorate intestinal inflammation
through promotion of bacterial clearance, in part explained by
promoting bactericidal activities of macrophages (72, 73).

Recently, Wegiel et al. (14) have proposed that ATP, acting as
a pathogen-associated molecular pattern, which is recognized
by innate immune cells, is released from viable bacteria in the
presence of CO and triggers activation of the macrophage,
inflammasome. and IL-1� secretion. Curiously, it is suggested
that an oxidase binds CO “to compel ATP generation much like
that observed in the ATP synthase mutant” (14). However,
Gram-negative bacteria are not known to possess periplasmic
ATP or to have mechanisms for secretion, so the observed
effect is poorly understood.

The Antimicrobial Effects of CO and CORMs in Vitro and
in Vivo

In many respects, CO is an attractive candidate for an anti-
microbial molecule; it is rarely metabolized and “stable,” is ade-
quately water-soluble, traverses cell membranes (5), and is a
molecule that is naturally generated in mammals, plants, and
certain microorganisms by HO (supplemental Table 1). There
is a rapidly growing literature on the diverse antimicrobial
effects of CORMs on bacteria (Fig. 1). Nobre et al. (16) first
described the use of CORMs as antimicrobial agents. CORM-2
and CORM-3 and compounds from Alfama, Inc. (ALF021, bro-
mo(pentacarbonyl)manganese, and ALF062, tetraethylammo-
nium molybdenum pentacarbonyl bromide) (Table 1) were
tested against laboratory strains of E. coli and Staphylococcus
aureus (16). For example, killing of greater than 20% was
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achieved within 1 h with 250 �M CORM-2, and more variable
killing was achieved with 400 �M CORM-3. Control experi-
ments with hemoglobin to sequester CO and the use of inactive
forms of the CORMs or solvent-only controls suggested that
CO release was the major cause of killing, yet a flux of CO gas
(�1 mM dissolved concentration) was markedly less effective
than the CORMs. Interestingly, CO was not detected in media
to which the CORMs were added, implying that CO release
occurs only intracellularly or that the CO liberated extracellu-
larly escapes from the culture.

Three important studies indicate the potential for CORM-
elicited antimicrobial effects in animal models. Chung et al. (69)
showed that CO from HO-1 enhanced the response to sepsis in
mice and stimulated phagocytosis, an effect mimicked by
injection of CORM-2. Second, CORM-2 and CORM-3 were
effective in protecting immunocompetent and immunocom-
promised mice when injected following Pseudomonas aerugi-
nosa-induced bacteremia (20), but CORM-371 was not (22).
The data suggest a direct bactericidal action rather than stim-
ulation of phagocytosis. Third, activity of ALF492 (tricarbonyl-
dichloro(thiogalactopyranoside)Ru(II)) (Table 1) was demon-

strated (17) in mice against the protozoan parasite Plasmodium
falciparum; the injected compound protected mice against
experimental cerebral malaria and acute lung injury without
formation of carbonmonoxyhemoglobin. The protective effect
was CO-dependent, and the CORM elicited expression of
HO-1, thus amplifying the protection. ALF492 was also shown
to be an adjuvant to the established antimalarial compound
artesunate (17).

However, most recent studies have used in vitro methods and
cast doubt on our understanding of the fundamental modes of
action, especially the suggestion that CORMs exert antimicro-
bial activities solely through CO release. Several authors have
reported that CORMs are more effective antimicrobial agents
than is CO (16, 21). For example, 100 �M CORM-3 was effective
against P. aeruginosa in vitro (20), but CO gas (�860 �M) was
not. Importantly, even 10 �M CORM-3 was effective against
antibiotic-resistant clinical isolates but was not inhibitory to
macrophage survival.

Recently, CORMs that release CO only on illumination have
been developed and tested as antimicrobial agents. The first
such study describes a manganese CORM (Table 1) that acts as

FIGURE 1. Sites of action and cellular consequences of bacterial exposure to CO and CORMs. Outcomes are generalized and pooled from the reported
effects of various metal carbonyl compounds (for details, see the text). The bacterial inner membrane (IM) is shown together with the outer membrane (OM)
and periplasm (P) at the top only. The OM is considered freely permeable to CORMs; transport events are therefore shown through the IM only. 1, CORMs enter
bacteria by unknown pathways and driving forces; CO enters by diffusion down concentration gradients. CORMs may in principle be exported. 2, CORM
releases CO intracellularly, leaving a metal-coligand fragment or iCORM. 3, transcription factors (TFs) sense CO, CORM, and iCORM, leading to global transcrip-
tional effects and modified protein profiles. 4, TFs are also activated by ROS that may be generated directly by cellular CORM chemistry or from leakage of
reducing equivalents from respiratory chains. 5, a typical simplified bacterial aerobic respiratory chain is shown comprising a flavin-containing NADH dehy-
drogenase, a ubiquinone (Q) pool, and a terminal heme-containing quinol oxidase. 6, CO binds to the oxidase active site, competing with oxygen and blocking
respiration. 7, ATP generation via ATP synthase is compromised. 8, CO (or CORM, not shown) may directly or indirectly interact with IM transporters. 9, diverse
cellular responses to CO and CORM exposure are reported. Four outstanding areas of uncertainty are highlighted (question marks): transport of CORMs into (or
out of) cells; intracellular mechanisms of CO liberation from CORMs; modification of TF function and gene expression by CORMs; and effects of CO and CORMs
on membrane transporters.
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a stable prodrug in the dark, whereas 365 nm illumination leads
to CO release to myoglobin (25). Only after irradiation is the
compound toxic to E. coli, in which CO-ligated terminal oxi-
dases can be detected following internalization of the com-
pound. This compound has the advantage of a well defined
inactivated form of CORM (iCORM) (25). Similarly, a trypto-
phan-derived manganese-containing complex (tryptoCORM)
that releases 1.4 mol of CO on irradiation at 465 nm, and 2 mol
at 400 nm, is toxic to E. coli but not to macrophages (26).

