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ased chemometric modeling of
odorant properties of diverse chemical
constituents of black tea and coffee†

Probir Kumar Ojha and Kunal Roy *

Tea and coffee are the most attractive non-alcoholic beverages used worldwide due to the odorant

properties of diverse components present in these beverages. The aim of this work is to investigate the

key structural features which regulate the odorant properties of constituents present in black tea and

coffee using regression-based chemometric models. We have also investigated the key structural

properties which create the odor difference between tea and coffee. We have employed different

variable selection strategies to extract the most relevant variables prior to development of final partial

least squares (PLS) models. The models were extensively validated using different validation metrics, and

the results justify the reliability and usefulness of the developed predictive PLS models. The best PLS

model captured the necessary structural information on relative hydrophobic surface area, heteroatoms

with higher number of multiple bonds, hydrogen atoms connected to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp)

fragments, electron-richness, C–O atom pairs at the topological distance 10 and surface weighted

charged partial negative surface areas for explaining the odorant properties of the constituents present

in black tea. On the other hand, C–S atom pairs at the topological distance 1, C–C atom pairs at the

topological distance 5, donor atoms like N and O for hydrogen bonds, hydrogen atoms connected to

C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) fragments and R–CX–X fragments (where, R represents any group linked

through carbon and X represents any heteroatom (O, N, S, P, Se, and halogens)) are the key structural

components captured by the PLS model developed from the constituents present in coffee. The

developed models can thus be successfully utilized for in silico prediction of odorant properties of

diverse classes of compounds and exploration of the structural information which creates the odor

difference between black tea and coffee.
1. Introduction

Aer water, tea is the most consumed beverage worldwide
amongst the non-alcoholic drinks. In 2009, the total production
of tea worldwide was approximately 3.8 million metric tons.1

Among the total global production, China contributes 35.4%
followed by India (20.6%), Kenya (8.1%), Srilanka (7.5%),
Turkey (5.1%), Vietnam (4.8%), and Indonesia (4.1%).2 Mainly
three types of tea are produced such as green tea (unfermented),
oolong tea (semi-fermented) and black tea (fermented). Among
these three types of tea, black tea is widely used due to its avor.
In black tea preparation, different enzymatic processes and
biochemical reactions are known to occur prior to the drying
process. In black tea, the key components responsible for taste
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are mainly polyphenols, free amino acids, caffeine, catechin,
theaavins, and thearubigins.3–5 Many researchers have inves-
tigated the volatile components of black tea and reported
around 600 volatile compounds present in tea leaves or bever-
ages.6 The purpose of fermentation in the case of black tea is to
enhance the avor of the tea. Thus, avor is one of the most
important characteristics necessary to improve the quality of
tea. The avor of tea encompasses both aroma active
compounds and taste. Volatile components like aldehydes,
alcohols, ketones, furans, and aromatic compounds are mainly
responsible for the aroma of tea.6

Like tea, coffee is also an important beverage consumed
worldwide in daily routine. Coffee is a relatively young beverage
than tea that has been known since the 17th century.7 It is
a major source of income for many coffee producing countries
like Brazil, Vietnam, Colombia, Indonesia, Ethiopia, India,
Honduras, Uganda, Mexico, Guatemala, Peru, etc.8 The world
wide use of this beverage is due to several factors. Among these,
avor is the main reason for its success. The nal expression
and perceptible results of a freshly prepared cup of coffee is due
to its avor which depends on several factors like genetic
RSC Adv., 2018, 8, 2293–2304 | 2293
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predispositions, environmental and climatic factors, harvest
and post-harvest practices, sorting, grading, storage and trans-
port, processing steps such as roasting, grinding and extraction
and nally consumption practices.7

The odor active molecules play a crucial role to regulate the
quality of both tea and coffee and make them suitable as
beverages worldwide. The odor threshold (OT) presents a key
attribute to all the odor active molecules. Unique characteristics
of smell can help in the detection of different food and bever-
ages for different food industries. Odor is also helpful for
masking of obnoxious odor of chemicals used in different food,
pharmaceuticals and cosmetic industries particularly in case of
perfume and beverage industries. Thus, it might be useful to
know what an odor and OT are. An odor is the impression in the
brain obtained by the detection of a volatile component (mostly)
at a very low concentration by odorant receptors (ORs) that is
perceived by the sense of olfaction of human or other animals.
The OT is the minimum concentration at which all panelists
have been able to recognize the odor sensitivity which is
a typical attribute of that individual compound and have been
reliable in their response at all higher test concentrations. A
group of een observers (approx.) with working experience
more than one year on analytical odor might be selected as
panel members.9 OT can be quantied by various methodolo-
gies like GC/MS, electronic noses and measurement of electro-
olfactograms for lower animals like insects,10 well-known
psychophysical methods like triangle odor bag method,11

dilution-to-threshold method,12 scentometry,13 olfactometry,14

etc. The value of OT may differ due to the protocols used for
measurement. Thus, olfaction has emerged as an important
topic of interest for researchers for many decades. It is very
difficult to identify the key structural features which are
essential for OT property of tea and coffee. Since there is no
such modern technology which can mimic the efficiency of
human nose and can characterize different types of odor with
the similar sensitivity, it is useful to apply an in silico tool to
predict OT property of odorants. Again, a small modication in
the chemical structures may bring changes in odor property,
e.g., introduction of one or more double bonds in aliphatic
alcohols or aldehydes changes the odor prole of the
compounds.15 Thus, a proper knowledge regarding the struc-
ture–property relationship related to these odorous molecules is
essential to unfold the ambiguity behind these. In this regard,
quantitative structure–property relationship (QSPR)16,17

approach may help us to draw a correlation between structural
properties and OT properties. A previous study in this direction
may be cited here.18 The QSPR approach correlate the molecular
properties with biological activities/properties/toxicities for
a set of compounds by developing appropriate models, repre-
sented as numerical equations developed using different che-
mometric tools.

