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Cadherin-6 (CDH6) is aberrantly expressed in cancer and
closely associated with tumor progression. However, the func-
tions of CDH6 in human osteosarcoma and the molecular
mechanisms underlying CDH6 in osteosarcoma oncogenesis
remain poorly understood. In this work, we assessed the role
of CDH6 in human osteosarcoma and identified that the
expression of CDH6was closely related with the overall survival
and poor prognosis of osteosarcoma patients. MicroRNAs
(miRNAs) have been implicated as important epigenetic regu-
lators during the progression of osteosarcoma. Using dual-luci-
ferase reporter assays, we showed that miR-223-3p suppresses
CDH6 expression by directly binding to the 30 UTR of
CDH6. miR-223-3p overexpression significantly inhibited cell
invasion, migration, growth, and proliferation by suppressing
the CDH6 expression in vivo and in vitro. Besides, CDH6 over-
expression in the miR-223-3p-transfected osteosarcoma cells
effectively rescued the inhibition of cell invasion, migration,
growth, and proliferation mediated by miR-223-3p. Addition-
ally, Kaplan-Meier analysis suggests that the expression of miR-
223-3p predicts favorable clinical outcomes for osteosarcoma
patients. Moreover, the expression of miR-223-3p was downre-
gulated in osteosarcoma patients and was negatively associated
with the expression of CDH6. Collectively, these data highlight
that miR-223-3p/CDH6 axis is an important novel pleiotropic
regulator and could early predict themetastatic potential in hu-
man osteosarcoma treatments.
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INTRODUCTION
Osteosarcoma has been implicated as the most common primary ma-
lignant tumors, affecting the children, adolescents, and young adults
with highest incidence of complex karyotypes worldwide.1–4 The sur-
vival rate of osteosarcoma patients with metastatic or recurrent dis-
ease is decreased to 10%–30%, leading to the limited effective options
for successful treatments.5,6 Recent advances in bioinformatics and
scientific technologies have been developed to develop potential tar-
gets to treat osteosarcoma.7–11 However, the clinical outcomes have
not yet been significantly improved for osteosarcoma patients. There-
Mo
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fore, the identification of new promising applicable therapeutic
candidates and approaches for clinical management of osteosarcoma
is urgent.

Cadherin-6 (CDH6), a type II cadherin and synaptic adhesion mole-
cule, emerged as an important regulator involved in the kidney and
CNS morphogenesis.12–16 Recent reports have shown that aberrant
activation of CDH6 was found in cancer. CDH6 could be induced
by transforming growth factor-b (TGF-b) during epithelial-to-
mesenchymal transition (EMT) and strongly expressed in highly
aggressive thyroid cancer cells,17,18 suggesting CDH6 has key roles
in aggressiveness of tumors. CDH6 influences active Rho distribution
and promotes neural crest cell detachment via F-actin regulation
during EMT.13 CDH6 could regulate cancer metastasis and EMT
by restraining autophagy17 and promote mitochondrial network re-
organization through a DRP1-mediated mechanism. In high-grade
serous ovarian cancer, CDH6 is repressed by mutant p53 in the fallo-
pian tube,19 whereas in nasopharyngeal carcinoma (NPC), CDH6was
revealed to be upregulated in LMP1-positive NPC tissues12 and was
identified as a potential candidate of the epithelium-specific miR-
203. Besides, CDH6 exerts as a node protein involved in the interplay
of multiple signaling, including NF-kB and TGF-b in NPC. Although
CDH6 has been implicated in cancer progression and development,
its essential role in human osteosarcoma progression and oncogenesis
remains unknown.

MicroRNAs (miRNAs), a family of endogenous small non-coding
RNAs, have been described to be able to regulate target gene
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expression by directly binding to the 30 UTR of the gene mRNA.20–26

Accumulating evidence suggests that miRNAs emerge as the post-
transcriptional modulators in the regulation of biogenesis and cancer
progression.27–43 Recently, studies have revealed that abnormal
expression of miRNAs is involved in the impairment of normal func-
tion and osteosarcoma pathogenesis,5,44–47 such as miR-21,48,49 miR-
34a,50,51 miR-143,52,53 and miR-382.9 However, the molecular mech-
anisms by which miRNAs regulate CDH6 in human osteosarcoma
progression and the specific roles of miRNAs in oncogenesis have
not been fully clarified.

In the current study, we demonstrated that CDH6 was closely corre-
lated with the overall survival and prognosis of osteosarcoma patients.
In addition, CDH6 was identified as a novel direct target and func-
tional modulator of miR-223-3p in osteosarcoma. We also demon-
strated that miR-223-3p overexpression inhibited cell proliferation,
invasion, and migration by using in vivo and in vitro approaches.
Moreover, miR-223-3p expression was found to be downregulated in
osteosarcoma patients and negatively associated with CDH6 expres-
sion. Thus, miR-223-3p and CDH6 may be novel prognostic bio-
markers and common therapeutic targets for treating osteosarcoma.