Concerns over the inexorable spread of antibiotic resistance
and the paucity of new antimicrobial drugs have led to studies
not only of CORMs as antimicrobials in their own right against
antibiotic-resistant clinical isolates (20, 74), but also as adju-
vants to established antibiotics, a common practice in clinical
therapy (i.e. combination therapy) (supplemental Fig. 1). In one
study, sub-lethal doses of CORM-2 were combined with met-
ronidazole, amoxicillin, and clarithromycin and found to po-
tentiate antibiotic effects on clinical isolates of H. pylori (75).
Two mechanisms of action were reported: inhibition of respi-
ration and of urease activity. CORM-2 decreased the measured
minimal inhibitory and minimal bactericidal concentrations
for all antibiotics. Similarly, CORM-2 acts as an adjuvant to
tobramycin against P. aeruginosa biofilms (76). In neither of
these studies was it reported whether the effects of CORM-2
and antibiotics together were truly synergistic or merely addi-
tive, as assessed by standard fractional inhibitory concentra-
tions (77). However, these potentiating effects observed with
CORMs have not been reported to our knowledge with CO gas,
although NO and H2S have been shown to confer some defense
against antibiotics (78).

Transcriptomic and Global Impacts of CORMs

Transcriptomic approaches have been highly informative
and emphasized the complexity of the CORM response. In the
first study (21), batch cultures of E. coli were used to explore
exposure to sub-inhibitory (30 –100 �M) concentrations of
CORM-3, aerobically and anaerobically. The down-regulation
of operons encoding key respiratory complexes (cytochrome
bo� and several dehydrogenases) was striking. Interestingly, the
cydAB genes encoding cytochrome bd-I, an inhibitor-resistant
terminal oxidase with a high oxygen affinity, were slightly up-
regulated. The genes most highly up-regulated were involved in
metal homeostasis, especially spy, which encoded a periplasmic
stress-response chaperone. Probabilistic modeling of the com-
prehensive datasets (21) identified global transcription factors
that are potential CO targets or sensors, notably the respiratory
metabolism regulators ArcA and Fnr. However, a similar study
using 250 �M CORM-2 (partly bactericidal within 30 min (16))
revealed (79) a gene set with few similarities to the CORM-3
study, but up-regulation of spy and down-regulation of some
respiratory operons were observed.

A more rigorous and reproducible approach to transcrip-
tomics is provided by chemostat (continuous) culture in which
all growth conditions, including growth rate, are maintained
over long periods, thus avoiding growth rate-dependent
changes in gene expression (80). Mclean et al. (81) used not only
CORM-3 but also the inactivated iCORM-3 (from which
negligible CO release can be shown) to dissect the effects of

CO release and other consequences of the E. coli response in
a chemostat. Transcriptomics revealed that the response to
iCORM-3 is lower than to CORM-3, but that numerous pro-
cesses are affected by both compounds, including energy
metabolism, membrane transport, motility, and the metab-
olism of sulfur-containing species, including cysteine and
methionine.

There is controversy regarding the roles of reactive oxygen
species (ROS) and antioxidants in the antibacterial effective-
ness of CORMs; the evidence in favor is given in Ref. 59. It is
established that inhibition of bacterial oxidase activity by CO
can lead to higher ROS levels (82), for example from exposed
flavins in NADH dehydrogenase (83). However, Tavares et al.
(84) propose the direct involvement of ROS in the toxicity of
CORM-2 and ALF062 to E. coli; both promote the production
of reactive oxygen species, an effect blocked by antioxidants.
Mutations in superoxide dismutase or catalase exacerbated
CORM toxicity, and CORM-2 induced expression of the DNA
repair/SOS system recA and raised levels of free iron in cells. In
contrast, treatment of P. aeruginosa with three CORMs did not
change ROS production (22).

