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Abstract: In this study, we modified the previously proposed X2CT-GAN to build a 2Dto3D-GAN
of the spine. This study also incorporated the radiologist’s perspective in the adjustment of input
signals to prove the feasibility of the automatic production of three-dimensional (3D) structures of
the spine from simulated bi-planar two-dimensional (2D) X-ray images. Data from 1012 computed
tomography (CT) studies of 984 patients were retrospectively collected. We tested this model under
different dataset sizes (333, 666, and 1012) with different bone signal conditions to observe the training
performance. A 10-fold cross-validation and five metrics—Dice similarity coefficient (DSC) value,
Jaccard similarity coefficient (JSC), overlap volume (OV), and structural similarity index (SSIM)—
were applied for model evaluation. The optimal mean values for DSC, JSC, OV, SSIM_anteroposterior
(AP), and SSIM_Lateral (Lat) were 0.8192, 0.6984, 0.8624, 0.9261, and 0.9242, respectively. There
was a significant improvement in the training performance under empirically enhanced bone signal
conditions and with increasing training dataset sizes. These results demonstrate the potential of
the clinical implantation of GAN for automatic production of 3D spine images from 2D images.
This prototype model can serve as a foundation in future studies applying transfer learning for the
development of advanced medical diagnostic techniques.

Keywords: 3-dimensional (3D) spine; generative adversarial network (GAN); simulated biplanar
X-ray

1. Introduction

The human spine is an essential axial skeleton that protects the central nervous system
and provides conduction to the peripheral nervous system. Clinical evaluation of the spine
includes two-dimensional (2D) or three-dimensional (3D) gross structural evaluation and
soft tissue analysis.

The basic physics of X-rays involves the interaction between electrons and tungsten
nuclei. Computed tomography (CT), dual-energy CT, low-dose CT, quantitative computed
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tomography (QCT), fluoroscopy, and dual-energy X-ray absorptiometry (DXA) were devel-
oped depending on different imaging reconstruction algorithms, shapes of the X-ray beam,
and energy spectra to provide diverse diagnostic information.

Traditional X-ray machines are the most popular routine imaging modality for quick
one-shot 2D anatomic inspection. CT, dual-energy CT, low-dose CT, and QCT provide more
spatial information, but their utility as a tool for routine orthopedic evaluation is limited
owing to the machine cost and popularization rate in different levels of hospitals. The
two X-ray energies have the capacity to differentiate different tissue components, and DXA
is popular for bone density scans. However, DXA lacks producing high-quality images.
Magnetic resonance imaging (MRI) is a 3D non-radiation-exposure system that employs
hydron characteristic analysis to provide better soft tissue contrast than CT and X-ray.
However, the MRI machine is expensive, and the scan timing is longer than that with other
diagnostic imaging modalities.

The entire spinal column is a complex multiarticular system consisting of 24 vertebrae
controlled by muscles. A single spine vertebra is a polymorphic geometric structure
comprising the body, pedicle, lamina, and spinous processes with diverse shapes and
angles. As a result, 2D image evaluation has a deficiency in human interpretation of
the exact 3D anatomic location. Building 3D structures of the spine can provide more
informative assessments for explanation of disease, diagnostic and therapeutic purposes.
Currently, the more reliable and faster imaging modalities for 3D bone structural analysis
are CT and 3D tomography [1], which incur more exposure to ionizing radiation doses
than plain film X-ray images do [2]. A reasonable reduction in ionizing dose exposure in
orthopedic patients is an important issue [3,4].

From a clinical perspective, there is no perfect diagnostic machine or algorithm. The
essential issue is choosing an appropriate diagnostic tool for the desired diagnostic purpose.
This study focused on developing a cost-effective method for building 3D gross anatomic
structures from 2D images as an auxiliary diagnostic tool.

