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Review

Electroosmotic flow: From microfluidics
to nanofluidics

Electroosmotic flow (EOF), a consequence of an imposed electric field onto an electrolyte
solution in the tangential direction of a charged surface, has emerged as an important phe-
nomenon in electrokinetic transport at themicro/nanoscale. Because of their ability to effi-
ciently pump liquids inminiaturized systems without incorporating anymechanical parts,
electroosmotic methods for fluid pumping have been adopted in versatile applications—
from biotechnology to environmental science. To understand the electrokinetic pumping
mechanism, it is crucial to identify the role of an ionically polarized layer, the so-called elec-
trical double layer (EDL), which forms in the vicinity of a charged solid–liquid interface, as
well as the characteristic length scale of the conducting media. Therefore, in this tutorial
review, we summarize the development of electrical double layer models from a historical
point of view to elucidate the interplay and configuration of water molecules and ions in
the vicinity of a solid–liquid interface. Moreover, we discuss the physicochemical phenom-
ena owing to the interaction of electrical double layer when the characteristic length of the
conducting media is decreased from the microscale to the nanoscale. Finally, we highlight
the pioneering studies and the most recent works on electro osmotic flow devoted to both
theoretical and experimental aspects.
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1 Introduction

Ever since Ferdinand Friedrich Reuss reported for the first
time, more than two centuries ago, his interesting observa-
tion of moving water through a plug of clay upon application
of an external electric field, a huge body of theoretical and
experimental studies have been carried out based upon the
discovery. The most important outcome of this discovery was
the ability to make water flow without any mechanical parts
and solely through application of an external electric field.
The working principle of this concept, which was later called
electrokinetic transport, involves the interplay of the external
electric field and a charged interface that is neutralized by a
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counter-charge layer of the liquid. One of the well-known cat-
egories of electrokinetic transport is EOF. EOF, which can be
employed as a pump to drive water from one side to the other
side of an electrically charged medium, has been extensively
used and studied [1–11]. The key role in this pumping phe-
nomenon is played by the electrically charged solid–liquid in-
terface, the so-called electrical double layer (EDL). The EDL,
which is a composition of charged solid surface and a very
tiny layer of counter-charges in an aqueous solution (around
a few nanometers), was first investigated in the 19th century
[12], and has been further studied in the 20th century [13–
15] and in contemporary times [16–20]. Consequently, it is
of utmost importance to enhance our understanding of the
configuration of water and ionic species in the vicinity of an
electrically charged solid surface.

One important characteristic feature of EOF is that its
volume flow rate can be comparable to that of pressure-driven
flow in micro- and nanoscale media [21]. Therefore, it is im-
portant to study EOF in micro- and nanochannels/porous
media and understand the impact on the flow of water or
charged species. It is worth pointing out that the characteris-
tic size of the medium has a considerable impact on EOF due
to the overlapping of EDLs. Let us imagine that the height of a
channel is comparable with the EDL thickness. Thus, it is ex-
pected that the EDLs interact. This interaction of the EDLs
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Figure 1. Reproduced schematic diagram [28] of the experiments

done by Reuss from his article [28]. The experiments conducted

in a U-type glass tube filled with water and the lower part was

filled with insoluble particles, such as sandstone, which created

a porous barrier. Reuss observed that when an external voltage

was applied to the water, it began to pass through the porous

barrier from the anode (+) to the cathode (−) side.

makes a major part of the channel electrically non-neutral
[22,23]. As a result, due to the electrostatic forces, the chan-
nel will become selective to the counter-ions, repelling most
of the coions. This interesting phenomenon has been the ba-
sis of many practical applications—from biophysics [24] to
electrokinetic remediation (EKR) of contaminants from un-
derground water resources [25,26].

This tutorial aims at reviewing EOF at the microfluidic
and nanofluidic scale. We start from a short historical review
of EOF and the story of its discovery (Section 2). After dis-
cussing the background, we present and discuss the evolu-
tion of the various EDL models (Section 2.1). After under-
standing how a solution in the vicinity of a charged solid sur-
face will be configured and a chemically active solid surface
will be electrically charged, we will then discuss EOF through
microchannels (Section 3.1) and microporous media (Sec-
tion 3.2). Next, we will turn our interest down to nanoscale
channels (Section 4.1) and nanoporous media (Section 4.2),
which we will address both theoretically and experimentally.
We present out conclusions in .

2 History and background

When German scientist Ferdinand Friedrich Reuss reported
his observation of water flowing through a plug of clay under
application of an external electrical voltage through the two
ends of a U-type tube, he presented his discovery as a lecture
entitled “Notice on a new, hitherto unknown effect of galvanic
electricity” to the Physico-Medical Society of Moscow in 1807
[27,28]. Subsequently, he published two papers in Latin and
French [29,30] to describe this unknown phenomenon in de-
tail. In his first experiment (Fig. 1), he observed the flow of
water (electroosmosis) through a wetted porous barrier made
of powdered quartz. Upon application of an external electric
field, the water on the cathode (−) side was raised while that
on the anode (+) side descended. After 2 h, he observed that

Figure 2. Reproduced schematic diagram of Reuss’ second ex-

periment [28,30]. Reuss inserted two glass tubes into a block of

moist clay (part A) and applied an external electric field to the

water inside the glass tubes.

the entire cathode side of the U-tube, together with the S-type
glass tube, was filled with water while the anode side of the
U-tube was discharged.

Reuss conducted his second experiment [30] in which
two glass tubes were filled with water and a thin layer of well-
washed sand was kept at the bottom (Fig. 2). In this setup,
Reuss observed that by applying an external electric field, the
sand at the bottom of the positive tube swelled upward and
tended to penetrate the sand layer (demonstrated as label A
in Fig. 2). With the benefit of hindsight, we today will inter-
pret this phenomenon as electrophoretic movement of the
charged sand particles. However, Reuss interpreted this ob-
servation as EOF into the sand.

Reuss made several false deductions while trying to in-
terpret this phenomenon. He stated that the liquid between
the poles of a battery is continuously driven from the posi-
tive pole toward the negative pole. He also believed that the
presence of porous barriers makes this movement visible by
counteracting the impact of gravity [28]. While some previous
works supported his conclusions [31,32], later in this article
we will show that according to our modern understanding,
these conclusions are false. Biscombe [28] has reviewed the
history of EOF discovery, which can be referred for further
details.

2.1 Models to explain the charged solid–liquid

interface

Aswementioned in the last section, Reuss concluded that the
fluid flowmust be due to the application of an external electric
field in an aqueous solution. However, the main physics un-
derlying this phenomenon was a mystery to him. He was not
aware of the impact of the solid–liquid interface on it. In 1859,
GeorgQuincke [33] conducted several important experiments
that proved to be a great step forward in shedding light on
Reuss’ discovery [32]. He conducted the reverse electroosmo-
sis experiment by applying a pressure gradient. In his setup,
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Figure 3. Schematic illustration of the Helmholtz EDL model. The

surface is negatively charged and positive ions (counter-ions) are

attracted to a location called the Helmholtz plane. In this model,

the net electric charge density of the ions is zero for the solution

beyond the Helmholtz plane.

the pumped water went through a tube where he measured
a potential difference. He found that adding sodium chloride
lowered themeasured electric potential. Themain conclusion
from his experiments was that the sign of the electric poten-
tial is independent of the water flow rate, tube diameter, the
concentration of the dissolved ions, and even the porous bar-
rier material in which he employed the glass, sand, graphite,
silk, and ivory. Here, we should note that, in his experiments,
the measured electric potential was essentially changed by
utilizing different materials. Quincke’s experiments led him
to the idea that there must be an excess space charge rather
than the surface charge. This hypothesis was a remarkable
milestone for the following works that attempted to explain
the underlying physics of the earlier experiments.

The pioneering theoretical attempt was done by the Ger-
man physicist and physician Herman von Helmholtz in 1850
[12]. Helmholtz was the first who paid attention to the nature
of the electrode–electrolyte or charged solid–electrolyte inter-
face. Essentially, a charged interface will attract free counter-
ions in the solution and repel coions because of the Columbic
forces. The charged interface, along the layer of counter-
ions that are attracted to the interface, was called the EDL.
Helmholtz assumed that there would be no electron transfer
at the charged interface and that the ions were solid spherical
particles with a specific diameter. According to theHelmholtz
model, as illustrated in Fig. 3, the charge that holds (electrode)
or is acquired on the solid–liquid interface must be balanced
by the redistribution of ions arranged in a parallel hypotheti-
cal plane with the solid–liquid interface.

Figure 4. Gouy–Chapman illustration of the ionic distribution and

electric potential distribution in the vicinity of a charged solid sur-

face.

The development of the kinetic theory of molecular be-
havior proved that theHelmholtz EDLmodel was not realistic
[34]. The main shortcoming of the Helmholtz model was in
ignoring the thermal motion of the counter-ions and the pos-
sibility of adsorption onto the solid surface. In the Helmholtz
model, the thickness of the Helmholtz double layer is inde-
pendent of the thermochemical properties of the solution.

Taking into account the thermal motion of the ionic
species, it is reasonable to say that the attracted counter-ions
in the vicinity of the solid–liquid interface will spread out in
space [21]. The spreading of the counter-ions into the bulk
solution forms a diffuse layer that, contrary to the Helmholtz
double layer, varies with the thermochemical properties of the
solution. The idea of such a diffuse layer was independently
proposed by French physicist Louis Georges Gouy (1910) and
English physical chemist David Leonard Chapman (1913).
The resulting model is now named after them as the Gouy–
Chapman electrical double layer (GC-EDL) model. According
to GC-EDL (Fig. 4) model, the electric potential decreases ex-
ponentially with the distance from the charged solid–liquid
interface. The thickness of the region with nonzero net elec-
tric charge density ( ρe = e(c+ − c− ) where e denotes the elec-
tron charge and c+ and c− are the counter-ion and co-ion con-
centration, respectively), depends on the bulk ionic concen-
tration that, for instance, in the solution would be stretched
over 100 nm in a very dilute electrolyte solution.