RESULTS
CDH6 Is Closely Correlated with Clinical Prognosis in

Osteosarcoma Patients

In order to investigate the exact role of CDH6 in human oste-
osarcoma, we performed histopathologic assay and examined the
expression of CDH6 in 133 osteosarcoma samples and the adjacent
noncancerous tissues (Figure 1A). The results showed that CDH6
gained a higher expression level in osteosarcoma tissues than the
corresponding nontumor tissues (p = 3.6 � 10�6; Figure 1B). The
qRT-PCR assay also indicated CDH6 expression was significantly up-
regulated in osteosarcoma samples (p = 8.2� 10�5; Figure 1C), which
was consistent with the results of histopathological assay. We then as-
sessed the clinical parameters of CDH6 in osteosarcoma patients and
investigated the correlation between clinicopathological characteris-
tics and CDH6 expression. The data revealed that CDH6 expression
was closely associated with histological stage and tumor size (Table 1).
Moreover, on the basis of Kaplan-Meier survival analysis, we found
the osteosarcoma patients with low expression of CDH6 had better
disease-free survival (DFS) (p = 0.024) and overall survival (OS)
(p = 0.018) than those with high CDH6 levels (Figures 1D and 1E).
Taken together, these data indicated the important clinical signifi-
cance of CDH6 in prognosis and metastasis of osteosarcoma patients.

miR-223-3p Suppresses CDH6 Expression by Directly Targeting

Its 30 UTR
We next performed two target prediction programs, TargetScan and
miRanda, to examine the potential CDH6-targeting miRNAs and
predict the probable functional binding site. Several miRNA candi-
dates that target CDH6 were selected, including miR-137, miR-203,
miR-223-3p, and miR-373-3p. We then confirmed the effect of the
above-mentioned miRNAs on the expression of CDH6 in human
osteosarcoma cell lines using the western blot analysis (Figure S1).
1300 Molecular Therapy Vol. 26 No 5 May 2018
Consistent with the data previously found in cholangiocarcinoma,54

miR-203 also suppressed the expression of CDH6 in human osteosar-
coma cells. Importantly, miR-223-3p had the most pronounced
inhibitory effect on the expression of CDH6. Therefore, we then hy-
pothesize that miR-223-3p might function as an important modu-
lator in human osteosarcoma. Based on the western blot analysis,
we demonstrated that miR-223-3p overexpression significantly sup-
pressed the CDH6 production in osteosarcoma cell lines (Figures
2A, 2B, and S1). Besides, miR-223-3p inhibition promoted CDH6
expression in the same osteosarcoma cell lines (Figures 2C and
2D). Notably, miR-223-3p did not regulate the CDH6mRNA expres-
sion level, indicating this regulation is posttranscriptional (Figure S2).

Next, to evaluate whether CDH6 is a specific and direct target of miR-
223-3p, we transiently co-transfected 143B and U2OS cell lines with
luciferase reporter constructs containing wild-type or mutated CDH6
30 UTR andmiR-223-3p or anti-miR-223-3p. The results showed that
miR-223-3p overexpression inhibited the 30 UTR luciferase reporter
activity of CDH6 but did not have an effect on the luciferase activity
of the reporter in which the miR-223-3p binding sites were mutated
(Figure 2E). Moreover, inhibition of miR-223-3p expression pro-
moted the CDH6 30 UTR reporter luciferase activity (Figure 2F).
Together, these results collectively revealed that miR-223-3p sup-
presses CDH6 expression by directly targeting the 30 UTR of CDH6
in human osteosarcoma.

miR-223-3p Inhibits Osteosarcoma Cell Invasion, Migration,

Growth, and Proliferation through the Suppression of CDH6

Production

We next preformed Matrigel invasion assays to investigate whether
miR-223-3p regulates invasive abilities of human osteosarcoma cell
lines. The data showed that miR-223-3p overexpression significantly
inhibited the invasion ability of human osteosarcoma cell lines,
whereas CDH6 restoration rescued the miR-223-3p effects on oste-
osarcoma cells (Figure 3A). Similar results were also observed
in wound healing assays. Briefly, miR-223-3p overexpression
suppressed migratory ability of osteosarcoma cells, and CDH6
re-expression impaired the cell migration induced by miR-223-3p
(Figure 3C). Furthermore, compared with a control treatment,
miR-223-3p inhibition promoted the invasion and migration of hu-
man osteosarcoma cells (Figures 3B and 3D), which was in line with
the findings above.