In this work, we have performed QSPR modeling of odorants
present in black tea and coffee separately using their odor
threshold properties to identify the key structural attributes
which make these beverages attractive worldwide. We have also
investigated the key structural properties which make the odor
difference between tea and coffee using this in silico approach.
2294 | RSC Adv., 2018, 8, 2293–2304
The predictive QSPR models were developed in this study
keeping in mind the principles of Organization for Economic
Co-operation and Development (OECD) for QSPR model
development.19

2. Methods and materials
2.1 Dataset

This work was carried out using OT property data for diverse
classes (aldehyde, acid, ester, furan, sulfur containing
compounds, thiols, thiophene, thiazole, furanone, ketone,
norisoprenoid, phenolic compounds, pyrazine, pyridine,
terpene etc.) of compounds present in black tea (76 compounds)
and coffee (46 compounds) collected from the published liter-
ature.7,20 Here, we have developed two PLS models separately
using the constituents present in black tea and coffee. The
details of the datasets are presented in Tables S1 and S2.† The
odor threshold (OT) of compounds is expressed in mmol kg�1

in case of black tea and in mmol kg�1 in case of coffee. For
development of QSPR models, the OT values are taken in the
negative logarithmic scale [log(1/OT)] leading to Y ranges from
�0.93487 to 7.677402 (in case of black tea) and �1.73629 to
5.532415 (in case of the coffee). Note that in case of the tea
dataset, the initial modelling analysis identied one compound
as potential outlier (high residual value). Thus, the nal PLS
model was developed using 76 components present in tea.

2.2 Descriptor calculation

All the structures were drawn using Marvin sketch soware
(http://www.chemaxon.com). The descriptors were calculated
using three soware tools namely Dragon soware version 6,21

PaDEL-descriptor (http://www.yapcwso.com/dd/
padeldescriptor) soware and Cerius 2 version 4.10 soware.22

Constitutional indices, ring descriptors, connectivity indices,
functional group count, atom centered fragments, atom type E-
state indices and 2D atom pairs were calculated using Dragon
soware while extended topochemical atom (ETA) indices were
calculated using PaDEL-descriptor soware. All the molecules
were exported to Cerius 2 soware version 4.10 (ref. 22) for
conformer generation using the ‘optimal search method’.
Geometry optimized molecules were used to calculated all 3D
descriptors. Thus, in this work, we have used a pool of both 2D
and 3D descriptors for development of the nal models.
Descriptors are “numerical values associated with chemical
constitution for correlation of chemical structure with various
physical properties, chemical reactivity or biological activity”.
From the total pool of descriptors, those having constant and
near constant values (standard deviation less than 0.0001) of the
variables, descriptors with at least one missing value, descriptors
with all missing values and descriptors with (absolute) pair
correlation larger than or equal to 0.95 were excluded from the
initial pool of descriptors.

2.3 Division of the dataset: selection of training and test sets

Considering the importance of dataset division during predic-
tive model development,23 we have employed a clustering
This journal is © The Royal Society of Chemistry 2018
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technique, “Modied k-medoids”,24 using a tool developed in
our laboratory (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab).
Seven clusters were generated in case of tea components and
four clusters were generated in case of coffee components based
on the properties available for the respective dataset compo-
nents. For the selection of training and test sets, we have taken
approximately 25% compounds from each cluster randomly for
the test set (19 compounds in case of the tea dataset and 10
compounds for the coffee dataset) and remaining 75%
compounds for the training set (57 compounds and 36
compounds in case of the tea and coffee datasets respectively).
The training set was used to develop the QSPR model that was
subsequently validated by the test set compounds.

2.4 Descriptor selection and model development

We have performed stepwise regression using the whole pool of
descriptors for selection of the descriptors. Aer the rst run of
stepwise regression, we have removed the selected descriptors
and rerun stepwise regression using remaining pool of
descriptors. In this way, we have selected 48 descriptors in case
of the tea and 40 descriptors in case of the coffee dataset. In case
of the tea dataset, we have developed a few Genetic Function
Approximation (GFA)25 models using both linear and spline
options employing Cerius 2 soware and selected some spline
term descriptors and clubbed with the previously selected
descriptors from stepwise regression (total 54 descriptors). Aer
that, we have performed the best subset selection for develop-
ment of models using a soware developed in our laboratory
(http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab). In case of the
coffee dataset, we have performed the best subset selection
using only the selected descriptors obtained from stepwise
regression. Note that in this case also we tried to apply GFA for
obtaining spline terms; however, no signicant terms were
obtained in the derived models and thus the GFA models were
discarded in case of modelling of the coffee data set. In both
cases, we have developed six descriptor models. From these
developed models, we have chosen the best ve models based
on mean absolute error (MAE) based criteria for the test set.26

Finally, we have run PLS using the descriptors obtained from
these ve models. Finally, we have developed six descriptor PLS
models in both cases (tea and coffee data sets).

The best subset selection was performed using a soware
tool developed in our laboratory (http://teqip.jdvu.ac.in/
QSAR_Tools/DTCLab) in order to optimize the best descriptor
combinations from the reduced pool of descriptors (in case of
tea, both spline and linear descriptors used; in case of coffee,
only linear descriptors used). We have selected the best ve
multiple linear regression (MLR) models obtained from six
descriptor combinations based on the MAE-based criteria26 of
the validation sets.