The standard solution of the GC-EDL model, which is
based on statistical mechanics, can be found in textbooks
as early as Adamson [35] and Overbeek [36]. The GC-EDL
model is based on the Poisson equation, which is solved from
the solid surface (at x = 0, ψ = −ζ ) to the bulk solution
(where x → ∞ and ψ = 0) and is written as

(∇2ψ
) = − ρe

ε0εr
= − e

(
c+ − c−

)
ε0εr

, (1)
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where ψ , ε0, εr denote the electric potential, vacuum electri-
cal permittivity, and the solution’s relative permittivity with
respect to vacuum, respectively. For the ionic species in the
solution, it is reasonable to say that they feel the local electro-
static potential from the charged solid–liquid interface. Con-
sequently, we can introduce the Boltzmann equation as

ci = cbi exp
(

− ziψ
kBT

)
, (2)

where ci, cbi , zi, kB, and T represent the ith ionic concentra-
tion, the bulk ion concentration, the ionic valence (e.g., for
a monovalent ionic solution z1 = +1 and z2 = −1), Boltz-
mann constant ( kB = 1.380649 × 10−23 J/K), and the ab-
solute temperature of the solution, respectively. Introducing
Eq. (2) into Eq. (1) gives rise to the Poisson–Boltzmann equa-
tion:

(ε0εr )
(∇2ψ

) = 2ecbi sinh
(
eψ
kBT

)
. (3)

The right-hand side of Eq. (3) can be simplified if we
assume that ψ � kBT

e . The term Vt = kB T/e is well-known
as the thermal potential and provides a measure of the in-
duced potential energy on an elementary charge (i.e., electron
charge) [37]. At room temperature,Vt is about 25 mV. Recall-
ing the assumption for the local electric potential in solution,
if ψ � 25 mV, then Eq. (3) can be simplified as

(ε0εr )
(∇2ψ

) ≈ 2ecbi

(
eψ
kBT

)
, (4)

which linearizes the Poisson–Boltzmann equation. Histor-
ically, Debye and Hückel simply extended the exponential
term related to the Boltzmann equation as truncated Taylor
series to the first order [38]. In the Taylor series, the zeroth-
order vanishes because the whole system is electroneutral

(
n∑
i
zieci = 0). However, the first order leaves the Helmholtz-

type equation. Rewriting Eq. (4) by only keeping the Laplace
term at the left-hand side, we finally obtain

(∇2ψ
) ≈

(
2e2cbi

ε0εrkBT

)
ψ. (5)

Considering the right-hand side of Eq. (5), the term κ =√
(

2e2cbi
ε0εr kBT

) has got the inverse of a length, which is attributed

to the characteristic length of the EDL and called the Debye
length. Consequently, Eq. (5) can be rewritten as(∇2ψ

) ≈ κ2ψ. (6)

It is worth pointing out that κ is also referred as the
Debye–Hückel parameter. Solving Eq. (6) together with the
Boltzmann equation (Eq. (2)) determines the distribution of
the ionic species and the electric potential in the vicinity of
a charged solid–liquid interface. Regarding the solution for
Eq. (6), we can subject the equation to the following bound-
ary conditions:

a) At y = H,
dψ
dy

= 0
(
due to symmetry at center of channel

)
,

b) At y = 0, ψ = ζ (potential at shear plane) ,

(7)

Figure 5. Reproduced sketch of the Stern EDL model [41] where

the solid surface is assumed to be positively charged. In his

model, the first layer, called Stern layer, has the thickness rep-

resented by δ, and the diffuse layer assumed to be beyond the

Stern layer.

where the y direction represents the normal direction to the
solid–liquid interface. Thus, the solution for Eq. (6) is [21]

ψ = ζ
cosh (κy)
cosh (κH)

. (8)

In Eq. (8), H represents the distance far from a single
solid–liquid interface or in the middle of a 2D micro- or
nanochannel. Here, it is worth pointing that we can also
propose an analytical solution for the Poisson–Boltzmann
equation (Gouy–Chapman theory, Eq. (3)) without any ap-
proximation (Debye–Hückel). It should be noted that the
GC-EDL model is a nonlinear theory for ionic distribution in
the vicinity of the solid–liquid interface. In this regard, the
analytical solution for Eq. (3) can be

� = ln

(
1+ exp (−κy) tanh

(
�s
4

)
1− exp (−κy) tanh

(
�s
4

)
)

, (9)

where � denotes the nondimensional form of ψ defined as
� = ψ

Vt
; at x = 0 and x → ∞ we have � = �s and � =

0, respectively. There are several excellent textbooks that can
be referred for further study about the electrostatic interac-
tion between planar and curved surfaces [21,39].

Following the Helmholtz and GC-EDL models, re-
searchers attempted to propose more complicated EDL mod-
els that could tackle the shortcomings of these previous mod-
els. For instance, the Gouy–Chapman model suffers from a
lack of generality for highly charged solid–liquid interfaces.
According to the GC-EDLmodel, if we increase zeta potential
to a very high value, the distributed ionic concentration is pre-
dicted to be infinitely large. This prediction originates from
assuming the ionic species as point charges (no ionic volume
effect). However, in reality, the ionic species have nonzero vol-
ume that approaches the solid surface to a distance not less
than their Stokes radii or the effective hydrated radius in so-
lution [40]. Thus, the German-American physicist Otto Stern
(1924) proposed a combination of the Helmholtz and GC-
EDL models to overcome the shortcomings of both models
[41]. He suggested that the EDL in the solution consists of
two layers. The first layer is a stagnant layer of hydrated ions
(Helmholtz model) and the second layer is a diffuse layer of
the ionic species (GC model). Figure 5 shows the reproduced
sketch of the Stern EDLmodel from his paper [41]. According

© 2020 The Authors. Electrophoresis published by Wiley-VCH GmbH www.electrophoresis-journal.com
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to his model, the electric potential changes linearly from the
solid surface (ψ0 or ψs) to a Stern plane potential (ψ1 or ψd).
The ions inside the Stern layer are assumed to be immobile,
while the ions beyond the Stern layer are assumed to be point
charges (according to the GC-EDL model). It is worth noting
that the distribution in the diffuse layer of the Stern model is
determined via the Boltzmann distribution equation.

The boundary between the immobile (Stern layer) and
mobile (diffuse layer) layer in the Stern model is assumed to
be the shear plane in which the zeta potential (ζ ) represents
the electric potential on this plane. The real position of the
shear plane has been the subject of long debates, which is
out of scope of the present work [17,42–46].

Although the Stern EDL model is considered a signifi-
cant step forward in our understanding of the surface charge
at the solid–liquid interface, it still deficient in several aspects,
such as ignoring the chemical reactions that take place on
the solid–liquid interface, the solution pH effect, and, impor-
tantly, it does not provide a method to calculate the surface
charge and zeta potential based on the solution pH and ion
concentration.

Approximately 50 years after Stern, Davis et al. [47] at-
tempted to explain and determine the surface charge and
electric potential on the Stern EDL model by proposing a de-
tailed surface complexation model for oxide surfaces. They
showed that the surface charge is dominated by surface com-
plex formation of ionizable sites and electrolyte ions. How-
ever, for a very dilute solution, the surface ionization is signifi-
cantly related to the concentration of the hydronium (H+) and
hydroxyl (OH−). The remarkable conclusion of their model
is that the electrolyte ions and the hydronium and hydroxyl
concentrations are working jointly to determine the surface
charge and electric potential via chemical reaction with the
surface sites. Their novel results proposed that adsorption
density, surface charge, and zeta potential could be estimated
simultaneously. The surface of the chemically active materi-
als, such as quartz, clay, etc. not only could be simply ionized
but also the surface complexes formed because of the asso-
ciation and dissociation of the hydronium and hydroxyl ions
from the solid surface [48].

In this model, it is assumed that the Stern layer consists
of two layers, both belonging to the immobile part of the EDL.
The complex of the Stern layer with the diffuse layer is called
the electrical triple layer (ETL) model. Figure 6 depicts the
configuration of the ETL model, in which the Stern layer is
divided into two layers via the inner- and outer-Helmholtz
planes (OHPs) following the Stern–Grahame electrostatic ca-
pacitor model of the inner region [45,48]. In this model, it is
assumed that the OHP coincides with the starting edge of the
diffuse layer or, in other words, the shear plane.

According to the model that Davis [47] proposed, which
was later developed by Kitamura et al. [15], the contribution of
the salt-ion adsorption to the surface charge on mineral sur-
faces is based on the following four chemical reactions [49]:

SiOH+
2 � SiOH+H+, Kint

a1 , (10)

Figure 6. Configuration of the ETL model. In this model, it is as-

sumed that the ions could be distributed in three layers that lie on

two planes near the charged surface. The 0-plane, β-plane, and d-

plane are the inner-Helmholtz plane, outer-Helmholtz plane, and

the starting edge of the diffuse layer, respectively [47].

SiOH � SiO− +H+, Kint
a2 , (11)

SiO− +M+� SiOM, Kint
M , (12)

SiOH+
2 + A−� SiOH2A, Kint

A , (13)

where Kint in each equation represents the associated equi-
librium constants for the reactions. Equations (10) and (11)
explain the impact of the hydronium concentration. If the
concentration of H+ increases, the chemical reactions (10)
and (11) will move to the left side. Similarly, the impact of the
metal ionic species (cation M+ and anion A−) is explained by
Eqs. (12) and (13). It is noteworthy that in the ETL model,
the protonation rate of the siloxane group is very low for the
pH range of 3–9. As a result, we can ignore the fourth reac-
tion (Eq. (13)) in the set of ETL equations described above. In
the ETL model, the surface charge and electric potential on
the three planes are calculated by considering the continuity
equation for the surface charge density on the solid surface,
the Grahame equation [45], and the differential capacitance
of the inner- and outer-Helmholtz layers.

Although the ETL model proved to be a great step for-
ward in figuring out the surface charge and electric potential
at the chemically active solid surface and the aqueous solu-
tion interface based on the properties of the solid surface, it
cannot explain some experimental observations such as the
impact of solution temperature on the zeta potential [50] or
the concentration-dependent electrical conductivity of ultra-
narrow channels (approximately 2 nm) [17]. With this aim,
Alizadeh et al. [17] further developed the ETLmodel in which
an extra layer was added between the zeta potential (ZP) plane
and the OHP, called the buffer layer (BL) (Fig. 7). The signif-
icant property of this layer is that its position from the solid
surface has a flexible nature, which is a function of the bulk
ion concentration and solution temperature. In their work,

© 2020 The Authors. Electrophoresis published by Wiley-VCH GmbH www.electrophoresis-journal.com
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Figure 7. Electrical quad-layer model, in which a new layer was

added between the zeta potential plane and the OHP, namely the

BL. The figure has been reprinted from [17]. The positions of dif-

ferent planes are shown by X and the thickness of each layer is

represented by δ.

they showed that the zeta potential plane (ZP) recedes to the
bulk solution or approaches the solid surface when the bulk
ion concentration decreases or increases, respectively.

The same chemical reactions were considered as men-
tioned above for ETL (Eqs. (10)-(13)). The BL properties were
integrated into the model by assuming a new capacitance,
which was defined as

ψOHP − ψZP = −QZP

CBL
, (14)

whereCBL, QZP, and ψ represent BL capacitance, the surface
charge on the starting edge of the diffuse layer, and the elec-
tric potential on the OHP and ZP, respectively. It is worth
noting that the BL capacitance is

CBL = ε0εr

δBL
, (15)

where ε0εr is the aqueous solution electrical permittivity; and
δBL is the BL thickness, which is a fitting parameter. To deter-
mine the thickness of BL, one needs to employ the ab-initio
methods (i.e., molecular dynamics [MD] simulations) to gain
a deeper understanding of this layer. However, as the aim of
Alizadeh et al. [17] work was to present a macroscopic model,
the thickness of BL was defined as a fitting parameter. They
demonstrated that the electrical quad-layer model could pre-
dict the measured zeta potentials and surface charge (Fig. 8)
as a function of bulk solution properties (i.e., bulk ionic con-
centration and solution pH).