Certain antioxidants (N-acetylcysteine (NAC) and ascorbic
acid) suppress H2O2 levels, and NAC, cysteine, and reduced
(but not oxidized) glutathione reverse CORM-3-mediated inhi-
bition of bacterial growth and respiration (20, 81). Glutathione
and cysteine also prevented killing of H. pylori by CORM-2, but
ROS could not be detected and ascorbic acid did not prevent
the antimicrobial effect of CORM-2 (75). Thus, the basis of the
effects of these sulfhydryl compounds remains poorly under-
stood but is important because many are intracellular com-
pounds and might promote or modulate CO release in vivo (81).
Significantly, the effects of antioxidants on CORM toxicity may
be linked, not only to counteracting the intracellular toxic
effects, but also to the uptake of the CORM. Jesse et al. (85)
found that NAC, widely used to abrogate CORM effects, not
only protected respiration from CORM-2 or CORM-3 but also
dramatically reduced (5– 8-fold) CORM uptake.

The transcriptomic evidence is contradictory. Many genes
implicated with intracellular redox stress were reported in
E. coli by some (79) but not all (21) authors. The genes spy, spb,
metF, and htpX seen by us (21) are described in Ref. 59 as “asso-
ciated with the generation of intracellular oxidative stress.”
However, the up-regulation of spy (the most dramatically
changed gene: 26 –100-fold (21), not 3-fold as reported in Ref.
59)) is attributed not exclusively to oxidative stress but to hypo-
chlorite-induced membrane disruption (86).

How Significant Is Respiratory Blockade in Determining
CORM Effectiveness?

Cellular respiration is inhibited by CO gas in vitro and in cells
via endogenous HO activity (87, 88). Although reaction of
CORM-derived CO with intracellular ferrous hemes has been
reported consistently (e.g. Refs. 21, 45, and 82), and functionally
distinct oxidases have differential sensitivities to CORMs (85),
inhibition of respiration is not the only factor affecting the bac-
tericidal activity of CORMs (22). CORMs may be toxic under
anoxic conditions in the absence of respiration (16, 20, 21).
Indeed, in mitochondria, CORMs may inhibit respiration (87,
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89) or not (90 –92). The reported uncoupling of mitochondrial
respiration by CORM-3 (deduced from stimulated oxygen con-
sumption rates) (90 –92) and by CORM-401 in cardiomyocytes
(93) is relevant to bacteria because CORM-3 at low doses also
stimulates respiration in E. coli (94). However, classical uncou-
pling appears not to be the cause because proton translocation
quotients and proton backflow rates are unaffected by
CORM-3 (94). The stimulatory effects may arise from reaction
of CO or CORMs with membrane channels as described in
mammalian cells (95–97).

What Is the Mechanism of CORM Activity against
Microorganisms?

Wherever an answer to this key question has been sought,
investigators have found that bacteria accumulate CORMs (16,
21, 81, 85), that CO is bound to identifiable targets (i.e. heme
proteins), and CO causes global changes in gene expression and
cell function (Fig. 1). Furthermore, CO gas (as evidenced from
data with HO-derived CO in vivo; see above) also perturbs
microbial behavior. However, although CORMs were originally
developed for safe and reproducible delivery of CO in mam-
mals, the evidence to hand, summarized above, makes it
improbable that CO delivery alone is the sole basis of the anti-
microbial effects of CORMs. What evidence supports this bold
claim? (a) Saturating solutions of CO gas barely perturb bacte-
rial growth. (b) Bacteria demonstrate multiple transcriptomic
changes to CORM-3 that cannot be understood in terms of
known CO biochemistry. (c) Bacteria respond to iCORM-3
from which no, or negligible, CO release can be demonstrated
in vitro. (d) Critically, cells lacking all hemes are also inhibited
by CORM-3 and reveal multiple transcriptomic changes (101).
(e) Finally, other compounds of Ru are taken up and have anti-
microbial properties, although they are not CORMs (e.g. Refs. 1
and 98). We have suggested (94) that a CORM functions as a
“Trojan Horse,” in which the metal carbonyl is the “horse,”
delivering a cargo of toxic CO; it is equally conceivable that the
toxic cargo is the metal fragment and that CO potentiates
uptake.

Future Prospects

Realizing the future potential for CORMs relies on greater
understanding of the modes of action of current CORMs and
the development of improved compounds with clinical com-
patibility, for example by making biocompatible CO carriers
(99). In the post-antibiotic era, there appears to be potential for
adjuvant/combination therapy in which CORMs can minimize
usage of established antibiotics or reduce the concentrations
needed to treat antibiotic-resistant “superbugs.” Apart from
methodological advances in detecting CO, a “CO-quenching”
agent would allow the essential dissection of the antibacterial
roles of the CO per se and the CORM; a water-soluble complex
has been tested as a CO “stripper” in a rat model (100). Other
areas of focus should be improved iCORMs that can be repro-
ducibly prepared and whose chemistry is understood, a study of
the potential for microbes developing resistance to CO or
CORMs, and a better understanding of the biological chemistry
of non-heme CO targets.
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