2.5 Statistical analyses and chemometric tools employed

The chemometric tools namely stepwise regression,27 genetic
methods (GFA)25 and best subset selection were used for selec-
tion of variables, while the nal models were developed using
the PLS methodology.28
This journal is © The Royal Society of Chemistry 2018
2.5.1 Stepwise regression. In this technique,27 a multiple-
term linear equation is built step by step where an initial
model is recognized rst, and then this is repeatedly altered by
adding or removing a predictor variable based on the “stepping
criteria”. The stepwise regression method is a combination of
the forward selection and backward elimination approaches
where testing at each stage for variables to be included or
excluded. In case of forward selection, one initially starts with
no variables in the model and then trying to nd out the
‘statistically signicant’ variables one by one and including
them in the model. On the other hand, in case of backward
elimination, one starts with all the candidate variables and
testing and deleting them one by one which are statistically
insignicant. In this work, we have employed the “stepping
criteria” F ¼ 4 to enter and F ¼ 3.9 to remove. The criteria “F to
Enter” and “F to Remove” verify how signicant or insignicant
the role of a variable is in the regression equation, respectively
for adding the variable to the equation and removing the vari-
able from the equation. The F value indicates the square of the t
value of the incoming variable which signies the correspond-
ing regression coefficient.

2.5.2 Genetic function approximation (GFA). The GFA
algorithm (Rogers and Hopnger)25 is a statistical tool which
evolved from the knowledge of Holland's genetic algorithm
(1975)29 and Friedman's multivariate adaptive regression
splines (MARS) algorithm.30 In GFA, multiple models are
generated instead of a single model (unlike stepwise regres-
sion), and the best model can be selected based on the tness
and predictive potential of the model. In this work, the GFA
models were developed using the soware Cerius 2 4.10
version22 applying both linear and spline options. The spline
terms, designated by angular bracket (hi, chevrons), consider
some aspect of nonlinearity. In GFA, descriptors are selected
randomly to develop an initial population of equations followed
by cross over between those pairs of equations. The model
quality is judged by a tness function or “Lack of Fit (LOF)”
score. The quality of the models and the LOF score are inversely
proportional, i.e., model quality will increase with a decrease in
the LOF value. Genetic cross-over operation is repeatedly per-
formed aer the initial rating of the models based on the LOF
score. In the cross-over operation, rst, two good quality models
are preferred as parents and each parent is randomly cut into
two pieces, and cross-over is done between two pieces taking
one from each parent, and nally a new model (daughter
model) is generated. In this way, good combinations of genes
are discovered aer many mating step (genetic cross-over) and
spread through the population. To develop the GFA models, we
have assigned some settings like mutation probabilities (kept at
50% with 5000 iterations), smoothness parameters (kept at
1.00), initial equation length value, i.e., number of descriptors
(was set to four) and nally, no xed length for the nal equa-
tions. Note that, in this work, we have used GFA algorithm only
for selection of important descriptors but not the development
of the nal model.

2.5.3 Partial least squares (PLS). PLS is a generalization of
regression which is more appropriate when the matrix of
RSC Adv., 2018, 8, 2293–2304 | 2295
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predictors has more variables than observations. This tech-
nique is also suitable in such cases when there is some inter-
correlation among the X-variables. It is used to nd out the
fundamental relations between X and Y matrices, i.e., a latent
variable approach to modeling the covariance structures in
these X and Y spaces. PLS allows to construct larger QSAR
equations by avoiding overtting and eliminating most vari-
ables. PLS is statistically more robust than MLR because stan-
dard regression will fail in such cases.28 To obtain the optimum
number of latent variables, PLS is normally used in combina-
tion with cross-validation which ensures that the developed
models are selected based on their ability to predict the data
rather than to t the data.31 In this work, we have developed the
PLS model employing the leave-one-out (LOO) cross-validation
technique for selection of optimum number of latent variables.

The steps involved to develop the nal PLS model is illus-
trated schematically in Fig. 1.
2.6 Statistical validation parameters

In this work, we have determined various statistical metrics
corresponding to various validation strategies in order to justify
the reliability and usefulness of the developed predictive
models. The computed validation metrics for the PLS28,32–40

models have been explicitly tabulated and dened in Table S3 in
ESI.† In addition to the classical validation parameters like
leave-one-out cross-validated correlation coefficient (Q2), Rpred

2,
QF2

2, concordance correlation coefficient (CCC) etc., we have
also checked rm

2 metrics and mean absolute error (MAE) based
criteria for the external set for better understanding of the
quality of predictions.26 The nal PLS models were also
Fig. 1 Schematic representation of the steps involved in the developme

2296 | RSC Adv., 2018, 8, 2293–2304
validated using an additional randomization test41 through
randomly reordering (100 permutations) the Y-variable (log(1/
OT)) (by keeping X-matrix intact) using SIMCA-P soware42 to
ensure that the model was not developed by any chance. Each
and every randomization and consequent PLS run analysis
generates a new set of R2 and Q2 values. These values are plotted
against the correlation coefficient between the original Y-values
and the permuted Y-values. The developed model is considered
to be valid if the parameters Rint

2 and Qint
2 are less than 0.4 and

0.05 respectively. We have also checked the acceptability of the
nal PLS models using external validation criteria proposed by
Golbraikh and Tropsha.43

2.7 Applicability domain (AD)

We have also checked the applicability domain of the developed
models to ensure that the test molecules are within the region of
chemical space dened by the training set employing a DModX
(distance to model X) approach28 at 99% condence level using
SIMCA-P soware.42 The AD of QSAR model represented by the
response and the chemical structure space which is character-
ized by the molecular properties of the training set molecules
only. The developed QSPR models are able to predict the newly
designed compound properly when the molecule lies within the
region of chemical space of the training set molecules.

2.8 Soware used

Marvin sketch (version 14.10.27) soware (http://
www.chemaxon.com/) was used to draw the chemical structures.
Three soware tools namely Dragon version 6,21 Cerius 2 (version
4.0)22 and PaDEL-descriptor (http://www.yapcwso.com/dd/
nt of final PLS models.