The intense electric field within the electric double layer
could significantly alter the physical properties of the water
solvent from its bulk values. Specifically, the orientation of
water molecules in the vicinity of the charged surface favors
hydrogen bonding interactions, thereby increasing the shear
force in the flow direction normal to the surface. From an
activation energy perspective, the imposed electric field de-

creases the vibration frequency of molecules giving rise to an
increase in the activity energy Ea and, as such, an increase
in the apparent viscosity (according to Reynolds’ equation for
the viscosity of liquids μ, where the coefficient A is constant):

μ = A exp
(

Ea
kBT

)
, (16)

In 1939, Andrade and Dodd were the first to experi-
mentally demonstrate this phenomenon for polar solvents by
measuring the flow rate of a pressure-driven flow through a
slit channel with an applied electric field normal to the flow
direction [51,52]. They observed that in the case of polar sol-
vents, the apparent viscosity increased considerably with the
magnitude of the applied electric field whereas it remained
constant for nonpolar solvents. In a subsequent study pub-
lished in 1950, they quantified this phenomenon and revealed
that the increase in viscosity is a function of the applied mag-
nitude of electric field, as seen in Eq. (17) [53]:

μ = μ0 exp
(
f
∣∣E2∣∣) , (17)

where μ0 is the viscosity in the absence of an electric field, E
is the local electric field, and f = 
Ea/(kBT ) is referred to
as the viscoelectric coefficient, in which 
Ea is the activation
energy variation due to the presence of E.

At low applied electric fields, that is, f |E|2 � 1, the
higher order terms in the Maclaurin expansion of the expo-
nential function in Eq. (17) become negligible, resulting in
a simplified viscoelectric equation, which shows that the in-
crease of viscosity is proportional to the square of the local
electric field:

μ = μ0
(
1+ f

∣∣E2∣∣) . (18)

According to Debye and Onsager’s theories, f is subject
to the degree of polarization of the solvent molecules, which
can be expressed as

f ∝ τ 2

3kBT

(
3εr

2εr + 1

)
, (19)

where τ is the dipole moment. In 1961, Lyklema and Over-
beek analyzed f for water based on a polarization theory of
spherical molecules [42]. Using an average value of structural
coefficients fromprevious data of organic polar solvents, f for
water was estimated to be 10.2 × 10−16 m2V−2. This theoret-
ical estimate was later verified by Hunter and Leyendekkers
in 1978, who experimentally obtained a slightly lower f =
(5∼10) × 10−16 m2V−2 for water between two parallel sheets
[54].

Hsu et al. [18] considered viscoelectric effects in EDL
models via computational simulations, following the visco-
electic coefficient estimated by Lyklema and Overbeek, and
quantitatively obtained experimental measurements of four
classical electrokinetic phenomena: electrophoresis, elec-
troosmosis, streaming potential, and streaming current [18].
They reached a consistent conclusion for streaming potential
and streaming current: the measured electrokinetic quanti-
ties are independent of the surface charge (potential) as the

© 2020 The Authors. Electrophoresis published by Wiley-VCH GmbH www.electrophoresis-journal.com
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Figure 8. Zeta potential ver-

sus bulk ion concentration for

(A) NaCl and (B) KCl. (C)

zeta potential and (D) sur-

face charge versus the solu-

tion pH. The figures have been

reprinted from [17].

Figure 9. Schematic of the

velocity, electric field, and

streaming current profiles in

the vicinity of the surface at

high concentrations under the

basic Stern (BS) and visco-

electric double layer (VEDL)

models, respectively. v, E,

and ρe denote the velocity,

electric field in EDL, and space

charge density, respectively.

The figure has been reprinted

from [18].

electric field at the interface is higher than a critical value. As
seen in Fig. 9, as opposed to models that assume a constant
viscosity (e.g., the basic Stern (BS) model, which predicts
that the streaming current will increase with the increase in
surface charge), the viscoelectric double layer model (VEDL)
shows that the streaming current is insensitive to the surface

conditions at high surface charge densities due to the pres-
ence of a viscoelectric immobile layer. This implies that when
the surface charge is high, the surface charge conditions may
not be accurately measured by electrokinetic methods.

UsingMD simulations, Qiao et al. pointed out that the in-
crease in viscosity is significant at the interface of a charged

© 2020 The Authors. Electrophoresis published by Wiley-VCH GmbH www.electrophoresis-journal.com



Electrophoresis 2021, 42, 834–868 General, CE & CEC 841

surface and an electrolyte aqueous solution [55], consistent
with the viscoelectric theory. On this basis, Hsu et al. inves-
tigated viscoelectric effects in nanochannels using a contin-
uum VEDL model and indicated that viscoelectric effects are
dominant over other effects such as ionic steric effects and di-
electric saturation effects [56]. Due to the presence of the vis-
coelectric immobile layer, whose length scale becomes com-
parable to the channel dimension, the electroosmotic mo-
bility can even decrease as surface charge increases, consis-
tent with Qiao et al.’s MD analysis. Both MD and contin-
uum VEDL simulations show that enhancement of viscosity
directly suppresses ion diffusivities D following the Stokes–
Einstein equation:

D = kBT
6πμr

, (20)

where r denotes the ionic radius. In a separate study, Kaji
et al. experimentally observed an increase in viscosity and a
decrease in DNA diffusivity in nanospace that supports this
behavior [57]. Abundant scientific evidence has shown that
viscoelectric effects are of crucial importance in various elec-
trokinetic systems, especially at the nanoscale. However, they
are largely overlooked in current literature and deserve more
attention to elucidate electroosmotic behavior from a funda-
mental point of view.

Thus far, we discussed the various EDL models that have
been developed until now. However, we must note that there
is another phenomenon, electroviscous effects, whichmust not
be confused with the viscoelectric effect. The electroviscous ef-
fect is essentially a result of driving the ionic species from
one side through a charged micro/nanochannel to the other
side using an applied pressure gradient. In this phenomenon,
EDL will trap some counter-ions to drive from the inlet reser-
voir to the outlet. As a result, we will have nonzero net charge
density at the outlet reservoirs, which gives rise to an electric
potential difference between the inlet and outlet reservoirs,
called streaming potential [58–60]. This nonzero potential dif-
ference will generate a backward fluid flow to the pressure-
driven flow as the movement of the ionic species pull the
water molecules along with them due to the friction forces
between ionic species and water molecules [58,61,62]. The
net effect of these two driving forces will decrease the flow
rate in the pressure-driven flow direction. This reduction of
flow rate due to the resistance of the streaming potential is
equal to the increased viscosity of the aqueous solution. For
further detail regarding the impact of electroviscous effect
on the pressure-driven flow in micro/nanochannel, refer to
Dongqing Li’s textbook [58].

Here it is worth pointing out that the distribution of the
ionic species at the vicinity of the charged solid surface will be
strictly defined by the volume of counter-ionic species when
the solution is concentrated. This phenomenon which is the
so-called Steric effect [63,64] has been proposed to include
the steric replusion. Borukhov and Andelman [63] showed
that the Steric effect could be incorporated into the Posisson-
Boltzman equation to consider the ionic volume effects which
results in ion volume-dependent counter-ion concentration.

It has been shown that for larger sizes of ionic species, the
concentration of counter-ion species at the vicinity of the
charged solid-liquid interface decreases significantly. The im-
pact of ion size on the electrokinetic flow has been inves-
tigated in several previous works [22,65–67]. For instance,
considering the transport phenomena through nanoporous
membranes, the interplay of ultranarrow pore and ionic vol-
ume size will determine the electrokinetic transport phenom-
ena [67].

2.2 Mechanism of EOF pumping

In this section, we are going to discuss how the interplay of
the applied external electric field and EDL results in pump-
ing of the aqueous solution through the conducting media.
Therefore, we focus on a simple flow through two parallel
electrically charged plates, called slit microchannel. Figure 10
shows a schematic 2D illustration of the slit microchannel,
which is assumed to be negatively charged. EDLs in the vicin-
ity of two walls are shown in gray and are positively charged
due to higher counter-ion concentration.

Recalling what we discussed for Eq. (1), we should point
out that the electrical potential at each point in a straight chan-
nel without any entrance effect can be considered as a super-
position of the applied external electric field and the EDL’s
electric field. Consequently, we can write the total electric po-
tential as

φ (x, y) ≡ φ = ψ (y)+ (φ0 − xEx ) , (21)

where φ0 is the anode’s potential, x the length from anode,
and Ex = φ0

Lc
(Lc denotes the distance between the two elec-

trodes, which can be considered as the microchannel length).
If we introduce Eq. (21) into Poisson’s equation, the electric
potential due to the EDL will remain while the external elec-
tric field is a linear function of x.

By applying an external electric field, the whole aqueous
solution feels a body force equal to ρe∂φ/∂x. Evidently, the
body force can be zero if the concentration of the counter- and
co-ions are equal ( ρe = 0) or nonzero where the local elec-
troneutrality is violated (ρe 
= 0). Therefore, if the zeta poten-
tial on the microchannel’s walls does not change axially, the
Lorentz force because of the external electric field will be the
only driving force for the whole solution. Considering uEOF
in Fig. 10, the shear force at the middle of the microchannel
in EOF can be zero ( ∂u

∂y = 0). This phenomenon is owing
to zero Lorentz in the middle of the microchannel ( ρe = 0).
Later, we will discuss the distribution of the electric potential
and velocity inside micro/nanochannels and porous media.

Here it is worth pointing out that although this tutorial
focuses on EOF through media composed of nonconductive
materials, EOF can still be applicable when the solution is in
contact with a conductive medium where the surface is elec-
trically polarized owing to the external electric field, known
as induced-charge electroosmosis (ICEO) [68,69]. Bazant and
Ben [70] theoretically showed that the ICEO can be controlled
by a 3D AC applied electric field, enhancing the flow rate of
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Figure 10. Schematic 2D

illustration of EOF in a slit

microchannel. The applied

electric field (E ) drives the

counter-ions in the EDL to the

cathode.

EOF upto 20 times compared to planar AC electroosmosis
(AC-EO) pumps. Regarding this category of EOF, we direct
the readers to another review for details [71].

3 EOF through microscale pores and
channels

In the previous section, we discussed the history and the
physics underlying EOF. In this section, we will focus on the
broad applications of EOF in the microscale domain, which
consists of channels or the porous media. The use of EOF
in microfluidic applications is broadening day by day—from
lab-on-a-chip devices for biomedical applications to manipu-
lating fluid flows for logical parts of microfluidic chips such
as micromixers and microvalves.