Approximately 40 years ago, Openshaw et al. studied thoracic bone measuring ratios
on X-ray and CT examinations [5]. Related stereoradiographic research also involves 2D
to 3D transformation. In 1981, Szirtes proposed contour radiography and assumed that
two divergent projections from two X-ray sources could produce distinct image lines [6].
In 1988, Dansereau et al. applied a similar concept to contour radiography, using paired
X-ray images to reconstruct the entire rib cage [7]. Other spinal structure analysis studies
have been studied on approaching the shape using 2D image landmarks and fitting func-
tions [8–10]. A subsequent study with more specific vertebral landmarks was performed to
provide a reliable 3D reconstruction of the spine [11]. Two/three-dimension (2D/3D) image
registration in different domains is an important research topic in the field of computer
vision. The aforementioned studies were based on a linear transformation of the geometry.
Additionally, Cottes et al. [12] introduced a statistical model, the point distribution model
(PDM) [12], in which the predicted shape arises from a combination of the mean shape,
eigenvectors (feature components), and weighting parameters. The PDM was built using a
sufficient collection of datasets to span the space adequately to the predicted shape. In 2003,
Benameur et al. demonstrated that statistical models performed better than conventional
3D reconstruction methods for the spine [13]. Semi-automatic methods and validation
of the 3D reconstruction of spines from bi-planar images have been developed [14–17].
The EOS imaging device was commercially available in 2007 and enabled simultaneous
reconstruction of 3D spine segments from self-calibrated biplanar radiographs [18,19]. The
EOS system is a low-dose and quick examination modality for approaching 3D structures;
however, this semi-automatic system relies on bony landmark labeling by medical experts.
In 2021, Bennani et al. used uncalibrated biplanar radiographs with bounding boxes and
an active shape model (ASM) to reconstruct 3D vertebrae [20]. These methods involve
two important components: (1) feature extraction or bone landmark labeling and (2) build-
ing 2D/3D image registration models. These methods are semi-automatic, and sufficiently
precise bony landmark labeling manually by a medical expert is required. Such a process is
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time-consuming, laborious, and depends on observer labeling reliability [21,22] to avoid
error prediction in 2D/3D image registration models. Moreover, updating the statistical
models for specific patient groups is expensive [23].

In 2014, the idea of a generative adversarial network (GAN), invented by Goodfel-
low [24], became one of the most important and interesting architectures for machine
learning (ML). Compared to traditional linear transformation models, statistical models,
and convolutional neural networks (CNNs), GAN is a probabilistic generative model that
contains two types of neural networks: a generator and a discriminator. GAN is an au-
tomatic optimization solution method that is capable of feature extraction and building
the predicted model simultaneously by the trade-off between the generator and discrim-
inator with creative characteristics. For example, GANs are often applied to images to
solve the problem of transforming low-resolution images into high-resolution images from
other datasets [25,26], image-to-image translation [27], present depth information in 2D
images [28], and produce 3D models from a probabilistic latent space [29]. The basic proto-
type of the GAN uses random signals as inputs to the generator network and transforms
these random signals into meaningful fake outputs. The discriminator network further
judges fake and ground truth (GT) objects. Because the GAN architecture involves training
two neural networks, its technical implantation is challenging.

The conditional GAN was proposed by Mirza and Osindero [30], who introduced
conditional constraint inputs to the basic GAN model for specific mapping modeling
purposes. In 2017, Isola et al. proposed pix2pix-GAN [31] using L1+ cGAN loss and Patch-
GAN for discriminators that produce high-quality image-to-image translation tasks. Based
on these studies, Ying et al. proposed an X2CT-GAN [32] that can transfer biplanar chest
X-ray images to a 3D CT volume. These studies support our hypothesis of reconstructing
3D spines from bi-planar orthogonal 2D images, and we consider GAN as a potential ML
method for automatic transfer of bi-planar 2D/3D image registration of the spine.

In this study, we modified the X2CT-GAN with ResNet [33] as the backbone for feature
extraction and incorporated the empirical experience of a radiologist to tune the input sig-
nals to accomplish an end-to-end method for the automatic transfer of simulated bi-planar
X-ray images for 3D spine structures. Furthermore, two different signal condition inputs—
the original bone signal and enhanced bone signal conditions—with different dataset sizes
(333, 666, and 1012) were used to compare the 3D reconstruction performance. This study
demonstrates the potential clinical application of GAN for 2D/3D image registration of the
spine and provides implantation details in engineering and clinical considerations to build
a prototype for transfer learning of similar tasks in the future.