This journal is © The Royal Society of Chemistry 2018
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padeldescriptor) soware were used to calculate the molecular
descriptors. Cluster analysis was performed by employing modi-
ed k-medoid (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab) so-
ware developed in our laboratory. In order to optimize the best
descriptor combinations from the reduced descriptor pool, we
have run best subset selection using a soware developed in our
laboratory (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab). The
stepwise regression and PLS analysis were performed by using
MINITAB soware (version 14.13).44 SIMCA-P soware42 was used
to perform PLS model randomization, variable importance plot,
score plot, regression coefficient plot and loading plot.
3. Results and discussion

We have developed separately, PLS models of odor active
compounds present in tea (eqn (1)) and coffee (eqn (2)) using
odor threshold (OT) property in the form log(1/OT). We have
validated the PLS models using various statistical parameters
which are summarized in Table 1. The statistical results sug-
gested that both the models are acceptable. The MAE based
criteria in case of external sets of both the models were found to
be “moderate” indicating acceptability of the models. We have
also validated the models using Golbraikh and Tropsha's
criteria and the results are depicted in Table 2. Based on this
criterion also, models are acceptable. We have also performed
Y-randomization test using SIMCA-P soware where the
response variable (log(1/OT)) was reordered randomly (100
permutations) and the intercepts of both R2 and Q2 values were
checked. The Y-randomization test was performed to verify
whether the models are obtained by any chance or not. The
randomization results (Rint

2 < 0.4 and Qint
2 < 0.05) suggested

that the models are not obtained by any chance and the results
are depicted in Fig S1 and S2.†
3.1 PLS model developed from odorants present in black tea

� �
Table 1 Statistical quality and validation parameters of the final PLS mo

Dataset Model type Descriptors R2 Ra
2 Q2

Black tea PLS model H-049, ETA_Eta_F,
ETA_BetaP_ns,
Jurs-WNSA-3, F10[C–O],
hJurs-RASA-0.767154i

0.616 0.578 0.53

Coffee PLS model C-029, H-049, F05[C–C],
nHDon, B01[C–S], ETA_Eta

0.722 0.696 0.63

log
1

OT
¼ 2:150þ 10:076� hJurs-RASA-0:767i þ 0:855� ETA

� F10½C�O� þ 0:164� Jurs-WNSA-3; ntraining ¼ 57

F ¼ 16:34ðdf 5; 51Þ; PRESS ¼ 76:434; Q2 ¼ 0:534: nte

DrmðtestÞ
2 ¼ 0:152;MAE based criteria_test ¼ moderate:

This journal is © The Royal Society of Chemistry 2018
The above PLS model (eqn (1)) is derived from ve latent
variables and six descriptors which are the key structural
features linked to45 tea aroma. Using the variable importance
plot (VIP)46 (Fig. S3†), the signicance level of the descriptors
was found to be in the following order: hJurs-RASA-0.767i,
ETA_Eta_F, H-049, ETA_BetaP_ns, F10[C–O] and Jurs-WNSA-3.
The values of the descriptors appearing in eqn (1) for
different compounds are shown in Table S4.†

The highest signicant descriptor, hJurs-RASA-0.767i,
involves the relative hydrophobic surface area which is calcu-
lated by total hydrophobic surface area divided by total molec-
ular solvent accessible surface area. The positive regression
coefficient (Fig. S4†) of this spline term descriptor indicates that
the numerical value of Jurs-RASA should be more than the knot
value of 0.767 for a higher odorant property. It has been found
that the compound no. 47 (linalool), 62 (2-undecanone) and 68
(b-damascenone) show higher range of odorant property as
their corresponding Jurs-RASA value is more than 0.767 while
compound no. 11 (propanoic acid), 12 (2-methyl propanoic
acid) and 17 (furfural) show lower range of odorant property as
their numerical value of Jurs-RASA is less than the knot value of
0.767. Note that 10 out of 57 odorants present in the training set
[compound no. 8 (acetic acid), 11 (propanoic acid), 12 (2-methyl
propanoic acid), 15 (butanoic acid), 17 (furfural), 18 (3-methyl
butanoic acid), 19 (2-methyl butanoic acid), 54 (octanoic acid),
61 (nonanoic acid), and 69 (vanillin)] have numerical values of
Jurs-RASA lower than the knot value of 0.767. These compounds
are mostly acids in nature except furfural (aldehyde) and most
of them share unpleasant odors like sweaty, sour, vinegary,
pungent, rancid, etc. Thus, from this descriptor, it can be
concluded that hydrophobic surface area plays a crucial role to
regulate the odorant property of black tea components.

The second highest signicant descriptor ETA_Eta_F, the
functionality index, gives a measure of the number of hetero-
atoms and multiple bonds. This descriptor contributes
dels (black tea and coffee)

LV s Rpred
2 QF2

2 rmðtestÞ2 Drm(test)
2 CCC

MAE based
criteria (test)

4 5 1.112 0.608 0.586 0.536 0.152 0.791 Moderate

9 3 1.068 0.781 0.781 0.777 0.101 0.905 Moderate

_Eta_Fþ 1:445�H-049� 6:297� ETA_BetaP_ns� 0:599

; LV ¼ 5; R2 ¼ 0:616; Radj
2 ¼ 0:578; s ¼ 1:112;

st ¼ 19; Rpred
2 ¼ 0:608; QF2

2 ¼ 0:586; rmðtestÞ2 ¼ 0:536;

(1)

RSC Adv., 2018, 8, 2293–2304 | 2297



Table 2 Results of the final PLS models (black tea and coffee) obtained according to Golbraikh and Tropsha's criteria