3.1 EOF through straight microchannels

Followingwhat we discussed in Section 2, if we fabricate ami-
crochannel from materials with functional groups (i.e., ̶ OH)
and connect the microchannel to two reservoirs filled with
aqueous solutions, upon applying an external electric field
through insertion of two electrodes to the reservoirs, the free
electric charges in the vicinity of the solid–liquid interfaces
(c.f. Section 2.2) start to move toward the counter-charge elec-
trode. The motion of these ions pulls the solvent molecules
due to the frictional forces between molecules.

There are various types of species-driven methods
in lab-on-a-chip devices, namely, pressure-driven [72],
electrokinetic-driven [73], droplet-driven [74,75], and
capillary-driven [76]. Among these species-driven meth-
ods, we will focus on the electrokinetic-driven method. EOF
is one of the categories of species transport methods under
the electrokinetic transport phenomena. As we mentioned
above, the main advantages of EOF include pumping of
solutions without the aid of mechanical parts and easy
manipulation (or, in other words, active control) of the fluid

flow. In this section, we will try to demonstrate some of these
applications and discuss the underlying mechanism.

Considering the structure of lab-on-a-chip devices, which
are usually designed to analyze a sample of the analyte [77],
one of the key parts of these devices is the micromixer. The
rapid mixing of distinct types of species is vital for biochem-
istry analysis, synthesis of nucleic acids, and even drug deliv-
ery. Nguyen and Wu [78] categorized micromixers into pas-
sive and active types. The electrokinetic mixing methods are
classified as an active mixing method in which the mixing
efficiency can be controlled actively through external manip-
ulation. Electrokinetic mixing has attracted the attention of
researchers as both pumping and disturbance (which causes
the mixing of the species) can be performed simultaneously.
It is worth noting that electrokinetic disturbance can be com-
bined with other species-driven methods, such as pressure-
gradient method, wherein an AC electric field is usually ap-
plied perpendicular or alongside the fluid flow. This method
will be discussed in detail later.

As one of the pioneering works in this field, Jacobson
et al. [79] demonstrated electrokineticallydriven mixing of
species in T-shaped microfluidic channels. In their experi-
ments, the samples (which must be mixed with buffer solu-
tions) were driven by applying external electric fields to the
reservoirs. The external electric field drove both the sample
and buffer from separate channels (Fig. 11).

Applying an external electric field at the reservoirs of the
sample and buffer initiated their respective flows to the in-
tersection. Consequently, we can consider the ionic current
through the analysis channel as a function of the ionic cur-
rent through the sample (Is) and buffer (Ib) channels based
on the principle of conservation of ionic current:

Is + Ib = IA. (22)

In this experiment, the microchannels were designed
with the same cross-sectional areas to ensure that the impact
of the cross-sectional area on the fluid flow of different liquids
could be ignored. It is worth pointing out that the applied elec-
tric fields on both sample and buffer are the same. Based on
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Figure 11. Schematic illustration of the T-type micromixer

with electrokinetically-driven samples and buffers [79]. Arrows

demonstrate the direction of EOF.

these considerations, the ionic current through each channel
can be defined as

I = (WH) ρeu, (23)

where W , H, ρe, and u denote the width and height of the
channel, the net electric charge density, and the fluid flow ve-
locity, respectively. Thus, we can define the sample fraction
as

ns = Is
Ib + Is

. (24)

The sample fraction could be also obtained based on the
channel length L using

ns = Lb
Ls + Lb

. (25)

It is noteworthy that the above sample fraction relations
are valid when the acquired surface charge on the solid–liquid
interfaces could be considered constant. However, this is a
simplified assumption that is not realistic in many practi-
cal applications, especially when there are asymmetrical bulk
properties (i.e., concentration gradient, temperature gradi-
ent, etc.).

Jacobson et al. [79] proposed microchips for parallel and
serial electrokinetic mixing as well (Fig. 12A and B). In the
parallel mixing design, several parallel reservoirs for samples
and buffers were designed with connected T-intersections.
By applying external electric fields, the fluids from different
reservoirs weremade to flow andmeet at the intersections. To
visualize the mixing procedure, a fluorescence solution was
added to the sample solutions and the intensity of the fluores-
cence signal was considered as an index for the mixing capa-
bility of the microchip. In parallel mixing, the T-intersections
play a key role. In Fig. 12A, the labels “S,” “B,” and “A” re-
fer to the sample, buffer, and analysis channels. The numer-
ous T-intersections seen in Fig. 12 enhance the mixing of the
species. In serial micromixers, the sample and buffer reser-
voirs were connected to a serial branch of the microchan-
nels, which increases themeeting intersections of the sample
and buffers to increase the mixing efficiency of the species
(Fig. 12C and D).

In this method, a four-way intersection plays a key role
in enhancing the mixing of the species (Fig. 13). Similar to
the parallel mixing method, we can simply derive the conser-
vation of ionic current for the four-way intersection as

Is + IB = IA + Is+1. (26)

The above-mentioned EOF micromixer drives the fluid
flow by applying a DC electric field and relies on the geome-
try of the designed microchips. Although this method is cate-
gorized as active micromixing [78], we argue that this should
be categorized as “semiactive” micromixing method instead.
The main reason in favor of this argument is that the mixing
relies enormously on the design of the intersections as well as
the number of connected microchannels. However, we must
mention that the mixing of the species can still be controlled
via an applied DC electric field, which controls the speed of
flow of the solutions.

Following the idea that there is a direct relation between
perturbation and mixing efficiency, Oddy et al. [80] proposed
an interesting design that employed an AC electric field in-
stead of the DC electric field for stronger perturbations in a
chamber, and therefore, showed better mixing efficiency. The
AC electric field induces oscillating EOF in the microchan-
nels. To determine the oscillating EOF, one may consider the
Navier–Stokes (NS) equations under the following assump-
tions: 1D, low-Reynolds number flow (consequently ignoring
the advective effects on EDL), which can be simplified as

∂u
∂t

= ν
∂2u
∂y2

, (27)

where u, t, and y denote EOF velocity, time, and normal direc-
tion to the microchannel’s walls. The AC electric field affects
the solution located in the vicinity of the solid–liquid interface
(i.e., EDL). This effect can be introduced in the NS equations
by assuming a slip boundary condition as

Uslip (y = 0, d) = UHS exp (iωt ) . (28)

In this equation, UHS defines the reference velocity for
EOF or the Helmholtz–Smoluchowski (HS) velocity [21],
which is the result of solving the NS equation for thin EDL
(κH � 1, see Eq. (5)) with the nonslip boundary conditions
on the microchannel’s walls ( uy = 0 = 0 and uy = h = 0). The
original steady-state 1D NS equation in the presence of an
applied external electric field is written as

0 = ν
∂2u
∂y2

− ρe
∂φ

∂x
, (29)

where the last term on the right-hand side of Eq. (29) rep-
resents the applied external electric body force. As we men-
tioned in the previous sections, the net electric charge density
(ρe) can be obtained by solving the Poisson–Boltzmann equa-
tion and recalling the Debye and Hückel assumption:

ρe = −ε0εrκ
2ψ. (30)

By introducing Eq. (8) into Eq. (30), we obtain

ρe = −ε0εrκ
2ζ

cosh (κy)
cosh (κH)

. (31)
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Figure 12. (A) Schematic illus-

tration of the parallel EOF mi-

cromixer and (B) the fluores-

cence image of the mixing

results. In this setup, a volt-

age 1 kV is employed to both

buffer and sample reservoirs

while the waste reservoir is

grounded. (C) Schematic illus-

tration of the serial EOF mi-

cromixer with the (D) fluores-

cence image of the mixing

procedure of the buffer and

sample. Reprinted with per-

mission from [79]. Copyright

(1999) American Chemical So-

ciety.

Figure 13. Schematic ofmixing at the four-way intersection of the

serial mixing method [79].

Then, by introducing Eq. (31) into Eq. (29) and assuming
∂φ/∂x = −Ex (Eq. (21) when ∂ψ

∂x = 0) we have

0 = ν
∂2u
∂y2

+ ε0εrκ
2Exζ

cosh (κy)
cosh (κH)

. (32)

An analytical solution to Eq. (32) can be simply derived
as

u (y) = −ε0εrEx
μ

ζ

[
1− cosh (κy)

cosh (κH)

]
(33)

by considering the boundary conditions wementioned above.
Next, let us recall the assumption that the EDL is very thin in
comparison with the channel height (κH � 1). As a result,
Eq. (33) can be simplified as

u (y) = −ε0εrEx
μ

ζ, (34)

and for y = 0, we have uy = 0 = UHS = − ε0εrEx
μ

ζ . This is
called the HS velocity or the slip velocity at the outer edge
of EDL. An analytical solution to Eq. (28) is obtained as [80]

u (y, t ) = f (y) exp (iωt ) . (35)

The idea behind the AC-EOF micromixer is simple and
effective. A high-voltage amplifier is connected to one reser-
voir of a T-type microchip made of polydimethylsiloxane
(PDMS) and the other end is grounded. The two samples that
must be mixed are introduced through the two other reser-
voirs using a pressure gradient (Fig. 14). The two samples
entering the horizontal microchannel will be disturbed due
to the applied AC electric field. The oscillation of EOF at the
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Figure 14. Schematic depiction of the proposed micromixer by

Oddy et al. [80]. The two reservoirs on the right- and left-hand

side of the microchip are subjected to an AC electric field while

samples A and B are pumped into the vertical channel. Applying

an AC electric field will disturb the two samples that are entering

the straight channel and will enhance the mixing of the species.

Figure 15. Time-lapsed frames of themixing of the species. Start-

ing from a stable interface of the species (t = 0.0 s) and its devel-

opment after the onset of the instability (t = 13.3 s). Reprinted

with permission from [80]. Copyright (2001) American Chemical

Society.

horizontal microchannel will enhance the mixing of the sam-
ples (Fig. 15).

Thus far, we have shown that the mixing of species could
be enhanced by perturbing EOF with the geometrical design
or the AC electric field. In addition to these methods, Al-
izadeh et al. [81] have shown that the mixing of the species

Figure 16. Schematic illustration of micromixers with

temperature-patterned walls. The red blocks on the microchannel

walls represent high-temperature patterns with nonzero surface

charge. The other parts of the microchannel were both kept at

inlet solution temperature and zero surface charge. The figure

has been reprinted from [81].

could be enhanced by applying temperature-patterned walls.
In this mixing design, patterns of high-temperature plates
were assumed on the microchannel walls in symmetric and
asymmetric arrangements (Fig. 16). Patterns with tempera-
tures higher than the inlet solution temperature are shown
by red blocks on the microchannel walls. To drive the species
at the inlet of the microchannel, different external electric
fields were applied along with the same pressure gradient.
The modified NS equation for incompressible fluid is

∂u
∂t

+ u · ∇ (u) = −∇p+ ∇ · (ν∇ (ρu))+ F, (36)

where ρ (kg/m3) is the density of the electrolyte, p (Pa)
is the fluid pressure, ν (m2/s) the kinetic viscosity, and F
(N/m3) is the body force density. It is worth noting that the
body force could include all applied body forces such as
the electrical body force or the pressure gradients. In this
study, the electric body force was defined as F = Fe + Fp =
−ρe(∇ϕ + ∇ψ )+ ∇P, where ∇ϕ is the external electric field
and ∇ψ denotes the internal electric field owing to the distri-
bution of the ionic species.