2. Materials and Methods
2.1. Data Collection

We retrospectively collected chest CT data from E-Da Hospital, National Cheng Kung
University (NCKU) Hospital in Taiwan, and The Cancer Imaging Archive (TCIA) [34,35]
under institutional review board certification. We applied the following exclusion criteria to
exclude the abnormal spinal structure for constructing a basic GAN model: (1) post-metallic
implants, (2) post-vertebroplasty, (3) post-laminectomy, (4) post-discectomy, (5) tumor
invasion, (6) severe scoliosis, and (7) fracture destruction.

The data included 1012 non-contrast-enhanced chest CT images of 984 patients
(217 men, 159 women, 608 unknown genders; available age, 49.88 years± 10.70 (mean ± SD))
(Table 1).
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Table 1. Demographic distribution of the study population.

Characteristic Number Percentage (%)

Sex
Female 159 16.16
Male 217 22.05
N/A 608 61.79
19–29 17 1.73
30–39 37 3.76
40–49 121 12.30
50–59 163 16.57
60–69 21 2.13
70–84 17 1.73

Age group (y)

N/A 608 61.78
Total 984 -

N/A: not available.

The CT data contained 0.6–10 mm (3.47 mm ± 1.76 (mean ± SD)) slice thickness, 200–
500 mm (347.01 mm± 37.05 (mean± SD)) reconstruction diameter/field of view (FOV), 100–
140 kVp (123.06 kVp ± 6.33 (mean ± SD)) tube voltage, 38–1080 mA (199.78 mA ± 185.64
(mean ± SD)) tube current, and 512 × 512 pixels for each 2D image (Table 2).

Table 2. Parameters of CT.

Characteristic No. of CT Percentage (%)

Manufacture
General Electric 582 57.51

Siemens 426 42.09
N/A 4 0.4

Helical Mode 583 57.61Scan Options
N/A 429 42.39

Slice Thickness
(mm)

0.6–3 466 46.05
5 543 53.66

10 3 0.29
100 7 0.69
120 760 75.10
130 168 16.60

Tube Voltage (kVp)

140 77 7.61

Tube Current (mA)

0–100 401 39.62
101–200 271 26.78
201–300 144 14.23
301–400 89 8.80
401–500 43 4.25
501–1100 64 6.32
200–300 118 11.66
301–350 416 41.11
351–400 413 40.81

Reconstruction
Diameter/

Field of view (FOV)
(mm) 401–500 65 6.42

N/A: not available.

The GT of the spine was labeled using an in-house semi-automatic segmentation
tool. Experienced medical technicians used 3D slicer open-source software [36] for further
detailed refinement of spine labeling. Finally, 1012 chest CT 3D images and 40,5534 2D
segmentation images of the spine were obtained. To meet the limited hardware capacity,
the pixel space of CT raw data was downsampled from 0.6777 mm ± 0.0723 (mean ± SD)
to 1.2766 mm ± 0.1180 (mean ± SD).

2.2. Generation of Simulated X-ray

It is impractical and unethical to collect sufficiently synchronized original X-ray and
CT images simultaneously for ML purposes. We used the previously proposed tomo-
graphic iterative GPU-based Reconstruction (TIGRE) toolbox [37] to simulate bi-planar
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chest X-ray images of AP and Lat views, by back-projection from cone beam CT (CBCT).
The original simulated X-ray images by the TIGRE toolbox were engineering algorithm con-
siderations, and the original simulated X-ray images manifested with a blurred appearance
(Figure 1A,B). The original simulated X-ray images did not resemble real X-ray images.
From a clinical radiology perspective, empirical image contrast tuning is an essential step
for radiologists to evaluate the region of interest (ROI) of the images. As a result, we
propose an empirical algorithm (Table 3) for enhanced bone signals on raw CT data to
improve X-ray image quality. Enhanced bone signal simulated X-ray images were produced
(Figure 1C,D) to approach the real X-ray images.
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Table 3. Algorithm of enhanced bone signals.

Steps

(1) Read CT image values from a 3D slicer in Hounsfield unit (HU).

(1.1) Set the low HU value threshold filter as:
if image value <−1024, then image value = −1024.

(1.2) Set the high HU value threshold filter as:
if image value >1000, image value = 0.