Next, we assessed whether miR-223-3p could affect the cell prolifer-
ation phenotypes of osteosarcoma cell lines using cell growth and col-
ony formation assays. Cells transfected withmiR-223-3p were applied
for cell growth analysis. Consistent with the findings above, overex-
pression of miR-223-3p inhibited the proliferative ability and colony
formation (Figures 3E and 3G). Besides, CDH6 restoration reversed
the effect of miR-223-3p on cell proliferation and colony formation
(Figures 3E and 3G). Moreover, miR-223-3p inhibition promoted
the osteosarcoma cell proliferation and colony formation (Figures
3F and 3H). Therefore, these findings demonstrated that miR-
223-3p impaired cell proliferation though suppressing the production
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Figure 1. CDH6 Is Closely Correlated with Clinical Prognosis in Osteosarcoma Patients

(A) Representative immunohistochemistry images of CDH6 expression in human osteosarcoma tissues and adjacent tissues. The scale bars represent 50 mm. (B) CDH6

expression scores in osteosarcoma tissues andmatched adjacent normal tissues (n = 133) were compared with the Mann-Whitney U test. (C) ThemRNA expression levels of

CDH6 expression scores in osteosarcoma tissues and matched adjacent normal tissues (n = 133) using qRT-PCR assay are shown. (D and E) Kaplan-Meier survival curves

and log rank tests were used to compare (D) DFS and (E) OS of the osteosarcoma patients with low and high scores for CDH6.
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of CDH6, thus indicating that CDH6 is an important mediator of
miR-223-3p function in human osteosarcoma metastasis.

Inhibition of CDH6 Suppresses Osteosarcoma Cell Invasion,

Migration, Growth, and Proliferation

To further confirm the role of CDH6 in osteosarcoma, we next pre-
formed Matrigel invasion assays to investigate whether CDH6 inhibi-
tion could suppress invasive abilities of human osteosarcoma using
CDH6-specific small interfering RNA (siRNA). The results indicated
that CDH6 inhibition significantly inhibited the invasion ability of os-
teosarcoma (Figure 4A). Similar results were also observed in wound
healing assays. Briefly, CDH6 inhibition suppressed osteosarcoma
cells migratory ability (Figure 4B), which was consistent with the find-
ings above. We next examined whether CDH6 inhibition could affect
the cell proliferation phenotypes of osteosarcoma through cell growth
and colony formation assays. In line with the findings above,
Molecular Therapy Vol. 26 No 5 May 2018 1301
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Table 1. Associations between CDH6 Expression and Clinicopathological

Characteristics

Characteristics n

CDH6 Expression

p ValuesHigh (n, %) Low (n, %)

Gender

Male 76 46 (60.5%) 30 (39.5%)
0.088

Female 57 26 (45.6%) 31 (54.4%)

Tumor Size (cm)

>7 69 49 (71.0%) 20 (29.0%)
4.985 � 10�5**

%7 64 23 (35.9%) 41 (64.1%)

Location

Distal femur 57 32 (56.1%) 25 (43.9%)

0.366

Proximal tibia 34 19 (55.9%) 15 (44.1%)

Proximal humerus 26 10 (38.5%) 16 (61.5%)

Proximal femur 11 8 (72.7%) 3 (27.3%)

Others 5 3 (60.0%) 2 (40.0%)

TNM Stage

I 57 16 (28.1%) 41 (71.9%)
1.747 � 10�7**

II/III 76 56 (73.7%) 20 (26.3%)

Relapse

Yes 26 24 (92.3%) 2 (7.7%)
1.331 � 10�5**

No 107 48 (44.9%) 59 (55.1%)

Metastasis

Lung 49 35 (71.4%) 14 (28.6%)

0.005**Others 16 9 (56.3%) 7 (43.8%)

No 68 28 (41.2%) 40 (58.8%)

p values were calculated by Pearson’s chi-square test. **p < 0.01. TNM, tumor, node,
metastasis.
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inhibition of CDH6 suppressed the proliferative ability and colony
formation (Figures 4C and 4D). Therefore, these data demonstrated
that CDH6 inhibition impaired osteosarcoma cell invasion, migra-
tion, growth, and proliferation, suggesting that CDH6 plays an
important role in human osteosarcoma.
miR-223-3p Inhibits Osteosarcoma Initiation and Metastasis