Parameters PLS model Remarks Threshold value

Black tea 1 r2 0.648 Passed r2 > 0.6
2 [(r2 � r0

2)/r2] 0.015626143 Passed <0.1

½ðr2 � r00
2Þ=r2� 0.116611832 Passed

3 k 0.9252 Passed 0.85 < k or k0 < 1.15
k0 1.0337

Coffee 1 r2 0.837 Passed r2 > 0.6
2 [(r2 � r0

2)/r2] 0.015552055 Passed <0.1

½ðr2 � r00
2Þ=r2� 0.000415929 Passed

3 k 0.8815 Passed 0.85 < k or k0 < 1.15
k0 1.0561

RSC Advances Paper
positively towards the odorant property as indicated by positive
regression coefficient (Fig. S4†). Thus, the compounds bearing
any heteroatoms or more number of multiple bonds as found in
compound no. 44 ((E,E)-3,5-octadien-2-one) (one oxygen atom
and three double bonds), 68 (b-damascenone) (one oxygen atom
and four double bonds) and 71 (a-ionone) (one oxygen atom
and three double bonds) have higher odorant property. Again,
the compounds having lower number of heteroatoms or lower
number of multiple bonds show lower range of odorant prop-
erty as in case of compound no. 2 (acetone) (one oxygen atom
and one double bond), 5 (1-butanol) (one oxygen atom but no
double bond), 8 (acetic acid) (two oxygen atom and one double
bond) and 22 ((E)-2-hexen-1-ol) (one oxygen atom and one
double bond). Thus, compounds containing any polar group are
inuential to enhance the odorant property of tea. From this
descriptor, it can be interpreted that the molecules having
heteroatoms with higher number of multiple bonds are inu-
ential for odorant property of black tea.

The third highest signicant atom-centred fragment
descriptor, H-049, indicates H atom attached to C3sp3, C2–3sp2,
C1–3sp. The subscript represents hybridization and the super-
script is its formal oxidation number. The formal oxidation
number of a carbon atom equals the sum of the formal bond
orders with electronegative atoms. The positive regression
coefficient (Fig. S4†) of this descriptor indicates that
compounds bearing this fragment have higher odorant property
as shown in compound no. 26 ((Z)-4-heptenal) (one –CHO
group), 51 ((E,Z)-2,6-nonadienal) (one –CHO group), 56 ((E,E)-
2,4-nonadienal) (one –CHO group) and 70 (dodecanal) (one
–CHO group) (these compounds contain one hydrogen atom
attached with a sp2 carbon atom which is attached with one
oxygen atom) where as compound no. 2 (acetone), 8 (acetic
acid), 11 (propanoic acid) and 12 (2-methyl propanoic acid)
show lower odorant property as these compounds are devoid of
this fragment. From this observation, it can be concluded that
the molecules containing hydrogen atom connected with
C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) fragments connected with
a heteroatom are inuential for odorant property of black tea.

The fourth highest signicant descriptor, ETA_BetaP_ns,
gives a measure of electron-richness of the molecules relative to
the molecular size. Therefore, electron-richness (unsaturation)
relative to the molecular size of molecule is an important
2298 | RSC Adv., 2018, 8, 2293–2304
parameter to regulate the odorant property of tea. The negative
regression coefficient (Fig. S4†) of this parameter indicates that
electron density of molecules should be lower for increasing the
odorant property of black tea as found in the compound no. 31
(1-heptanol), 62 (2-undecanone) and 70 (dodecanal) whereas
the compounds with high electron density show lower range of
odorant property as shown in compound no. 17 (furfural), 41
(benzyl alcohol) and 50 (2-phenyl ethanol). Thus, from this
descriptor, it can be concluded that the molecules should be
less electron-rich for higher odorant property.

The next signicant descriptor, F10[C–O], a 2D atom pair
descriptor, indicates the frequency of C–O bond at the topo-
logical distance 10. The negative regression coefficient (Fig. S4†)
of this descriptor indicates that presence of higher number of
C–O bonds at the topological distance 10 is detrimental for
odorant property of black tea as shown in compound no. 67
(decanoic acid), 74 (dodecanoic acid) and 76 (tetradecanoic
acid) (all these compounds contain two C–O bonds at topolog-
ical distance 10) and vice versa as shown in compound no. 26
((Z)-4-heptenal), 51 ((E,Z)-2,6-nonadienal) and 68 (b-dam-
ascenone) (these compounds have no C–O bond at topological
distance 10).

The least signicant descriptor, Jurs-WNSA-3, is the surface
weighted charged partial negative surface areas. It is the partial
negative surface area (PNSA-3) multiplied by the total molecular
solvent-accessible surface area (SASA) and divided by 1000, i.e.

WNSA-3 ¼ PNSA-3� SASA

1000

Partial negative surface area (PNSA-3) is the sum of the
product of solvent-accessible surface area multiplied by partial
charge for all negatively charged atoms.

From the eqn (1), it can be observed that partial charge for all
negatively charged atoms (PNSA-3) may enhance the odorant
property of tea components. The positive regression coefficient
(Fig. S4†) of Jurs-WNSA-3 indicates that the odorant property of
black tea components is directly correlated with surface
weighted charged partial negative surface areas. Thus, the
odorant property will increase with an increase in the numerical
value of surface weighted charged partial negative surface areas
(as shown in compound no. 51 ((E,Z)-2,6-nonadienal), 62 (2-
undecanone) and 70 (dodecanal)) and decrease with a decrease
This journal is © The Royal Society of Chemistry 2018



Fig. 2 The PLS model developed from the constituents present in black tea: (A) the scatter plot of the observed and the predicted values of
odorant property [log(1/OT)] for the final PLS model. The dashed line indicates the best fit line based on test set compounds and the solid line
indicates the best fit line based on the training set compounds. (B) The PLS score plot of the training set compounds using the developed PLS
model. (C) The loading plot of the model descriptors and dependent variable (log(1/OT)).
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the numerical value of surface weighted charged partial nega-
tive surface areas (as shown in compound no. 2 (acetone), 4
(ethyl acetate) and 41 (benzyl alcohol)).

The observed and predicted odorant properties of molecules
present in black tea are presented graphically in Fig. 2A.