(1.3) Set the empirical mask filter: if image value >−400, mask pixel value = 1
else, mask pixel value = 0.

(1.4) Apply mask filter: mask filter (1.3) × [image values filtered by (1.1) (1.2)].

(2)
Convert filtered image values into imaging signal values.
Imaging signal value = (filtered image
value-DicomInfo.RescaleIntercept)\DicomInfo.RescaleSlope

(2.1) Set the empirical specific windowing as:
if imaging signal value ≤874 or ≥2024, then imaging signal value = 0.

(2.2) A higher imaging signal value was enhanced.
increase imaging signal value three times if imaging signal value >1300.

The bi-planar chest X-ray images of the AP and Lat views were further cropped to
bi-planar spine X-ray images with a 128 × 256 pixel size for conditional inputs into the
GAN (Figure 2).
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Figure 2. Overview of the whole architecture of the spine 2Dto3D-GAN. Circle C: Concatenate. The
GT 3D spine and simulated bi-planar X-ray images were derived from CT via manual segmentation
by 3D slicer software and TIGRE toolbox, respectively. The GAN model transformed 2D images into
a 3D object.

2.3. GAN Modeling

Our 2Dto3D-GAN of the spine (Figure 2) used simulated bi-planar spine X-ray images
as conditional inputs to the generator and discriminator networks. The generator network
is a modification of the X2CT-GAN [32] and discriminator network, referred to as the
Patch-GAN discriminator [31]. The AP and Lat simulated X-ray images composed the
conditional volume in this architecture. Therefore, this model could perform customized
optimization output according to different 2D input conditions.
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2.3.1. Generator Design

Our generator (Figure 3) focused on modifying the feature extraction CNN with
ResNet [33] to adapt to the image dimensions and memory capacity of the hardware equip-
ment. The original X2CT-GAN model was based on DenseNet [38] for feature extraction
under spatial-domain convolution. The concept of DenseNet is similar to that of ResNet—a
deep learning (DL) feature extraction architecture in the spatial domain. Furthermore,
DenseNet has the concept of multilayer feature connection with higher performance than
that of ResNet, but requires higher GPU memory and training time [39].
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Figure 3. Generator network. The generator consisted of an encoder and a decoder (modified from
X2CT-GAN generator [32]). Circle C: Concatenate; circle +: Add.

In our study, engineers and radiologists, to determine the clinically desired boundary
conditions, screened the raw data and input signals. Thus, we assumed that the basic
skip connection architecture of ResNet embedded in our generator could fulfill the entire
training process with the limited hardware equipment.

The encoder comprised eight layers of 2D convolutional (Conv2D) layers. The first four
blocks were used to extract the features, and the last four blocks were used to produce high-
level features for the decoder via a skip connection. The kernel size of the first convolution
layer was 7 × 7 to expand the receptive field, whereas the others had a kernel of 4 × 4
blocks. The channel sequences were (64, 64, 64, 64, 32, 16, 8, 4). The channel size was equal
to the first or second dimension of the reconstruction volume, which depended on the AP
or Lat view. Maximum pooling, batch normalization (BN), and ReLU activation functions
were implanted between each Conv2D layer. The decoder was divided into two parts.
First, the output of the encoder of the AP and Lat views was upsampling. Second, the
central decoder averaged the feature maps of the AP and Lat views to reconstruct the spinal
volume using a 3D convolution layer. Despite the dimensions between the AP and Lat
views being different, the dimension permuted before the combination. At the beginning
of the central decoder, the features were transferred to a 4 × 4 × 8 × 4 shape as the decoder
input. The upper and lower decoders included four two-dimensional upsampling layers,
and the central decoder consisted of five three-dimensional upsampling layers and one 3D
convolution layer to increase the detail of the reconstructed volume.
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The ReLU activation function was replaced by a sigmoid activation function in the
final 3D convolution layer. Spine volume was only used for identification of the structural
location, and we set 0.4 as a threshold to transfer output probability map to binary images
with values are either “0” or “1”. Finally, a 128 × 128 × 256 3D architecture was produced
in the output of the generator, as shown in Figure 3.