To determine the phenotype of miR-223-3p expression in vivo, we
further investigated the effect of miR-223-3p on 143B cell growth in
nude mice. We found that overexpression of miR-223-3p markedly
suppressed the tumor growth in vivo (Figures 5A and 5B). Besides,
the tumors in mice formed by miR-223-3p-overexpressing 143B
cells gained downregulated expression of EMT markers (N-cad-
herin) and CDH6 (Figure 5C). In addition, tumors in mice inocu-
lated with miR-223-3p plus CDH6-overexpressing 143B cells
revealed a reversal effect of miR-223-3p on osteosarcoma tumor
growth (Figures 5A and 5B). Moreover, according to the Kaplan-
Meier survival analysis, the miR-223-3p-expressing group gained
better survival probability than the control groups (p = 0.008;
Figure 5D).
1302 Molecular Therapy Vol. 26 No 5 May 2018
We then evaluated the effect of miR-223-3p on osteosarcoma
metastasis. The data showed that, compared with the control group,
miR-223-3p-expressing group revealed a more significant decrease
in the lungs’ metastatic burden (Figure 5E). Besides, similar results
were also found in the photonic radiance intensity of the lungs in
the miR-223-3p-expressing group (Figure 5F). On the other hand,
the miR-223-3p plus CDH6 group showed impaired expression of
miR-223-3p (Figure 5F). We next performed the anatomic and his-
tologic analysis of the lungs of mice. Indeed, the results confirmed
the metastatic foci (Figures 5G and 5H). The miR-223-3p-express-
ing group displayed less tumor foci in the lungs than the control
group, whereas the miR-223-3p plus CDH6 group showed the
reversal effects of miR-223-3p on the metastatic foci. Taken
together, these findings strongly demonstrated that miR-223-3p
and CDH6 function as important regulators in osteosarcoma
dissemination.

miR-223-3p Expression in Human Osteosarcoma Samples and

the Correlation between miR-223-3p and CDH6

We further investigated the clinical significance of miR-223-3p in os-
teosarcoma patients. Using qRT-PCR assay, we detected the expres-
sion of miR-223-3p in 133 osteosarcoma samples and the matched
adjacent nontumor tissues. According to the qRT-PCR results, the
expression of miR-223-3p was significantly downregulated in osteo-
sarcoma patients (p = 3.2 � 10�4; Figure 6A). We next evaluated
the relationship between the expression of miR-223-3p and clinico-
pathological characteristics to investigate the clinical significance of
miR-223-3p. The findings indicated that miR-223-3p expression level
was closely associated with osteosarcoma histological stage and tumor
size (Table 2). Besides, on the basis of the Kaplan-Meier survival anal-
ysis, patients with high expression levels of miR-223-3p had better
DFS (p = 0.011) and OS (p = 0.004) than patients with low miR-
223-3p expression levels, indicating that miR-223-3p might be a pre-
dictor of better human osteosarcoma clinical outcomes (Figures 6B
and 6C). Furthermore, the expression of miR-223-3p was negatively
correlated with the protein expression of CDH6 in the osteosarcoma
samples (p = 6.1� 10�6; r =�0.702; Figure 6D), which was consistent
with miR-223-3p inhibition of CDH6 protein expression in cultured
cells (Figures 2A and S1). Collectively, these results strongly suggested
the important role of miR-223-3p and CDH6 in human osteosarcoma
prognosis.

DISCUSSION
Currently, miRNAs have been implicated to be involved in almost
every aspect of cellular functions and biological processes.32,55–66

miRNAs are aberrantly expressed in various cancers and closely asso-
ciated with invasion, proliferation, and metastasis.33,41,62,67–76 Hence,
one potential route to improve therapy for cancer patients is to under-
stand miRNAs involved in tumor formation, which might be specific
and effective for current therapies. Emerging evidence has shown that
miR-223-3p acted as a novel microRNA regulator in biological
behavior in various types of tumors.77–79 miR-223-3p promotes
resistance to cetuximab and inhibits angiogenesis in head and
neck squamous cell carcinoma.80 Besides, miR-223-3p suppresses
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ovarian cancer cell invasion and proliferation by targeting SOX11
expression.78