3.1.1 Score plot of the PLS model.47 Score plot is important
to explore the distribution of molecules in the latent variable
space. The scores obtained from rst two components t1 and t2
are only plotted here to see the distribution of molecules and
also check any outliers are present in the dataset or not. If any
compound is positioned outside the ellipse (at 99% signicance
level), then we can consider that compound as an outlier. In the
score plot, the ellipse represents the applicability domain of the
PLS model developed by using black tea components as dened
by Hotelling's T2. Hotelling's T2 is a multivariate generalization
of Student's t-test.48 We can also identify the outliers from this
plot. Fig. 2B shows that compound no. 27 (heptanal), 34 (2-
octanone), 47 (linalool), 49 (nonanal), 52 ((E)-2-nonenal) and 70
(dodecanal) are situated in the upper right hand corner bearing
similar properties whereas the compounds which are far apart
from each other like those situated in the lower le hand corner
(compound no. 2 (acetone), 4 (ethyl acetate), 8 (acetic acid) and
11 (propanoic acid)) and upper right hand corner (34 (2-octa-
none), 47 (linalool), 49 (nonanal) and 70 (dodecanal)) represent
dissimilar compounds. It has also been found from the Fig. 2B
This journal is © The Royal Society of Chemistry 2018
that compound number 17 (furfural) is situated outside the
ellipse and indicated as an outlier.

3.1.2 Loading plot of the PLS model.47 Loading plot gives us
some idea about the relationships between the X-variables and
Y-variables. The loading plot deals with the impact of model
descriptors on the odorant property of the molecules present in
tea and also to identify the similar and dissimilar descriptors
among them. Here, we have used rst two components for
developing the loading plot. The variables contributing similar
type of information are positioned like a cluster or group. The
variables which are situated far apart from the plot origin are
considered to have a strong impact on the developed model.
The sign of the PLS loading also provides essential information
regarding the correlation among the variables. From the
loading plot (Fig. 2C), we have found that the spline term
descriptor hJurs-RASA-0.767i and H-049 descriptor are directly
correlated with the odorant property due their closeness to the
Y-variables (log(1/OT)) while the descriptors Jurs-WNSA-3, F10
[C–O] and ETA_BetaP_ns are inversely correlated with the
odorant property of the molecules as these descriptors are sit-
uated opposite side of the Y-variable. From this plot, it can be
interpreted that hJurs-RASA-0.767i, ETA_Eta_F and H-049
descriptors are inuential to the odorant property of the
compounds present in black tea as shown in compound no. 26
((Z)-4-heptenal), 44 ((E,E)-3,5-octadien-2-one), 47 (linalool), 51
RSC Adv., 2018, 8, 2293–2304 | 2299
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((E,Z)-2,6-nonadienal), 56 ((E,E)-2,4-nonadienal), 62 (2-undeca-
none), 68 (b-damascenone) and 70 (dodecanal) while H-049 and
nHDon descriptors are detrimental towards the odorant prop-
erty as shown in compound no. 2 (acetone), 4 (ethyl acetate), 17
(furfural), 41 (benzyl alcohol), 50 (2-phenyl ethanol), 67 (dec-
anoic acid), 74 (dodecanoic acid) and 76 (tetradecanoic acid).
The loading plot also showed that all the X-variables are loaded
strongly in the model and divided into two groups. The rst
group is formed by hJurs-RASA-0.767i, H-049, Jurs-WNSA-3, F10
[C–O] and ETA_BetaP_ns descriptors while the second group is
formed by only ETA-Eta_F descriptor which have a positive
impact towards the odorant property of the constituents present
in black tea but this descriptor is not similar to the other ve
descriptors.
3.2 PLS model developed from odorants present in coffee

This PLS model (eqn (2)) is derived from three latent variables
obtained from six descriptors. Based on the variable importance
plot (VIP) (Fig. S5†),46 the signicance level of the descriptors
was found to be in the following order: B01[C–S], ETA_Eta, F05
[C–C], nHDon, H-049 and C-029.

The values of the descriptors appearing in eqn (2) for
different compounds are shown in Table S5.†
log

�
1

OT

�
¼ 1:562þ 2:341� B01½C� S� þ 0:114� ETA_Etaþ 0:262� F05½C� C� � 1:256� nHDon� 1:103�H-049

þ 3:189� C� 029; ntraining ¼ 36; LV ¼ 3; R2 ¼ 0:722; Radj
2 ¼ 0:696; s ¼ 1:068; F ¼ 27:63ðdf 3; 32Þ;

PRESS ¼ 47:224; Q2 ¼ 0:639: ntest ¼ 10; Rpred
2 ¼ 0:781; QF2

2 ¼ 0:781; rmðtestÞ2 ¼ 0:777;

DrmðtestÞ
2 ¼ 0:101; MAE based criteria_test ¼ moderate: (2)
The most signicant descriptor, B01[C–S], a 2D atom pair
descriptor, indicates the presence/absence of C–S bond at the
topological distance 1. The positive regression coefficient
(Fig. S6†) of this descriptor indicates that the frequency of C–S
fragment at the topological distance 1 is directly proportional to
the odorant property of compounds present in coffee. A higher
number of this fragment correlates to higher odorant property
of compounds as observed in compound no. 13 (dimethyl
trisulde), 16 (3-mercapto-3-methylbutyl formate), 18 (2-methyl-
3-furanthiol) and 19 (3-methyl-2-butene-1-thiol) (each
compound containing one such fragment), while a lower
numerical value of this descriptor correlates to lower odorant
property of odorants present in coffee as observed in compound
no. 35 (2,3-dimethylpyrazine), 42 (2-methoxy-3-
isopropylpyrazine) and 43 (pyridine) (containing no such frag-
ment). Thus, presence of this fragment at the topological
distance 1 is inuential to enhance the odorant property of
compounds present in coffee.