2.3.2. Discriminator Design

We refer to the previously proposed Patch-GAN discriminator [31] as the 3D-Patch-
GAN discriminator (Figure 4). Patch-GANs have good generalization properties and
are frequently used [27,32,40,41]. Our discriminator network consisted of four 3D con-
volution layers (Conv3D) linked by a LeakyReLU activation layer and a BN layer. The
channel sequences of the convolution layer were (32, 64, 128, 256), the kernel size was
4 × 4 × 4, and they were connected to a Conv3D at the end with a channel of 1 for the loss
function calculation.
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2.3.3. Loss Function

The least-squares generative adversarial network (LSGAN) [42] uses different distance
measurements to construct a more stable and faster convergence method for GAN and to
generate more realistic images. The basic LSGAN can be divided into the discriminator
LSGAN (Equation (1)) and generator LSGAN (Equation (2)).

min
D

LSGAN(D) =
1
2
Ex∼pdata(x) [(D(x)− 1)2]+

1
2
Ez∼pz(z) [(D(G(z))− 0)2] (1)

min
G

LSGAN(G) =
1
2
Ez∼pz(z)

[
(D(G(z))− 1)2

]
(2)

where G(z) is the generation sample, x is the true sample, and z is the biplanar simulated
X-ray. To increase the 3D convergence and accuracy [32], in addition to the LSGAN, the
reconstruction loss [43] was also calculated. The reconstruction loss was used to measure
the mean square error (MSE) (L2 loss) of the real and generated samples (Equation (3)).

Lre = Ez∼pz(y− G(z))2 (3)



Diagnostics 2022, 12, 1121 9 of 17

The final loss function is given by:

G∗ = λ1argmin LLSGAN(G, D) + λ2Lre (4)

Here λ1 and λ2 are set as 2, and 100, respectively.
The training process was stopped around the 50th Epoch (Figure 2).

2.4. Similarity Evaluation

In this study, we applied the dice similarity coefficient (DSC) (Equation (5)), the Jaccard
similarity coefficient (JSC) (Equation (6)), and overlap volume (OV) (Equation (7)) [44,45]
for volumetric comparison of GT 3D structures and GAN-predicted 3D structures.

DSC(A, B) =
2|A ∩ B|
|A|+ |B| (5)

JSC(A, B) =
A ∩ B
A ∪ B

(6)

OV(A, B) =
A ∩ B

min(A, B)
(7)

In addition to comparing 3D spatial structures, we used the structural similarity index
measure (SSIM) (Equation (8)) to evaluate the perceived quality of orthogonal 2D projection
images arising from GT 3D structures and GAN-predicted 3D structures.

SSIM [46] is a well-known objective method for evaluating the perceptual similarity
between two images by combining the loss of luminance distortion (l(x, y)), contrast
distortion (c(x, y)), and structural distortion (s(x, y)) (Equation (8)).

SSIM(x, y) = f [l(x, y), c(x, y), s(x, y)] (8)

In this study, we used SSIM_AP and SSIM_Lat to compare the orthogonal 2D projection
from the GT spine and the predicted spine using a sliding window size of 11 × 11 pixels.

Finally, we obtained five metrics for the quantitative evaluation: DSC, JSC, OV,
SSIM_AP, and SSIM_Lat.

2.5. Training Domains and Statistics

Sufficient medical data collection is not easy, and medical data labeling is labori-
ous, which requires domain knowledge of specific medical imaging to meet the clinical
environment.

In this study, we designed 2 × 3 input data conditions (two different bone signal
conditions × three dataset sizes) (Figure 5). We randomly selected 666 CT and 333 CT
series from randomly sorted 1012 CT and further processed bone signal tuning and TIGRE
toolbox transformation. The purpose of this design was to observe the effectiveness of the
same DL architecture under different training portfolios.

In the 10-fold cross-validation, the ratio of training, validation, and testing was 8:1:1
for each dataset size (Figure 6). The numbers of training, validation, and testing were 808,
102, and 102 in the 1012 dataset, whereas the other numbers were 256, 34, and 34 in the
333 dataset and 530, 68, and 68 in the 666 dataset.
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The Mann–Whitney U test was used to compare the training performance between
the original and enhanced bone signal conditions. The Kruskal–Wallis test was used to
evaluate the training performance of the three datasets. The statistical significance of the
alpha value was set at 0.05.