In this study, we also performed a software analysis of other putative
targets of miR223-3p in human osteosarcoma using TargetScan and
miRanda. The results revealed that several target genes potentially
involved in osteosarcoma might be the potential target genes of
miR-223-3p, including PAX5, CDH6, EYA3, SOX11, HDAC4, and
TET3, among which only CDH6 and SOX11 were downregulated
through miR-223-3p overexpression in osteosarcoma according to
western blot analysis (Figure S3). To determine whether the forced
expression of the target genes CDH6 and SOX11 have a similar role
in osteosarcoma, we next preformed cell growth and wound healing
assay to investigate whether SOX11 and CDH6 could rescue the
miR-223-3p effects on cell growth and migration in osteosarcoma.
Consequently, the results revealed that miR-223-3p inhibited the pro-
liferative ability of osteosarcoma. However, CDH6 restoration, but
not SOX11, could reverse the effect of miR-223-3p on cell prolifera-
tion in human osteosarcoma (Figures 3E and S4). Similar results
were also observed in wound healing assays. Briefly, miR-223-3p
overexpression suppressed migratory ability of osteosarcoma cells,
and CDH6 re-expression, but not SOX11, could reverse the effect
of the cell migration induced by miR-223-3p (Figures 3C and S5),
thus suggesting that miR-223-3p impaired cell proliferation in osteo-
sarcoma though suppressing the production of CDH6, but not
SOX11. In addition, miR-223-3p also exerts its function as a tumor
suppressor in bladder cancer and hepatocellular carcinoma.81,82

However, the exact role of miR-223-3p in human osteosarcoma re-
mains yet unelucidated. Here, in this present study, we identified
that miR-223-3p exerts the tumor-suppressive effect on human oste-
osarcoma cell invasion, migration, growth, and proliferation by
directly targeting CDH6. Besides, miR-223-3p expression in human
osteosarcoma was markedly downregulated. Furthermore, osteosar-
coma patients with low levels of miR-223-3p displayed worse DFS
and OS, supporting that miR-223-3p functions as a novel prognostic
and predictive role in human osteosarcoma.

CDH6, a member of the cadherin family and a membrane glycopro-
tein, regulates cell-to-cell adhesion and plays an important role in
cell morphogenesis, contributing to cancer cell migration.17,83 In
this current study, we identify that the miR-223-3p/CDH6 axis reg-
ulates cell migration and invasion in osteosarcoma cells. EMT acts
as a crucial cellular process in tumor metastasis and invasion.
Studies have shown that CDH6 could promote EMT and cancer
metastasis. In this study, we demonstrated CDH6 could regulate
EMT in osteosarcoma, which was consistent with previous studies
Figure 2. miR-223-3p Suppresses CDH6 Expression by Directly Targeting Its 3

(A–D) Immunoblot analysis of the indicated osteosarcoma cell lines transfected with miR

immunoblots show the corresponding miR-223-3p mRNA expression levels. (E) miRNA

mutated CDH6 reporters and miR-223-3p are shown. The top panel indicates wild-type

Bold and italicized fonts indicate putative miR-223-3p-binding sites in the 30 UTR of hum

miRNA luciferase reporter assays in 143B and U2OS cells co-transfected with wild-type

the mean ± SD of at least three independent experiments performed in triplicate. *p <
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in other tumors. Besides, we also found that the expression of
CDH6 directly increases with osteosarcoma progression. Impor-
tantly, CDH6 was correlated with osteosarcoma oncogenesis-associ-
ated cellular properties, such as motility and invasiveness, thus
indicating that CDH6 might be potential attractive targets for ther-
apeutic intervention of human osteosarcoma.

To date, emerging information has revealed that CDH6 knockdown
alters tumor biological activity and cell motility.13 One recent study
has shown that CDH6 was found to be upregulated in LMP1-positive
NPC tissues and identified to be a potential target of miR-203,12 as
was also demonstrated in osteosarcoma cells in our study. However,
the exact function of CDH6 in osteosarcoma and the miRNAs in
regulating CDH6 expression in osteosarcoma remains still unknown.
Conceivably, inhibition of CDH6might be a promising potential mo-
lecular therapeutic strategy for human osteosarcoma. In the present
study, we identified that high levels of CDH6 expression were more
frequent in human osteosarcoma tissues and patients with low levels
of CDH6 had longer DFS and OS. Besides, miR-223-3p overexpres-
sion led to suppressed cell invasion, migration, growth, and prolifer-
ation in vitro and in vivo. Moreover, we performed clinical analysis
data and found a negative association between the expression of
miR-223-3p and CDH6 in human osteosarcoma samples, thereby
suggesting that the miR-223-3p/CDH6 axis might be a novel and
promising candidate for the prevention of metastasis and tumorigen-
esis in human osteosarcoma.

Taken together, our findings demonstrate that CDH6 exerts as an
important independent biomarker that could predict human osteo-
sarcoma clinical outcomes. miR-223-3p can inhibit cell invasion,
migration, growth, and proliferation in osteosarcoma by directly
targeting CDH6. CDH6 expression was upregulated in osteosarcoma
patients and negatively correlated with that of miR-223-3p, thereby
supporting that the miR-223-3p/CDH6 axis might be an ideal pre-
dictor and therapeutic candidate for human osteosarcoma clinical
outcomes.