As the temperature field and the distribution of the elec-
tric potential on themicrochannel walls are nonuniform, one
must solve the Nernst–Planck (NP) equation to obtain the
distribution of the ionic and sample species. However, the
conventional NP equation is based on isothermal solutions.
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Figure 17. Vortices created

due to the temperature-

patterned walls in two

arrangements. By increasing

the solution temperature, the

vortices influence a larger

area of the microchannel,

which forces mixing of the

species. The figure has been

reprinted from [81].

Therefore, we need to modify it for the nonisothermal sce-
nario. Alizadeh et al. [81] modified the NP equation as
∂Ci

∂t
+ u · ∇ Ci = Di ∇2Ci + eziDi

kBT
∇ · (Ci∇ψ )− eziDiCi

kBT 2
∇T · ∇ψ, (37)

where the last term on the right-hand side of Eq. (37) is re-
sponsible for the temperature gradient effect. This term rep-
resents the thermoelectrochemical migration phenomenon,
which is a contribution of both temperature gradient and in-
ternal electric field. For a detailed discussion regarding this
phenomenon and its impact on ionic distribution, see Al-
izadeh et al. [81].

The two other governing equations that must be solved
are the energy equation and the species concentration equa-
tions:
∂T
∂t

+ u · ∇T = k
ρcp

∇2T (38)

and
∂Cs

∂t
+ u · ∇ Cs = Ds ∇2Cs, (39)

where T (K) denotes the solution temperature, k the thermal
conductivity, and cp is the specific heat capacity. In Eq. (39),Cs

represents the species concentration andDs is the species dif-
fusion coefficient. For mixing the species in this microchan-
nel, we need to solve the NS, NP, energy, advection-diffusion,
and the Poisson (Eq. (1)) equations in an iterative coupled nu-
merical procedure. The numericalmethod that Alizadeh et al.
[81] used was the Lattice Boltzmann method (LBM), which
is a rather novel computational fluid dynamics method that
has drawn considerable attention recently [82–84] owing to its
capability and simplicity in modeling multiphysicochemical
transport phenomena through structured and unstructured
media with micro/nanoscale characteristic length.

The modeling results demonstrated that by increasing
the temperature difference between the solution and the pat-
terns on the microchannel’s walls, the induced vortices in-
fluence a major part of the microchannel. Consequently, the
mixing of the species is enhanced (Fig. 17).

Thus far, we have discussed the electrolyte flow through
charged media triggered by an external electric field. How-
ever, in some cases the electrolyte flow is generated by apply-
ing both pressure gradient and external electric field [85–88].

The governing equations for the combined EOF/pressure-
driven flow are the Poisson equation (Eq. (1)) and the mod-
ified NS equation for incompressible flow (Eq. (36)). Equa-
tion (36) can be simplified to a 2D system when straight mi-
crochannels with the height (h) is much smaller than the
channel width (w). Based upon the aforementioned assump-
tions, we can derive a modified NS equation as

dp
dx

= μ
∂2u
∂y2

+ ρeEx. (40)

If we introduce the Poisson equation (Eq. (1)) into
Eq. (40), then we have

dp
dx

= μ
∂2u
∂y2

− ε0εrEx
d2ψ
dy2

. (41)

Equation (41) is a linear partial differential equation
which justifies the decomposition of the total velocity into the
EOF and pressure-driven velocities as

u = uEOF + up, (42)

where up represents the pressure-driven fluid velocity. Equa-
tion (41) reduces to theHS velocity (Eq. (34)) when there is no
applied pressure gradient (i.e., dp/dx = 0). If we nondimen-
sionalize Eq. (41) with ū = u/uHS, p̄ = p/( μuHS

h ), ȳ = y/h,
ψ̄ = ψ/ζ , and x̄ = x/h then we have [85]

dp̄
dx̄

= ∂2ū
∂ ȳ2

− d2ψ̄
dȳ2

. (43)

Considering the superposition principle for linear partial
differential equations, Eq. (43) can be solved as

ū (ȳ) = −1
2
dp̄
dȳ

(
1− ȳ2

) + 1− ψ̄ (ȳ) . (44)

Figure 18 shows the nondimensionalized combined
EOF/pressure-driven flow velocity (ū) versus the cross-
section of the microchannel (ȳ) for different applied pressure
gradients. Since the EDL thickness is very thin, for zero
pressure gradient (i.e., dp̄/dx̄ = 0), it is demonstrated that
the flow velocity decays fast by getting far from the mi-
crochannel’s walls and a uniform plug-like velocity develops.
However, by applying nonzero pressure gradients, the flow
velocity departs from plug-like velocity and which depends
on the applied pressure gradient direction.
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Figure 18. The nondimensionalized combined EOF/pressure-

driven velocity along the cross-section of the microchannel for

different applied pressure gradients. The amounts of d p̄/dȳ

curves’ labels. The figure has been reprinted from [85].

Electroosmosis can not only drive Newtonian fluids but
also non-Newtonian fluids such as power-law and viscoelas-
tic [89–91] fluids. Generally, the non-Newtonian fluids are de-
fined as fluids in which there is a nonlinear relation between
the variation of velocity and the shear stress. EOF of viscoelas-
tic fluid between two parallel plates could be described via the
Phan-Thien-Tanner (PTT) model [92] which is a model based
on the network theory for polymeric fluids. In the viscoelastic
EOF, Dhinakaran et al. [91] utilized the Gordon-Schowalter
convected derivative which results in nonzero second normal
stress difference in pure shear flow. The impact of EDL and
the distribution of the ionic species are considered by solving
the Poisson-Boltzmann equation. The governing equations
for the viscoelastic flow could be considered as the continuity
and the modified Cauchy equations as [91]

∇ · u = 0,
ρ Du

Dt = −∇p+ ∇ · τ + ηs∇2u + F,
(45)

where ηs is the Newtonian solvent viscosity and τ is the poly-
meric contribution to the extra-stress tensor which the sol-
vent viscosity is assumed to be negligible in comparison with
the polymeric contribution (i.e., ηs = 0). The external body
force is considered to be obtained by F = ρe E .

Considering the PTT model to take into account the vis-
coelastic behavior of the fluid, one has a relation between the
extra-stress tensor and solvent viscosity as [91,92]

f (τkk ) τ + λ τ̃ = 2ηD, (46)

where D = (∇uT + ∇u)/2 is the rate of deformation tensor,
λ the relaxation time, η is the polymer viscosity coefficient,
and τ̃ represents the Gordon-Schowalter convected derivative
of the stress tensor defined as

τ̃ = Dτ

Dt
− ∇uT · τ − τ · ∇u + ξ (τ · D + D · τ ) , (47)

where ξ denotes the slip between the molecular network and
the continuummedium [92]. Dhinakaran et al. [91] proposed
an analytical solution for the set of governing equations. Their
solution showed that the normal and shear stresses are ap-
proximately zero at the centerline of the channel while they
rapidly rise by approaching toward the channel’s walls.

3.2 EOF through microporous media

In the last section, we discussed the solution transport
through the electrically charged microchannels with the ap-
plication in micromixers as an essential part of the lab-on-a-
chip devices. In this section, we will study the applicability
of EOF through complex electrically charged domains such
as porous media. Porous media can be defined as any nat-
urally (i.e., underground soil or brain) or artificially (i.e., fil-
tration or fuel cell membranes) produced complex material
with a very high surface-to-volume ratio. Applications of such
porous media are very broad—from biology [93,94] and en-
vironmental science [25,26,95–98] to geology [99–103]. This
section aims to highlight EOF through microporous media
by focusing on relevant applications. Here, wemust point out
that microporous media are characterized as porous media
with an average void size on the order of a few micrometers.

Historically, Paul et al. [104] reported that the electroki-
netic phenomena could induce high pressures that are suit-
able for pumping liquids through microporous media. The
experiments were performed for a pack of micron-size silica
beads (Fig. 19). The difference in the work done by Paul et al.
[104] with what we mentioned in Section 2 is in the capability
of EOF in generating high pressures through porous struc-
tures. Paul et al. have shown that EOF could generate pres-
sures as high as 55 MPa. To consider the porous media, they
assumed that a porous medium is a composition of micro-
capillaries. The characteristic properties of any porous media
could be defined by several parameters such as porosity (ϕ)
and tortuosity (τ ). Porosity is defined as the volume fraction
of the voids and tortuosity is simply defined as the length of
the tubules per unit length of themedium. A tortuous porous
mediumwill reduce EOF velocity. Consequently, the averaged
EOF velocity in a porous medium for a given porosity (ϕ) and
tortuosity (τ ) is [104]

U0 = −UHS

(
1− f

(
κd
2

, ζ

))
ϕ

τ 2
, (48)

where d denotes the effective pore diameter for the packed
beads (which has a direct relation with the beads’ diameter)
and f is a function that is responsible for any overlapping
effect of EDL. Clearly, for the nonoverlapped regimes, the av-
erage EOF is the HS velocity. They proposed that for a very
thin EDL, the flow rate must be an independent function of
the pore diameter and is proportional to the applied external
electric field (E = V/L).

If we assume that porous media is a combination of
many capillaries, then the averaged EOF velocity combined
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Figure 19. A schematic illustration of micron-sized silica beads.

The silica beads will acquire a negative surface charge due to

the chemical reaction with the solution (c.f. Section 2.1). EOF is

generated by applying an external electric field to both ends of

the microporous media. The negatively charged silica beads will

generate a polarized layer of the solution (EDL) and the external

electric field will push the solution in the vicinity of the solid sur-

face.

with the applied pressure gradient could be obtained
as [104]

Um = −∇Pd2

8η
−UHS

(
1− f

(
κd
2

, ζ

))
. (49)

To obtain the pressure gradient due to the applied exter-
nal electric field, we need to assume a zero net flow, which
means EOF is opposed to a pressure-driven flow. Therefore,
we have


 PEOF = −32ε0εrζ
d2

(
1− f

(
κd
2

, ζ

))

V. (50)

Equation (50) indicates that the induced pressure gradi-
ent owing to the applied external electric field is solely a func-
tion of the effective pore diameter and the electrochemical
properties of the porous medium.