2.6. Hardware and Software Equipment

This study used an NVIDIA 3090 GPU (24 GB memory size) for the GAN modeling
process and an NVIDIA 2080 Ti GPU (11 GB memory size) for the TIGRE toolbox processing.
The software environment included TensorFlow 2.4, Python 3.8.4, and MATLAB 2019 B on
a Windows 10 operating system.

3. Results
3.1. Generation of the 3D Modeling

In this study, the training model stop point was set at the 50th epoch. Generator,
discriminator, and validation losses were observed (Figure 2). At the training end, the
trained generator network was used to produce reconstructed 3D images for human visual
perception and quantitative analysis. After completing the model training, we tested the
timing from the input of bi-planar data to the automatic production of 3D volume data for
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one case, which was 0.306 s under an Nvidia RTX 3090 GPU and 1.725 s under an Intel
I5-8400 CPU. This case is shown in Figure 7 and supplementary material in Video S1: 3D
spine rotation.mp4. Figure 7A,E demonstrate the GT for the same case.
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Figure 7. (A,E) GT spine; (B) Ori_333, DSC: 0.6605, SSIM_AP: 0.8293, SSIM_Lat: 0.8329; (C) Ori_666,
DSC: 0.6620, SSIM_AP: 0.8915, SSIM_Lat: 0.8089; (D) Ori_1012, DSC: 0.6065, SSIM_AP: 0.8693,
SSIM_Lat: 0.7880; (F) Enh_333, DSC: 0.8538, SSIM_AP: 0.9540, SSIM_Lat: 0.9248; (G) Enh_666, DSC:
0.8822, SSIM_AP: 0.9495, SSIM_Lat: 0.9417; (H) Enh_1012, DSC: 0.9095, SSIM_AP: 0.9649, SSIM_Lat:
0.9591. GT: ground truth; Ori_333: Original bone signals with 333 dataset size; Ori_666: Original
bone signals with 666 dataset size; Ori_1012: Original bone signals with 1012 dataset size; Enh_333:
Enhanced bone signals with 333 dataset size; Enh_666: Enhanced bone signals with 666 dataset size;
Enh_1012: Enhanced bone signals with 1012 dataset size.

The predicted 3D spines under the original bone signal conditions in the 333, 666, and
1012 dataset sizes are depicted in Figure 7B–D. For bone-enhanced signal conditions in the
333, 666, and 1012 dataset sizes, the predicted 3D spine images are depicted in Figure 7F–H,
respectively. We subjectively observed that the contours of the predicted 3D spine under
enhanced bone signal conditions (Figure 7F–H) were better than those under the original
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bone signal conditions (Figure 7B–D). As the dataset size increased under the original bone
signal condition, we observed that the predicted structure was an irregular contour of a
column (Figure 7B), further evolution of the gross structures with vertebral bodies and
spinous process (Figure 7C), and grossly segmented discrimination of different vertebrae
(Figure 7D) was observed in the larger training size groups.

In the enhanced bone signal condition, ambiguous segmental discrimination of differ-
ent vertebrae and sticky spinous processes were observed in the dataset size 333 (Figure 7F).
The enhanced bone signal models from the 666 and 1012 datasets produced similar pre-
dicted 3D spines (Figure 7G,H).

3.2. Quantitative Performance Assessment

The quantitative results for the six training conditions are presented in Table 4 and
Figure 8. These metrics were evaluated in two dimensions: different bone signal conditions
and different dataset sizes.

Table 4. Evaluation metrics of different training conditions.

Evaluation
Metrics

Bone Signal
Conditions

333 Dataset
Mean (SD)

666 Dataset
Mean (SD)

1012 Dataset
Mean (SD) * p-Value † p-Value

DSC

Original

0.3950 (0.0863) 0.4533 (0.0329) 0.4177 (0.0421) 0.06
JSC 0.2788 (0.0635) 0.3276 (0.0318) 0.3012 (0.0370) 0.10
OV 0.6587 (0.1112) 0.6211 (0.0744) 0.5730 (0.0557) 0.06

SSIM_AP 0.7342 (0.1280) 0.7446 (0.0684) 0.6992 (0.0626) 0.48
SSIM_Lat 0.6619 (0.1168) 0.6825 (0.0567) 0.6464 (0.0501) 0.57