MATERIALS AND METHODS
Plasmids and Reagents

The expression vector for CDH6 was generated by cloning the PCR
product into a pcDNA3.1 vector (Invitrogen, Carlsbad, CA, USA) or
pCDH plasmid (System Biosciences, Mountain View, CA, USA).
Mutant or wild-type promoter-containing luciferase reporters
were constructed by the insertion of PCR-amplified promoter
fragments from genomic DNA into the pGL4-Basic vector (Prom-
ega, Madison, WI, USA). The primer sequences are shown in
0 UTR
-223-3p (A and B) or anti-miR-223-3p (C and D). The histograms on the left of the

luciferase reporter assays in 143B and U2OS cells co-transfected with wild-type or

and mutant forms of putative miR-223-3p target sequences in the 30 UTR of CDH6.

an CDH6. Underlining indicates mutations introduced into the 30 UTR of CDH6. (F)

or mutated CDH6 reporters and anti-miR-223-3p are shown. Each bar represents

0.05; **p < 0.01.
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Figure 3. miR-223-3p Inhibits Osteosarcoma Cell Invasion, Migration, Growth, and Proliferation through the Suppression of CDH6 Production

(A and B) Invasion of 143B cells transfected with miR-223-3p or miR-223-3p plus CDH6 (A) or miR-223-3p inhibitor (B) was evaluated using aMatrigel invasion chamber. The

invaded cells were fixed and stained with crystal violet (A and B left images). The scale bar represents 100 mm. (C and D) Wound healing assays were conducted in 143B cells
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223-3p inhibitor (H) were plated and assayed for colony formation. Representative images show colonies in plates (left panels). Each bar represents the mean ± SD of at least

three independent experiments performed in triplicate. *p < 0.05; **p < 0.01.
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Table S2. To introduce mutations into the seed sequences of pre-
dicted miR-223-3p target sites within the CDH6 30 UTR, recombi-
nant PCR was applied using the primers mentioned (Table S2).
Lentiviruses were produced by co-transfection of HEK293T
cells with recombinant lentiviral vectors and pPACK Packaging
Plasmid Mix (System Biosciences, Mountain View, CA, USA) using
Molecular Therapy Vol. 26 No 5 May 2018 1305
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*p < 0.05; **p < 0.01.
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MegaTran reagent (Origene, Rockville, MD, USA). After 48 hr
transfection, the lentiviruses were collected and added to the me-
dium of the target cells with 8 mg/mL polybrene (Sigma-Aldrich,
St. Louis, MO, USA). Stable cell lines were selected for approxi-
mately 2 months with 1 mg/mL puromycin. Individual clones or
pooled clones were screened by standard immunoblotting protocols
and produced similar results. The expression vector for CDH6
siRNA was purchased from GenePharma (Shanghai, China).

Anti-CDH6 (MA1-06305), anti-PAX5 (PA1-109), anti-HDAC4
(PA1-863), and anti-TET3 (ab139311) were bought from Thermo
Fisher Scientific (Rockford, IL, USA). Anti-EYA3 (ab95876), anti-
SOX11 (ab134107), and anti-b-actin (ab8227) were purchased from
Abcam (Cambridge, MA, USA).

Patients and Specimens

133 conventional osteosarcoma and adjacent noncancerous tissues
used in the study were investigated on the basis of accepted radiolog-
ical and pathological criteria. The follow-up information of the pa-
tients was updated every month. The overall survival was defined as
the time elapsed from surgery to death. Specimens were divided
into two portions: one portion was used for histopathologic assess-
ment and the other portion was immediately snap frozen in liquid ni-
trogen and stored at �80�C until RNA extraction. The clinical and
demographic characteristics are shown in Table S1. Clinical informa-
tion was observed according to the patient records. This research was
conducted with informed consent of the patients and approved by the
1306 Molecular Therapy Vol. 26 No 5 May 2018
Institutional Review Committee of the General Hospital of the Peo-
ple’s Liberation Army (Beijing, China).

Histopathologic Assessment

For histopathologic assays, tissues were fixed in 4% buffered parafor-
maldehyde for 48 hr and subsequently decalcified with buffered
EDTA (20% EDTA [pH 7.4]). Tissues were then embedded in paraffin,
sectioned, and stainedwithH&E. For immunohistochemistry (IHC) as-
says, briefly, the sections were pretreated with trypsin (0.05%) for
10 min before treatment with 3% (vol/vol) H2O2 for 15 min. Then
the sections at room temperature for 1 hr were then blocked with
10% goat serum. After washing with PBS, anti-CDH6 antibody (1:25
dilution) was applied to the sections, and the sections were incubated
at 4�C overnight. The sections were then washed with PBS for 15 min
and incubated with biotinylated secondary antibody using a Histostain
Plus kit (Invitrogen,Carlsbad,CA,USA). The sectionswerewashed and
incubated with 3, 30-diaminobenzidine (DAB) substrate for 2 min.