Paul et al. conducted simple experimental measure-
ments to obtain the induced pressure due to the electroos-
motic pumping effect. In their setup, fused silica capillaries
were packed with nonporous silica (NPS). The porosity of
their medium was 0.32. The packed silica beads were placed
in between two fluid reservoirs, which were filled with a mix-
ture of 80:20 of acetonitrile and water buffered with 4 mM
aqueous sodium tetraborate and pure water with 1 mM bo-
rate. To make sure that the EDLs in the pores of the silica
beads pack are not on the overlapped regime, we can sim-
ply calculate the EDL thickness by employing its definition

κ =
√
(

2e2cbi
ε0εr kBT

) ,which results in 5 to 6 nm. Aswementioned

above, the measured porosity of the pack was 0.32, which
suggests that the average pore diameter to the Debye length

Figure 20. Pressure generated by employing an external electric

field toward a micro-size packed silica beads. The experimental

measurements demonstrate the generated pressure gradient di-

vided by the applied external electric field versus the bead diam-

eter. The figure has been reprinted from [104].

would be 10. This indicates that EDLswere not generally over-
lapped. The experimental setup consisted a packed capillary
with one end open to the ambient pressure while a platinum
electrode was introduced to the reservoir. The other end of the
packed capillary was fitted into a plastic HPLC “T” junction
which the side leg was fitted with a platinum wire electrode.
Clearly, the external electric field will be applied to both ends
of the packed capillary through the designated electrodes. The
remaining third leg of the “T” was designed to attach to differ-
ent diagnostics. Paul et al. [104] measured the pressure gen-
erated through EOF by measuring the compression length of
an air gap that is trapped in a long capillary tube that is sealed
on one end. Figure 20 depicts the experimental measure-
ments for differentmicro-sized silica beads and the generated
pressure gradient for different bead diameters. In this figure,
ODS represents OctaDecyl Silyl (C18H37Si(CH3)2), which is
a hydrocarbon group with a cation exchanger C18H37Si. The
dashed lines represent the predicted values of 
PEOF/
V by
Eq. (50) which are scaled to themean of the 3μmODS coated
NPS beads.

As we know, the acquired or applied surface charge at
the solid–liquid interface plays a key role in EOF. There-
fore, it is of utmost importance to study the influence
of surface charge (σ ) or zeta potential (ζ ) on the ionic
species’ transport through the microporous media. Histor-
ically, researchers have attempted to (I) prescribe the sur-
face charge and zeta potential as an independent parame-
ter, namely homogeneous surface charge, or (II) obtain the
local surface charge by solving the EDL models (i.e., Sec-
tion 2.1), namely inhomogeneous surface charge. Clearly,
the first method brings simplicity to the complex electroki-
netic transport phenomena through complex geometry. How-
ever, these results may neglect the possibly significant im-
pact of the local surface charge on the species’ transport
properties.
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For homogeneous surface charge, there is a large body
of literature that focuses on the theory [105–110] and experi-
ment [111,112] of EOF through porous media. The common
assumption among the early works is that the EDL is very thin
compared with the characteristic pore size. Therefore, we can
introduce a slip velocity (the HS velocity) at the solid–liquid
interface, which includes the impact of the EDL on the solu-
tion.

Starting from a pioneering work, Coelho et al. [113]
briefly reviewed the previous attempts until 1996 and they
attempted to study the impact of EDL thickness on EOF
through porous media with an intermediate range of double
layer thickness. Coelho et al. attempted to, first, propose the
general electrokinetic equations that govern the transport of
the ionic species and the solution through an infinite spatially
periodic porous medium. Subsequently, the proposed equa-
tions were linearized by introducing ionic potentials as pro-
posed by O’Brian [112,114]. Finally, they proposed the general
numerical simulation results and compared the simple cases
with the available analytical solutions.

The general electrokinetic equations for porous media
are the same as those proposed for the straight channel (see
Section 3.1). The flux of the ionic species is

Ji = −Di∇Ci − eziDiCi

kBT
∇ψ +Ciu, (51)

a superposition of the diffusion (the first term on the right-
hand side), electromigration (second term), and convection
(third term). Equation (51) is obtained by applying the conti-
nuity equation,

∂Ci

∂t
+ ∇ · Ji = 0. (52)

Regarding the fluid flow, we can simplify theNS equation
because fluid flow through compact porous media inherently
has a very low Reynold’s number. This low Reynold’s number
justifies the utilization of the Stokes equations with transient
specification as [113]

μ∇2u − ρe
∂u
∂t

= ∇p+ F, (53)

where μ represents the dynamic viscosity, p is the pressure,
and F is the Lorentz electric body force (which we have de-
fined in Eq. (36)). Essentially, we need to solve Poisson’s equa-
tion (Eq. (1)) to obtain the distribution of the electric poten-
tial owing to EDL and the ionic species as charged particles.
To solve the governing equations, we need to define proper
boundary conditions. The boundary conditions for porous
media in which the solid–liquid interfaces were assumed to
be impenetrable are the same as those we introduced for the
straight channels. Hence, we have

n · Ji = 0,
us = 0,
ψ = ζ ,

(54)

where n denotes the normal unit vector to the solid–liquid in-
terface and us is the fluid flow velocity on the solid–liquid in-
terface. The first boundary condition represents the zero ionic

fluxes into the solid surface. It is assumed that electric poten-
tial ψ on the interface is the Dirichlet type. Here, we should
note that the boundary condition for Poisson equation could
be considered as Neumann-type if we set the surface charge
on the solid–liquid interface instead of the electric potential.
The relation between the surface charge and the electric po-
tential on the solid–liquid interface could be obtained by con-
sidering the definition of balancing the surface charge with
the free net electric charge density in the solution:

σs = −
∞
∫
0

ρedy. (55)

If we introduce Poisson equation into Eq. (55), then we
have

σs = ε0 εr

[
dψ
dy

]∞

0

, (56)

where at infinity or in symmetrical boundary conditions, we
have dψ

dy = 0. Finally, we obtain
the more general form of Eq. (57), which is given as

σs = −ε0εr
dψ
dy

|0. (57)

σs = −ε0εr∇ψ · n. (58)

Consequently, for Poisson equation boundary condi-
tions, we can also prescribe the surface charge and obtain the
electric potential with Neumann-type boundary condition.

To complete the problem formulation, we need to de-
termine the structure of the porous media. In this regard,
Coelho et al. [113] considered several ordered and disordered
microstructures. The ordered microstructures could be con-
sidered as the periodic media in which the locations of the
grains and, consequently, the pore domain could be described
easily by simple vectors. It is worth noting that the diameter
of the grains must be the same. As Fig. 21A shows, the 3D
space of the ordered porous media could be defined in R

3 as

R = r + Rm = r + [R] · [n] , (59)

where [R] = [I1, I2, I3] and [n] = [n1, n2, n3] are the three ba-
sic vectors that characterize the unit cell of the ordered porous
medium and the trio of integers that belong to Z

3, respec-
tively.

Coelho et al. linearized the governing equations by as-
suming that the deviation of the system from equilibrium
could be very small when the applied external electric field
is small compared to the EDL electric field. As a result, the
concentration of the ionic species, electric potential, pressure
gradient, and the velocity could be written as

Ci = C0
i (r)+ δCi (R, t ) ,

ψ = ψ0 (r)+ δψ (R, t ) ,
p = p0 (r)+ δp (R, t ) ,
u = δu (r, t ) ,

(60)

where the superscript “0” denotes the amount of parameter
in the equilibrium state. It is worth noting that the fluid flow
velocity in equilibrium state must be equal to zero, which
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Figure 21. Schematic illustra-

tions of (A) periodic medium,

(B) simple cubic array of

spheres, (C) orthorhombic

lattice, and (D) a bed of ellip-

soids obtained via sequential

deposition. All the structures

have been reprinted from

[113].

represents the state when there is no applied external body
force. Coelho et al. [113] introduced the above definition of
parameters into the governing equations and solved them
numerically. For further details regarding the linearized
dimensionless governing equation, refer to their work. The
most interesting results from their numerical simulation is
in the limit of the thin EDL when the slip velocity at the edge
of EDL (UHS) is a valid assumption. The velocity in the bulk
region of the pore (far from the solid–liquid interface where
the electric potential due to the walls would be near zero) is a
function of the local electric field. This implies that the fluid
flow in the pore space of the porous media could be consid-
ered as an inviscid flow (a flow in which the viscosity or the
shear stresses are equal to zero) and is governed by Laplace’s
equation. However, for the thicker EDL, they showed that
the whole pore space contributes to the drag force on the
porous media wall owing to the fluid viscosity. Therefore, it is
reasonable to make an analogy between the pressure-driven
flow and an EOF with thicker EDL which the major solution
in pore will be driven by the applied electric field because
of nonzero net electric charge density. We will discuss in
detail the contribution of comparable EDL thickness with the
characteristic length of the channel or pore in the following
sections.

Later, Gupta et al. [115] attempted to model the electroos-
mosis through solid porous media by considering a high zeta
potential. The high zeta potential will not allow us to lin-
earize the right-hand side of the Poisson–Boltzmann equa-
tion (Eq. (3)). As a result, Gupta et al. attempted to solve the
governing equations numerically for different types of porous
media.

In another study, Wang et al. [110] investigated EOF in
anisotropic porous media, that is, porous media with in-
homogeneous directionality of grains. The porous medium
in the study was created by considering arrays of ellipses
which were packed in a microchannel with 1 μm height.
It was assumed that the microchannel walls and the solid–
liquid interface of the ellipse grains with electrolyte solution
were charged equally, that is, ζwall = ζellipse = −50 mV. The
bulk concentration of the ionic species was selected to be
nb = 10−4 M. In order to initiate EOF through the micro-
porous medium, an external electric field with strength of
E = 5 KV/m was applied. As Fig. 22 shows, we can make the
porous medium isotropic or anisotropic by changing the ori-
entation angle θ . Wang et al. [110] simply picked a and b in
such a way to have a porous medium with pore sizes 0.7 μm.

They solved the NS equation combined with the Poisson
equation where the distribution of the ionic species was ob-
tained by employing the Boltzmann distribution [110]. The
modeling result demonstrated that the EOF rate is a func-
tion of the orientation angle and the size of the ellipse’s semi-
major axis. It has been shown that by increasing the ellipse’s
semimajor axis, the EOF rate increases. Thismeans that if we
decrease the pore size or increase the porosity of the porous
medium in the y direction, the volumetric flow rate of the
solution will increase (Fig. 23A). This behavior of the EOF
rate as a function of the semimajor axis of a pack of ellipses
is expected when the orientation angle is assumed to be θ =
0 because the packs of ellipses will behave as several paral-
lel microchannels. Thus, more electrolytes will flow in the
external electric field direction and less will flow normal to
the electric field. In contrast, we expect that by increasing the
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Figure 22. The schematic illustration of the porous medium which is a pack of ellipses in a microchannel. The height of the microchannel

is 1 μm. The figure has been reprinted from [110].