The second highest signicant descriptor, ETA_Eta, repre-
sents the topological environment of molecules. This descriptor
contributed positively towards the odorant property as indi-
cated by the positive regression coefficient (Fig. S6†). Thus, the
higher numerical value of this descriptor is inuential to
2300 | RSC Adv., 2018, 8, 2293–2304
enhance the odorant property of odorants as shown in
compound no. 16, 30 and 37 and vice versa in case of compound
no. 4 (acetaldehyde), 12 (5-methyl-2-furancarboxyaldehyde) and
43 (pyridine).

The third highest signicant descriptor, F05[C–C], a 2D atom
pair descriptor, indicates the frequency of C–C bond at the
topological distance ve. This descriptor has a positive contri-
bution towards the odorant property of coffee components as
indicated by positive regression coefficient (Fig. S6†). Thus, the
compounds bearing this bond at the topological distance ve
show higher range of odor threshold property as evidenced by
the compounds 30 ((E)-b-damascenone) (frequency of such
atom pair at topological distance ve is eight), 37 (2,3-diethyl-5-
methylpyrazine) (frequency of such atom pair at topological
distance ve is ve) and 41 (2-methoxy-3-isopropylpyrazine)
(frequency of such atom pair at topological distance ve is
ve) while the compounds (compound no. 29 (2,3-pentane-
dione), 35 (2,3-dimethylpyrazine) and 43 (pyridine)) containing
no such bonds at topological distance ve show poor odorant
property.

The fourth highest signicant descriptor, nHDon, a func-
tional group count descriptor, indicates the number of donor
atoms for H-bonds (N and O). This descriptor has a negative
contribution (negative regression coefficient) (Fig. S6†) towards
the odorant property of coffee components. This indicates that
propensity of hydrogen bonding of coffee components is
detrimental for enhanced odorant property of molecules. As for
example, compound no. 22 (2-ethyl-4-hydroxy-5-methyl-3(2H)-
furanone), 32 (4-ethyl guaiacol) and 34 (vanillin) show lower
range of odorant property as these compounds containing one
hydrogen bond donor atom each whereas compound no. 18 (2-
methyl-3-furanthiol), 19 (3-methyl-2-butene-1-thiol) and 21
(dihydro-2-methyl-3(2H)-furanone) show higher range of
odorant property as these compounds contain no such (N, O)
donor atoms for hydrogen bonding.

The next highest signicant atom-centred fragments
descriptor, H-049, indicates H atom attached to C3sp3, C2–3sp2,
C1–3sp as discussed previously in eqn (1). The negative regres-
sion coefficient (Fig. S6†) of this descriptor indicates that this
fragment has a negative impact towards the odorant property of
coffee components. Interestingly, this fragment has a positive
contribution towards the odorant property in case of the
equation obtained from black tea components. Thus, this
fragment contributed oppositely towards the odorant property
in case of tea and coffee. It has been found that compound no.
19 (3-methyl-2-butene-1-thiol), 21 (dihydro-2-methyl-3(2H)-fur-
anone), 27 (1-octen-3-one) and 30 ((E)-b-damascenone) (no such
This journal is © The Royal Society of Chemistry 2018



Fig. 3 The PLSmodel developed from the constituents present in coffee: (A) the scatter plot of the observed and the predicted values of odorant
property [log(1/OT)] for the final PLSmodel. The dashed line indicates the best fit line based on test set compounds and the solid line indicates the
best fit line based on the training set compounds. (B) The PLS score plot of the training set compounds using the developed PLS model. (C) The
loading plot of the model descriptors and dependent variable (log(1/OT)).
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fragment) show higher range of odorant property whereas
compound no. 35 (2,3-dimethylpyrazine) (two H–CH–N frag-
ments), 42 (2-methoxy-3-isopropylpyrazine) (three H–CH–N
fragments) and 43 (pyridine) (two H–CH–N fragments) show
lower range of odorant property due to the presence of this
fragment.

The least signicant descriptor, C-029, atom-centred frag-
ments, indicates the fragment R–CX–X, where R represents any
group linked through carbon and X represents any heteroatom
(O, N, S, P, Se, and halogens). The positive regression coefficient
(Fig. S6†) of this descriptor indicates that presence of this
fragment in coffee component may enhance the odorant prop-
erty as shown in compound no. 40 (2-methoxy-3,5-
dimethylpyrazine) and 41 (2-methoxy-3-isopropylpyrazine)
while the compounds without these fragments (as shown in
compound no. 8 (3-methylbutyric acid), 22 (2-ethyl-4-hydroxy-5-
methyl-3(2H)-furanone) and 29 (2,3-pentanedione)) show poor
odorant property. Therefore, the components present in coffee
bearing these R–CX–X fragments play a crucial role to regulate
the aroma properties which make it suitable ideal beverages
worldwide.

The observed and predicted odorant properties of molecules
present in coffee are presented graphically in Fig. 3A.

3.2.1 Score plot of the PLS model.47 We can verify the
allotment of the molecules in the latent variable space dened
This journal is © The Royal Society of Chemistry 2018
by the scores using the score plot (Fig. 3B). In this work, we have
plotted the scores of rst two components t1 and t2. From this
plot, we can easily identify the similar or dissimilar compounds
with respect to the odorant property of odorant molecules
present in coffee. Fig. 3B shows that compound no. 13 (dimethyl
trisulde), 15 (methional), 16 (3-mercapto-3-methylbutyl
formate), 18 (2-methyl-3-furanthiol), 19 (3-methyl-2-butene-1-
thiol) and 20 (methanethiol) are situated in the upper right
hand corner bearing similar properties (all these compounds
contain sulphur atom(s)) whereas the compounds which are far
apart from each other like those in the lower le hand corner
(24 (4-hydroxy-2,5-dimethyl-3(2H)-furanone) and 25 (5-ethyl-3-
hydroxy-4-methyl-2-(5H)-furanone)) and upper right hand
corner (18 (2-methyl-3-furanthiol) and 19 (3-methyl-2-butene-1-
thiol)) represent dissimilar compounds. On the other hand, the
compounds which are in the center of the plane bear average
properties. We can also identify the outliers from this plot. The
compounds, which are situated outside the ellipse are indicated
as outliers. In this gure, we have found that compound no. 30
((E)-b-damascenone) is situated outside the ellipse and indi-
cated as an outlier (Fig. 3B).