DSC

Enhanced

0.7825 (0.0229) 0.8068 (0.0152) 0.8192 (0.0121) <0.01
JSC 0.6497 (0.0284) 0.6807 (0.0198) 0.6984 (0.0170) <0.01
OV 0.8300 (0.0184) 0.8553 (0.0172) 0.8624 (0.0112) <0.01

SSIM_AP 0.9143 (0.0090) 0.9238 (0.0049) 0.9261 (0.0073) <0.01
SSIM_Lat 0.8966 (0.0116) 0.9135 (0.0070) 0.9242 (0.0054) <0.01

<0.01

DSC: dice similarity coefficient; JSC: Jaccard similarity coefficient; OV: overlap volume; SSIM: structural similarity
index measure; AP: anteroposterior; Lat: lateral; SD: standard deviation; * p-value: Kruskal–Wallis test; † p-value:
Mann–Whitney U test.
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Considering the different bone signal conditions, there were significant † p-values
(<0.01) of all metrics for comparison of the original and enhanced bone signal conditions
regardless of different dataset sizes (last column in Table 4). The DSC values under original
signal conditions were between 0.4 and 0.45, and approximately 0.8 under enhanced bone
signal conditions. The optimal mean DSC value for all conditions was 0.8192, which was in
the enhanced-1012 dataset size group, and the training performance was approximately
twice that of the original signal conditions (0.8192 vs. 0.4177). The JSC values under the
original signal condition were between 0.28 and 0.33, and between 0.65 and 0.70 under
the enhanced signal condition. The optimal mean JSC value for all conditions was 0.6984,
which was in the enhanced 1012 training group, and the training performance ratio was
2.32 (0.6984 vs. 0.3012). The OV values under original signal conditions were between
0.57 and 0.66, and approximately 0.85 under enhanced bone signal conditions. The optimal
mean OV value for all conditions was 0.8624, which was in the enhanced 1012 training
group, and the training performance ratio was 1.51 (0.8624 vs. 0.5730).

The SSIM_AP values in the original signal conditions ranged from 0.7 to 0.74 and were
approximately 0.92 under enhanced bone signal conditions. The SSIM_Lat values under
the original signal conditions ranged from 0.65 to 0.68 and were approximately 0.91 under
enhanced bone signal conditions.

All DSC and SSIM values demonstrated statistically significant performance improve-
ment after empirical bone enhancement.

Considering the increasing dataset size of the training processes, we could observe
that the larger the training dataset size, the better the evaluation values, with statistical sig-
nificance under enhanced bone signal conditions (Figure 8B). However, under the original
bone signal conditions, the training effect did not increase correspondingly (Figure 8A). In
addition, the range of error bars of 10-fold cross-validation under the original bone signal
condition was larger than that under the enhanced bone signal condition (Figure 8A,B).

4. Discussion

The DL technique has received extensive attention in recent years, providing an
optimal solution method for more complicated conditions. The central idea of this study
is purposing a cost-effective auxiliary diagnostic method to current diagnostic imaging
modalities rather than to develop a gold standard functional diagnostic tool with advanced
capability.

In this study, we modified the X2CT-GAN to 2Dto3D-GAN of the spine to demonstrate
the feasibility of the automatic transformation of 2D bi-planar spine images to 3D structures.
This research followed the development over the past 40 years in the fields of biomedical
and computer vision studies.

The engineering characteristics of 2Dto3D-GAN of the spine are as follows: (1) GAN
is a combination of two neural networks with a generator and a discriminator. This can
provide additional optimization trade-off points according to the input dataset. (2) The
conditional volume in Figure 2 provides the training constraint for the GAN architecture. It
allows this neural network to adapt to different biplanar AP and Lat images with their own
acquisition parameters and thickness of the 2D structures. (3) The 3D patch discriminator
can provide a more detailed evaluation of each component (patch) of the entire structure.
These characteristics of 2Dto3D-GAN can provide a more generalized DL architecture
design (generalization ability) for diverse input datasets.