The IHC staining was evaluated by two pathologists blinded to the
origin of the specimen using light microscopy. H-score method that
combines the values of immunoreaction intensity and the percentage
of cells stained was applied to investigate the total immunohistochem-
ical scoring as previously described.51 Briefly, H-score was achieved by
multiplying the percentage of weakly stained cells (times 1), the per-
centage of moderately stained cells (times 2), and the percentage of
strongly stained cells (times 3). Score %2.1 was defined as low score,
and score between 2.1 and 3 was defined as high score.
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Figure 6. miR-223-3p Expression in Human

Osteosarcoma Samples and the Correlation

between miR-223-3p and CDH6

(A) Expression of miR-223-3p in osteosarcoma tissues

and matched adjacent normal tissues (n = 133) was

compared using the Mann-Whitney U test. U6 small nu-

clear RNA was used as the internal control. (B and C)

Kaplan-Meier survival curves and log rank tests were

used to compare (B) DFS and (C) OS of osteosarcoma

patients with low and high expression levels of miR-

223-3p. (D) The relationship between miR-223-3p and

CDH6 expression was assessed by Spearman’s rank

correlation analysis in the osteosarcoma samples. The

symbols represent individual samples.
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Cell Culture and Transfection

143B and U2OS cell lines, which had been tested for mycoplasma
contamination, were bought from the American Type Culture Collec-
tion (ATCC) (Manassas, VA, USA). Stable cell lines overexpressing
miR-223-3p and CDH6 were established by lentiviral transduction us-
ing a pCDH plasmid (System Biosciences, Mountain View, CA, USA).
Cells were routinely cultured at 37�C in an atmosphere with 5% CO2

and in DMEMwith high glucose supplemented with 100 mg/mL strep-
tomycin, 10% fetal calf serum (FCS), and 100 IU/mL penicillin. About
the transfection, cells were seeded with the indicated plasmids in 6- or
24-well plates using Lipofectamine 2000 (Invitrogen, Waltham, MA,
USA) on the basis of the manufacturer’s instructions. The miRNA in-
hibitors (Ambion, Grand Island, NY, USA) were transfected at a con-
centration of 50 nM. The miRNA mimics were transfected into the
cells using FuGENE HD (Promega, Madison, WI, USA) according
to the manufacturer’s protocol.

Luciferase Assay

The cells at 70% confluence were seeded in 24-well plates. The re-
porter constructs containing the mutant or wild-type CDH6 30

UTR were co-transfected with miR-223-3p into cells using Lipofect-
amine 2000 reagent on the basis of the manufacturer’s protocol. The
Figure 5. miR-223-3p Inhibits Osteosarcoma Initiation and Metastasis

(A and B) Stable 143B cells overexpressing miR-223-3p and miR-223-3p and CDH6 were injected into nude m

Vernier calipers (mean ± SD; n = 6) (B). (C) Immunoblot analysis of representative excised tumors in (A) is show

performed to evaluate the role of miR-223-3p and CDH6 treatments in vivo. (E and F) Bioluminescence imaging

(NOD)-severe combined immunodeficiency (SCID) mice at 28 days after intravenous injection of cells infected with

and CDH6 via the lateral tail vein is shown (E). The luminescence signal is represented by an overlaid false-colo

(G and H) Representative metastatic foci of lungs were subjected to anatomical (G) and histological (H) analyses

**p < 0.01.
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cells were collected after 48 hr and assessed for
b-galactosidase and luciferase activities as previ-
ously described.84

Western Blotting

Total protein extracts were prepared for west-
ern blot analysis as previously described.85 The
membranes were incubated with antibodies to
CDH6 (1:200 dilution) and b-actin (1:500 dilution). The immuno-
complexes were visualized via chemiluminescence using an ECL kit
(Amersham Biosciences, Piscataway, NJ, USA).

RNA Extraction and qRT-PCR

Total RNAwas extracted and reverse transcribed into cDNA using an
RNeasy Mini kit (QIAGEN, Valencia, CA, USA) according to the
manufacturer’s instructions. CFX Connect Real-Time PCR Detection
System (Life Science Research, Hercules, CA, USA) was used to detect
and quantify miRNA expression. The relative expression level of the
miRNA was calculated using the comparative Ct method. Universal
small nuclear RNA U6 (RNU6B) was used as the endogenous control
for the miRNAs. Sequences of the primers used for qRT-PCR analysis
are listed in Table S2.