3.2.2 Loading plot of the PLS model.47 From the loading
plot (Fig. 3C), we have found that the descriptors, C-029 and
B01[C–S] variables are directly correlated with the odorant prop-
erty due their closeness to the Y-variable (log(1/OT)) while the
RSC Adv., 2018, 8, 2293–2304 | 2301
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descriptors H-049 and nHDon are inversely correlated with the
odorant property of themolecules as these descriptors are situated
in the opposite side of the Y-variable. Thus, B01[C–S] and C-029
descriptors are inuential to the odorant property of the
compounds as shown in compound no. 13 (dimethyl trisulde), 16
(3-mercapto-3-methylbutyl formate), 18 (2-methyl-3-furanthiol), 19
(3-methyl-2-butene-1-thiol), 40 (2-methoxy-3,5-dimethylpyrazine)
and 41 (2-methoxy-3-isopropylpyrazine) while H-049 and nHDon
descriptors are detrimental towards the odorant property as shown
in compound no. 22 (2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone),
32 (4-ethyl guaiacol), 34 (vanillin), 35 (2,3-dimethylpyrazine), 42 (2-
methoxy-3-isopropylpyrazine) and 43 (pyridine). The loading plot
also showed that all the X-variables are loaded strongly in the
response and divided into two groups. The rst group is formed by
B01[C–S], C-029, nHDon and H-049 descriptors while the second
group is formed by F05[C–C] and ETA_Eta descriptors which have
positive impact towards the odorant property but these descriptors
are not similar to the other four descriptors.
3.3 Applicability domain

We have checked the applicability domain (99% condence
level) of the developed PLS models. The PLS model developed
from the odorants present in black tea (Fig. S7†) showed that all
the test set compounds are within the critical DModX value (D-
critical ¼ 3.553). On the other hand, the PLS model developed
from the odorants present in coffee (Fig. S8†) showed that all
the test set compounds are within the applicability domain (D-
critical ¼ 2.626).
4. Conclusion

PLS regression-based modeling technique was employed sepa-
rately using odorant property (log(1/OT)) of diverse classes of
constituents present in black tea and coffee to nd out the key
structural attributes of the components which make these
beverages attractive worldwide. We have also investigated the
key structural properties which make the odor difference
between tea and coffee using this in silico approach. Prior to
development of the nal models, we have used a variable
selection approach which proved to be an efficient strategy to
extract the signicant descriptors for development of nal
models. The statistical results obtained from various validation
strategies justify the reliability and usefulness of the developed
predictive PLS models. The PLS models were developed keeping
in mind the OECD principles for QSPR model development.
From the insights obtained from the developed PLS models, we
found out that relative hydrophobic surface area, molecules
having heteroatoms with higher number of multiple bonds,
molecules containing hydrogen atom connected with C3(sp3)/
C2(sp2)/C3(sp2)/C3(sp) fragments, electron-richness, C–O atom
pairs at topological distance 10 and surface weighted charged
partial negative surface areas are the key properties which
regulate the odorant properties of black tea. On the other hand,
C–S atom pairs at topological distance 1, C–C atom pair at
topological distance ve, donor atoms like N and O for hydrogen
bonds, hydrogen atom connected with C3(sp3)/C2(sp2)/C3(sp2)/
2302 | RSC Adv., 2018, 8, 2293–2304
C3(sp) fragments and R–CX–X fragments (where, R represents any
group linked through carbon and X represents any heteroatom
(O, N, S, P, Se, and halogens)) play crucial roles to regulate the
odorant properties of coffee. It was obviously difficult to compare
the two beverages because they share little common molecules
(for example, a large number of unsaturated aldehydes are
present in tea while there is only one in coffee); consequently
there is an understandable lack of commondescriptors (except H-
049 that has not the same importance range in the models).
However, this is interesting to note that the inuence of C3(sp3)/
C2(sp2)/C3(sp2)/C3(sp) fragments to regulate the odorant proper-
ties are opposite in the constituents present in black tea and
coffee. Thus, it can be concluded that to enhance the odorant
properties of the constituents present in black tea, (i) the
numerical value of relative hydrophobic surface area (Jurs-RASA)
of themolecules should bemore than 0.757; (ii)molecules should
contain hydrogen atom connected with C3(sp3)/C2(sp2)/C3(sp2)/
C3(sp) fragments; (iii) molecules should contain heteroatoms
with higher number of multiple bonds; (iv) molecule should be
less electron-rich; (v) molecules should not contain C–O atom
pairs at topological distance 10; and (vi) the numerical value of
surface weighted charged partial negative surface areas of the
molecules should be in higher range. On the other hand, to
enhance the odorant properties of the constituents present in
coffee, (i) the molecules should contain C–S atom pairs at topo-
logical distance 1; (ii) the molecules should contain C–C atom
pairs at topological distance ve; (iii) molecules should not
contain donor atoms like N and O for hydrogen bonds; (iv)
molecules should not contain any hydrogen atom connected with
C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) fragments; and (v) the molecules
should contain R–CX–X fragments (where, R represents any
group linked through carbon and X represents any heteroatom
(O, N, S, P, Se, and halogens)). Thus, the developedmodels can be
successfully utilized for in silico prediction of odorant properties
of diverse classes of compounds if they fall within the AD of the
developed PLSmodels and also give us the key information which
makes the odor difference between tea and coffee.
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