Figure 23. Normalized EOF

rate versus (A) semimajor axis

and (B) the orientation angle.

For (A), the orientation angle

is considered to be θ = 0 and

for (B) it is assumed that a =
61.5 nm and b = 40.6 nm. The

EOF rate was normalized by

the flow rate when θ = 0. The

figures have been reprinted

from [110].

orientation angle (θ ), the EOF rate decreases. Figure 23B
shows the impact of the orientation angle on the EOF rate.
It is shown that by increasing the orientation angle, the EOF
rate will decrease.

Prior to this work, Wang et al. [116] studied the EOF
pumping effect inmicroporousmedia by considering the par-
ticle size effects (Fig. 24A), external electric field (Fig. 24B),
bulk ion concentration (Fig. 24C), and the prescribed zeta po-
tential on the particles (Fig. 24D). The microchannel had a
1 μm height and the structured porous medium was consid-
ered to be a pack of spheres (Fig. 25). The modeling results
revealed that by increasing the particle size, the EOF rate in-
creased significantly. In this structure, it was assumed that
the particle sizes are changing while the porosity is constant.
This situation results in a different particle number when we
change the particle size.

As a step forward in understanding EOF through mi-
croporous media, Wang and Chen [117] utilized a random
generation-growth method for reproducing the structure of
the porous media with prescribed porosity and grain sizes
[118,119]. It was assumed that the charge of the solid–liquid
interface is homogeneous and was prescribed as an input
boundary condition for Poisson’s equation. The governing
equations are the same as those we mentioned previously
(Eq. (1), (52), and (53)). They utilized LBM to solve the gov-
erning equations (Section 3.1).

The 3D randomly generatedmicroporousmedia (Fig. 26)
were subjected to an external electric field (E) and EOF

initiated through the negatively charged micropores. Their
modeling results showed that EOF permeability κe = ū /E
(m2/sV), which is defined as the averaged velocity over the
strength of the applied external electric field, has a nonlinear
relationship with porosity.

As Fig. 27 demonstrates, by increasing the porosity of the
porous medium for ε < 0.5, the electroosmosis permeabil-
ity increases slightly. However, for porosities beyond 0.5, the
electroosmotic permeability increases dramatically with the
porosity. This behavior of porous media was shown by Wang
et al. [120] to be due to the numerical instability of the lattice
Boltzmann scheme they selected for 3Dmodeling of complex
geometry.

In addition, Wang and Chen [117] investigated the influ-
ence of bulk ion concentration and prescribed zeta potential
on the EOF permeability (Fig. 28 ).The modeling results are
significant, in that they demonstrate the importance of elec-
trochemical properties of the solution and the solid–liquid in-
terface in determining EOF through microstructure porous
media.

Regarding the impact of bulk ionic concentration, mod-
eling results of Fig. 28 demonstrate that electroosmotic per-
meability always increases with bulk ion concentration. How-
ever, this increase in electroosmotic permeability slows down
for higher bulk ion concentrations.

We have mentioned (Section 2.1) that the zeta potential
and the surface charge of chemically active solids are a func-
tion of the bulk ion concentration and the solution pH. Thus,
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Figure 24. EOF rate versus (A) particle size, (B) applied external electric field strength, (C) bulk ionic concentration, and (D) the particle

zeta potential. The figures has been reprinted from [116].

Figure 25. Microporousmedium, which is a pack of spherical par-

ticles with a structured distribution. The walls of the microchan-

nel were charged as ζw = −50 mV while the zeta potential of the

particles could be changed as a parameter to study the EOF rate.

The external electric field (E) and the generated pressure gradient

(�P) are shown in this schematic illustration. The figure has been

reprinted from [116].

it is of utmost importance to determine the solid–liquid in-
terface electric potential based on the local solution proper-
ties. FollowingWang and Chen’s [117] study, Wang et al. [120]
attempted to study multiphysicochemical transport through
randomly generated porousmedia by considering the zeta po-
tential as a result of the local solution properties. For the elec-
tric boundary conditions on the solid–liquid interface, they
utilized the BS model, which is based on the dissociation of
the silanol groups:

SiOH � SiO− +H+. (61)

Behrens and Grier [121] proposed that zeta potential
could be expressed as a function of surface charge density
(σ ) and defined as

ζ (σ ) = kT
e

ln
(

− σ

e� + σ

)
− (pH − pK )

kT ln (10)
e

− σ

C
, (62)

σ (ζ ) = 2εrε0kTκ

e
sinh

(
eζ
2kT

)
, (63)
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Figure 26. Generated micro-

porous structure using the

random generated-growth

method for a 60 × 60 × 60 grid

system. (A) represents the

porous medium structure with

porosity 0.3 and (B) porosity

0.6. The structures have been

reprinted from [117].

Figure 27. Electroosmotic permeability (κe) versus porosity (ε) of

a porous medium for the reservoir concentration nb = 10−4 M,

ζ = −50 mV, and E = 104 V/m. The figure has been reprinted

from [117].

Figure 28. Electroosmotic permeability as a function of bulk ion

concentration. The modeling results have been reprinted from

[117].

where � = 8, pK = 7.5, and C = 2.9 denote the surface
density of chargeable sites on the silica surface (nm−2), the
dissociation equilibrium constant, and the Stern layer phe-
nomenological capacity (F/m2). Clearly, the two Eqs. (62) and
(63) are a set of nonlinear equations that must be solved nu-
merically, combined with the Poisson–Boltzmann and NS
equations.Wang et al. [120] solved the governing equations by
using the 3D LBM method. Their modeling results demon-
strate the distribution of the electric potential that is ob-
tained by solving Eq. (62) (Fig. 29A) and EOF velocity vectors
(Fig. 29B).

This work could be distinguished from the previous one
(Wang and Chen [117]) as it highlighted the fact that the zeta
potential cannot be changed as an independent input param-
eter according to bulk ion concentration and solution pH.
Consequently, if we need to study the impact of zeta potential
on electroosmotic permeability, we need to change the pH or
the bulk ion concentration. In their work, Wang et al. [120]
showed that EOF permeability sharply changes as a func-
tion of the porosity even for ε < 0.3 (Fig. 30). As we men-
tioned previously, these results are in clear contradiction with
their previous numerical prediction (Wang and Chen [117],
Fig. 28). These contradictory results were interpreted to be
due to the numerical instability of the former study.

Wang et al. [120] studied the effects of zeta potential
(Fig. 31A) or, consequently, solution pH (Fig. 31B) on the elec-
troosmotic permeability. Interestingly, the modeling results
indicated that there is no electroosmotic permeability satura-
tion for high zeta potentials. This finding was similar to that
of their previous work (Wang andChen [117]) (Fig. 29B). They
showed that even for zeta potentials higher than 100 mV, the
logarithm of electroosmotic permeability could be considered
to be increasing approximately linearly. They concluded that
these results, which are in contradiction with their previous
study, could be due to numerical instability and not a physi-
cal effect. This increase in zeta potential for a fixed bulk ion
concentration is due to the increase in the solution pH. In
Fig. 31B, the electroosmotic permeability is demonstrated as
function of pH.

As a combination of EOF through a straight microchan-
nel and a porousmedium, EOF through amicrochannel with
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Figure 29. Electric potential

and EOF vectors for a ran-

domly generated porous me-

dia with porosity ε = 0.14. (A)

Four slices of the porous me-

dia from inlet to the outlet at

x = 0, 1/3, 2/3, and 1. (B) The

velocity vector field and the

contour of EOF x direction ve-

locity. The figures have been

reprinted from [120].

Figure 30. EOF permeability versus porous medium porosity (ε)

for solution with nb = 1 × 10−5 M and ζ = −50 mV. The figure

has been reprinted from [120].

random roughness appears to be a practical candidate [122].
Wang and Kang [122] generated 3D randomly generated mi-
croporous media with random roughness on a microchan-
nel. They set three parameters: number density, total volume
fraction, and anisotropy of the roughness elements. Figure 32
shows themicrochannel with different roughness. For details
regarding roughness generation, refer to Wang and Kang’s
work [122]. The EOF rate in this work was defined as

Q = ∫ uzdA, (64)

where uz represents EOF velocity in the applied external elec-
tric field direction and A is the area of the microchannel
cross-section. Figure 32A shows the normalized EOF rate ver-
sus the roughness number density of the microchannel. The
roughness number density is defined as

nR = Nwall sd
Awall

, (65)

where Nwall and Awall are the total cell number and the
area of the microchannel wall, respectively. Increasing the
roughness number for a fixed microchannel walls’ area and

the total cell numbers was carried out by increasing the
roughness distribution probability. As we have shown in
Fig. 32D–F, an increase in sd would make the roughness
microstructure coarser with less connections. The impact of
the roughness number density on the EOF rate is shown in
Fig. 33A. It is interesting to note that the EOF rate increases
linearly with the logarithm of the number density of rough-
ness. These results indicate that a more connected or dense
roughness of the microchannel will decrease EOF pumping
effect. In Wang and Kang’s work, the roughness volume frac-
tion was defined as the ratio of the total volume of the rough-
ness to the fluid volume for the microchannel with smooth
walls. If we fix the number density of the roughness as
nR = 360/μm2 for the squares and nR = 36/μm2 for circles in
Fig. 33B, then the numerical modeling results revealed that
the EOF rate generally decreases with increase in the volume
fraction for both the number densities of the roughness sce-
nario. To understand the impact of volume fraction on the
EOF rate, we can imagine that increasing the volume frac-
tion means that the total volume of the roughness increases
for a fixed microchannel height.

These results are reasonable as by increasing the volume
fraction of the roughness, the effective area for electrokinetic
transport is decreased. Moreover, it has been shown that by
increasing the number density of roughness, the EOF rate
will increase. These results are consistent with the impact of
the number density on the EOF rate (Fig. 33A).

The works discussed above (except Wang et al. [120]
in which the solution pH determines the zeta potential
and surface charge of solid–liquid interface) investigated
charged microporous media where the surface charge was
prescribed and homogenous. This means that the surface
charge was an input parameter and did not change with the
solution properties. However, Zhang and Wang [123] inves-
tigated electroosmosis in an inhomogeneously charged mi-
croporous medium. An inhomogeneously charged porous
medium refers to the fact that the surface charge on the solid–
liquid interface must be obtained based on the local solu-
tion properties (i.e., pH, temperature, and bulk ion concentra-
tion). Therefore, one of the EDL theories that we introduced
in Section 2.1 must be employed. Zhang and Wang [123]
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Figure 31. Impact of (A) zeta po-

tential when the bulk ion con-

centration is nb = 1 × 10−5 M

and T = 293 K and (B) solution

pH on electroosmotic permeabil-

ity when ε = 0.14 and nb = 1 ×
10−5 M. The figures have been

reprinted from [120].