Anchorage-Dependent and Anchorage-Independent Growth

Assays

Cell proliferation was examined using a CCK-8 Kit (Dojindo Labora-
tories, Kumamoto, Japan) according to the manufacturer’s instruc-
tions. To analyze anchorage-independent growth, transfected cells
were seeded in 96-well plates and examined at 0, 24, 48, 72, and
96 hr as previously described.84
ice (A). At the indicated times, tumors were measured with

n. (D) Kaplan-Meier survival curves and log rank tests were

of metastasis of osteosarcoma cells in non-obese diabetic

PCDH-control, PCDH-miR-223-3p, or PCDH-miR-223-3p

r image with the signal intensity indicated by the scale (F).

. The data are shown as the mean ± SD (n = 6). *p < 0.05;



Table 2. Associations between miR-223-3p Expression and

Clinicopathological Characteristics

Characteristics n

miR-223-3p Expression

p ValuesHigh (n, %) Low (n, %)

Gender

Male 76 29 (38.2%) 47 (61.8%)
0.798

Female 57 23 (40.4%) 34 (59.6%)

Tumor Size (cm)

>7 69 19 (27.5%) 50 (72.5%)
0.005**

%7 64 33 (51.6%) 31 (48.4%)

Location

Distal femur 57 24 (42.1%) 33 (57.9%)

0.241

Proximal tibia 34 16 (47.1%) 18 (52.9%)

Proximal humerus 26 6 (23.1%) 20 (76.9%)

Proximal femur 11 3 (27.3%) 8 (72.7%)

Others 5 3 (60.0%) 2 (40.0%)

TNM Stage

I 57 38 (66.7%) 19 (33.3%)
1.674 � 10�8**

II/III 76 14 (18.4%) 62 (81.6%)

Relapse

Yes 26 3 (11.5%) 23 (88.5%)
0.001**

No 107 49 (45.8%) 58 (54.2%)

Metastasis

Lung 49 7 (14.3%) 42 (85.7%)

2.660 � 10�5**Others 16 8 (47.1%) 9 (52.9%)

No 68 38 (55.9%) 30 (44.1%)

p values were calculated by Pearson’s chi-square test. **p < 0.01. TNM, tumor, node,
metastasis.
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Wound Healing Assays

Cells at 70% confluence were seeded in 6-well plates in culturemedium
for wound healing assays. After 24 hr, the confluent cellular monolayer
was scratched with a fine pipette tip. For migration, using a micro-
scope, the rate of wound closure was observed at the indicated times.

Cell Invasion Assays

Matrigel invasion chambers (BD Biosciences, San Jose, CA, USA)
were performed to assess cell invasion according to the manufac-
turer’s instructions. Briefly, cells were placed on the upper surface
of the Transwell inserts. After 24 hr, the invasive cells were fixed
with 4% paraformaldehyde and stained with 0.5% crystal violet.
The number of invasive cells was counted in five randomly selected
microscopic views and photographed.

Animal Experiments

Approximately 1.2 � 107 143B cells were injected into 6-week-old
BALB/c mice. For the tumor growth model, cells labeled with firefly
luciferase and stably transfected with the pCDH control vector,
pCDH-miR-223-3p or PCDH-miR-223-3p, and CDH6 were sub-
cutaneously injected. Tumor volume was examined according to
the following formula: volume = (longest diameter � shortest diam-
eter2) / 2. Tumor growth was calculated by caliper measurements.
Excised tumorswere weighed, and portions were frozen in liquid nitro-
gen or fixed in 4% paraformaldehyde for further study. The animals
were imaged on day 35 using the IVIS200 imaging system (Xenogen,
Alameda, CA, USA). The mice were then killed, and the lung was
weighted and fixed with 4% paraformaldehyde for further study. For
in vivo lung metastasis study, 1 � 106 143B cells labeled with firefly
luciferase carrying indicated constructs were injected into the lateral
tail vein of BALB/c female mice. The animal studies were performed
in accordance with protocols approved by the Institutional Animal
Care and Use Committee at the General Hospital of the People’s Liber-
ation Army.

Statistical Analysis

The Cox regression model was used to perform univariate and multi-
variate analyses. The survival analysis was performed using the Ka-
plan-Meier method, and differences in survival curves were evaluated
by the log rank test. The qRT-PCR data were investigated using one-
way ANOVA with Tukey’s post hoc test. Correlation was determined
through Pearson’s c2 analysis using GraphPad PRISM 6 (GraphPad,
San Diego, CA, USA). All statistical tests were two sided. Statistical
calculations were applied using SPSS 17.0. The data are presented
as the means ± SD. All in vitro experiments were performed in trip-
licate and were repeated three times. p < 0.05 was considered signif-
icant statistically.
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