The radiology characteristic of 2Dto3D-GAN of the spine is that in most conditions,
medical images have only one channel of grayscale values, under diverse anatomic and
pathophysiological imaging features, and structures that are different from the engineering
application situation. Although CNN has been a well-known method in recent years
for feature extraction and generalization, we introduced a clinical-perspective empirical
method to adjust the input signals to approach real situations. Our study showed that
appropriate regulation of input signals is an important initial step for individual-specific
DL purposes under domain knowledge.
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This study conducted random sorting and selection for raw data. However, in a stan-
dard medical cohort study, training (including validation) and testing datasets should be
processed at different centers. In fact, the environmental conditions of medical engineering
in different hospitals are different, and patient physical characteristics are diverse, which in
turn affects the original signal variations of the same type of imaging modality. According
to our limited experience, the design, DL architecture, and training portfolios should meet
the clinical requirements. Most DL projects are often unable to simultaneously build a
perfect model at one time. It needs to start with a basic model through transfer learning
and adjust detailed parameters to meet the final clinical needs. Thus, building a reliable
prototype that mimics the final medical requirements is an essential step in DL model
development. This architecture can provide the essential basic parameters for multicenter
conduction in the future.

One of the vulnerable defects of our current model is that it is a basic prototype model
with constrained training portfolios rather than training on generalized actual medical
situations and conducted in multiple centers. Another defect is that the 2D simulated X-ray
images were derived from GT 3D structures and lost some exact 3D location information
(Figure 5). We did not evaluate transformation errors from the internal system of the TIGRE
toolbox for the similarity of real X-ray images and simulated X-ray images.

As we mentioned in the introduction, the purposes of this architecture are to improve
the semi-automatic workflow of the EOS system and provide auxiliary diagnostic informa-
tion on standard X-ray images. Therefore, the training portfolio of our study was similar to
that of the EOS system with bi-planar X-ray image inputs and 3D image output. If permit-
ted by the EOS system, we could use EOS bi-planar images and EOS semi-automatic GT 3D
output in our current GAN model to train and validate an automatic 2D/3D registration
workflow. For application to real bi-planar-X-ray images, we must solve the requirement
of the spatial alignment of AP and Lat X-ray images and signal adjustment as input data
pairs to our current model. These required more testing for the final clinical demand and
environment of imaging modalities in future research.

For evaluation of training performance in volumetric metrics, the Dice value was
around 0.8, JSC value was around 0.68, and OV value was around 0.85 in enhanced bone
signals (Table 4). We observed a gradual increment in training performance (Figure 8B).
We also noted indistinct disc spaces, blunting borders of transverse processes, and blunt-
ing border of spinous processes in GT 3D and predicted 3D structures in the enhanced
condition (Figure 7F–H). This could be further elucidated from three perspectives. First,
to meet the limited hardware capacity, a downsampling interpolation process for the CT
raw data was performed in this experiment. This led to a natural deficiency in feature
extraction. Upsampling of raw data can be tested in our future work to produce more
delicate 3D structures. Second, there are two major domains for digital imaging processing:
spatial domain analysis in Euclidean space and frequency domain by Fourier transform.
This prototype architecture was based on a spatial domain and applied the basic feature
extraction block of ResNet. Third, this architecture focused on the structure information (0
or 1) without further inferring the density spectrum of each pixel (0–255 values), owing to
hardware limitations. This could lead to an indistinct border in predicted 3D structures.
In a follow-up task, a more complicated spatial domain feature extraction network or
mixture frequency domain features can be studied for real X-ray images, and this can be
conducted in multiple centers using transfer learning techniques to satisfy appropriate
clinical requirements.

In this study, we proved the theoretical possibility of automatic 2D/3D registration of
the spine using a GAN model and further elucidated the essential implementation details
of this architecture. Our study demonstrates the potential clinical application of the DL
technique of GAN to adapt to human structural diversities in automatic trends and provide
more auxiliary diagnostic information to current imaging modalities.
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5. Conclusions

This study implemented a GAN model for automatic different-dimensional image trans-
formation of the spine with the potential for clinical application in a routine examination. It
is hoped that a better DL model and multicenter conduction can be achieved with low-cost,
faster, high-quality, and accurate 3D spine reconstruction from a novel perspective.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12051121/s1, Video S1: 3D spine rotation.mp4.
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