Figure 32. Three randomly

generated roughness on the

microchannel walls with (A) sd =
0.03 and VR = 0.06; (B) sd = 0.01

and VR = 0.06; (C) sd = 0.03 and

VR = 0.01, where sd denotes the

roughness distribution probabil-

ity and VR denotes the total vol-

ume fraction of roughness. The

x–z cross-section of the mi-

crochannel with roughness is

shown as (D) to (F). Reprinted

with permission from [122].

Copyright (2009) American

Chemical Society.

Figure 33. Normalized EOF rate

versus (A) roughness number

density with VR = 0.05 and λ/H

= 0.1683 and (B) total rough-

ness volume fraction, where the

squares are modeling results for

nR = 360/μm2 and the circles

are nR = 36/μm2. Reprinted with

permission from [122]. Copyright

(2009) American Chemical Soci-

ety.

obtained the local surface charge by using a 1-pK model,
which is a simpler solution compared to complicated mod-
els such as the triple layer model [15,47,124] or the quad layer
model [13,17]. However, the details of themodel that was used
by Zhang and Wang is not the focus of this tutorial. By fol-
lowing the random generation-growth method, they recon-
structed a 3D microporous media as shown in Fig. 34. The

external electric field was applied in the x direction and EOF
was in this direction. The same governing equations as the
previous works were solved, except the boundary condition
for the Poisson’s equation in which the zeta potential was
ψS = ζ (x, y, z).

As we discussed above as well, one challenging fact about
EOF through straight channels or the porous media is to

© 2020 The Authors. Electrophoresis published by Wiley-VCH GmbH www.electrophoresis-journal.com



856 A. Alizadeh et al. Electrophoresis 2021, 42, 834–868

Figure 34. 3D microporous medium that was generated by the

randomgeneration-growthmethod. The black parts represent the

solid and the blue parts are the voids filled by the solution. EOF

will be in the x direction. This figure has been reprinted from

[123].

figure out the overlapping of EDLs. Therefore, it is essential
to realize when the overlapping happens. Therefore, Zhang
and Wang [123] proposed a parameter inspired by the Knud-
sen (Kn) number. Generally, the Kn number is defined as the
ratio of the mean free path of the molecules to the character-
istic length of the space, which could be the channel height or
the pore diameter. This number determines whether contin-
uum mechanics or statistical mechanics must be utilized to
model the fluid mechanics. Inspired by the Kn number, they
proposed the M number, which is equivalent to the ratio of
the EDL thickness to the characteristic length of the domain
M = λ/L. Based on this number, EOF can be divided into
four regimes as (Fig. 35)

• Thin layer regime : M ≤ 0.01,
• Non− overlapped layer regime : 0.01 < M ≤ 0.1,
• Partially overlapped layer regime : 0.1 < M ≤ 1,
• Fully overlapped layer regime : M > 1.

(66)

As Fig. 35 demonstrates, by increasing the EDL thick-
ness, most of the channels’ bulk will be charged and influ-
enced by the charge of the solid–liquid interface. It is worth
pointing out that any further increase of the EDL thickness,
which can be done by decreasing the characteristic length of
the domain or decreasing the bulk ionic concentration, will
lead to monotonic distribution of the electric potential across
the channel or pore atM � 1. Therefore, we can assume that
the electrical charge of the whole channel or pore is identical
to the charge of the solid–liquid interface.

To investigate the effect of the applied external electric
field and the inhomogeneity of the surface charge on EOF,
the averaged EOF velocity for different applied electric field
strength and two pH gradients were studied for a porous
media with porosity ε = 0.46 (Fig. 36). The modeling
results show that for E < 20 V/m, EOF shows a nonlinear
behavior with respect to the applied electric field. This
effect could be interpreted by considering the fact that the
diffusivity of the hydrogen (H+) and the hydroxyl (OH−)
ions are different. When we increase the applied external
electric field, the movement of hydrogen ions toward the
outlet will be greater, and the local distribution of the pH

will be affected by the applied external electric field. While
the local pH distribution close to the outlet decreases, as
we know, the local absolute zeta potential will decrease.
The interplay of the applied external electric field and lower
influence from the solid–liquid interface at the outlet of the
porous media will generate a nonlinear behavior of EOF
velocity. However, by increasing the applied external electric
field, the impact of the electromigration phenomenon will
be dominant. As a result, EOF velocity can be determined by
a linear relationship with E (see Fig. 36 for E > 20 V/m).

4 EOF through nanoscale pores and
channels

In the previous section, we discussed EOF and its application
when the characteristic length of the domain is on the order
of a few micrometers. This scale explained how the solution
could be transferred through nonoverlapped EDL regimes.
We introduced different practical applications, including mi-
cromixing, EOF through porous media with applications in
energy (e.g., enhanced oil recovery) and environment (under-
ground water remediation), as well as two methods to char-
acterize the electric charge at the solid–liquid interface. The
first one, which is generally employed for the sake of sim-
plicity, prescribes the surface charge as a spatially nonvari-
able parameter while the second one obtains the local surface
charge based on the local solution properties. Clearly, the sec-
ond strategy is more realistic in considering the effects of lo-
cal solution property on EOF in the presence of applied pH
or concentration gradients. In this section, we introduce EOF
through straight channels and porous media for characteris-
tic lengths on the order of a few nanometers. At this scale, the
transport medium guarantees overlapping of the EDLs, due
to which interesting phenomena begin to emerge.

4.1 EOF through a straight nanochannel

As briefly alluded to earlier, we are interested in studying EOF
through nanometer sized channels due to the strong overlap-
ping of the EDLs. This results in a nonuniform velocity distri-
bution along the nanochannel’s height due to the strong inter-
action of the major solution with the applied external electric
field [125]. There is a large body of literature that investigates
the physics underlying the transport of ionic species through
confined domains such as nanofluidic channels [125–134].
However, we aim to focus on the fundamentals of electroos-
mosis and the impact of the solid–liquid surface charge on
EOF.

Historically, Burgreen and Nakache [2], for the first
time, developed the theory of electrokinetic flow in ultra-
fine capillary slits. They extended the general theory of the
electrokinetic flow, which was earlier limited to the nonover-
lapped regime of EDLs. Later, Levine et al. [135] extended
Burgreen and Nakache’s work in which the charge regulation
phenomenon due to the overlapping of EDLs was taken into
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Figure 35. EOFs based on the EDL overlapping regimes. The blue lines represent the distribution of the electric potential owing to the

charged solid–liquid interface. The figure has been reprinted from [123].

Figure 36. EOF velocity through the porous media with porosity

0.46. To induce surface charge inhomogeneity, two pH gradients

were employed in which the black symbol line demonstrates the

pH from inlet to outlet identical to 6 and 8 and the red symbol-line

demonstrates the pH from inlet to outlet equal to 5 and 9. These

results have been reprinted from [123].

account. Generally, charge regulation is attributed to the
surface charge variation owing to reduction in distance be-
tween two charged plates [136]. This phenomenon is usually
observed in overlapped EDL regimes where the conduction
current exceeds the conduction in the bulk solution [137].
Furthermore, Levine et al. [135] considered the convection
current generated due to the applied external electric field.
Following Levine et al. method, we are going to introduce the
semianalytical solution for EOF through a confined channel,
which is considered to be the space between two parallel
symmetrically charged infinitely big flat plates (Fig. 37).

EOF will be investigated as a function of the applied ex-
ternal electric field in the x direction, which is parallel to the
flat plate surface. It is assumed that the solution is under no-
slip boundary conditions on the surface of the plates (y = 0).
Considering steady-state conditions, Eq. (53) reduces to

μ
d2u (y)
dy2

+ ρe (y)E − dp
dx

= 0, (67)

where due to the symmetry of the system in the y direction,
Eq. (67) could be solved for the half-domain as 0 ≤ y ≤ h. The
boundary conditions for the NS equation (Eq. (67)) are

u (y = 0) = 0,
du (y)
dy

|y = h = 0. (68)

Here similar to what we did for the microchannel, the
impact of external electric field and the EDL electric field is
decoupled, which gives rise to

� = ψ − ELp, (69)

where Lp denotes the length of the plate in the x direction.
It must be noted that this decoupling of the electric potential
is only valid when the applied external electric field is small
[135] or when ignoring the entrance effects. This assumption
will let us consider the total electric potential as a superposi-
tion of the applied external electric field and the electric po-
tential owing to the electrically charged solid–liquid interface.
Consequently, we can easily solve Poisson’s equation forψ as
well. The boundary conditions for Poisson’s equation are pro-
posed as

ψy = 0 = ζ ,

dψy=0
dy

∣∣∣∣
y = h

= 0. (70)

If we substitute Eq. (1) into Eq. (67), then we have

μ
d2u (y)
dy2

− Eεε0
d2ψy = 0

dy2
− dp

dx
= 0. (71)

If we introduce the velocity and the electric potential
boundary conditions into Eq. (71), then we have an analyti-
cal solution for EOF velocity as

u (y) = − P
2μ

(
y2 − 2hy

) + Eεrε0

μ
(ψ (y)− ζ ) , (72)

where P = − dp
dx denotes the applied pressure gradient.

Equation (72) indicates that the total electrolyte velocity is a
result of both pressure-driven and electroosmotic fluid flow.
While we are interested in EOF velocity, we can set P = 0,
which Eq. (72) gives rise to

uEOF (y) = Eεrε0

μ
(ψ (y)− ζ ) . (73)

It is interesting to note that Eq. (73) reduces to the HS ve-
locity if we assume that 2h � λ. Based on this assumption,
we can assume that a major part of the channel will not be
electrically charged and, as a result, we haveψ (y) ≈ 0. Hence,
Eq. (73) reduces into HS velocity UHS = − Eεrε0

μ
ζ . By intro-

ducingUHS into Eq. (73), we have

uEOF (y) = UHS

(
1− ψ (y)

ζ

)
. (74)

© 2020 The Authors. Electrophoresis published by Wiley-VCH GmbH www.electrophoresis-journal.com



858 A. Alizadeh et al. Electrophoresis 2021, 42, 834–868

Figure 37. Schematic illustra-

tion of the nanochannel, con-

sidered to be the space be-

tween two parallel flat plates

that are equally charged. The

external electric field is ap-

plied to the x direction. The

height of the nanoslit is 2h.

If we are interested in the mean EOF along the nanoslit
cross-sections, we can simply integrate both sides of Eq. (74),
which gives rise to [2,135]

ūEOF = UHS (1− G) , (75)

where G is defined as

G = G (ζ , κh) = 1
hζ

h
∫
0
ψ (y) dy = ψ̄

ζ
, (76)

where the functionG represents the ratio of themean electric
potential to the electric potential (zeta potential) of the solid–
liquid interface.

Thus far, we introduced an analytical solution for EOF
velocity through a confined nanoslit. However, the only re-
maining challenge is to obtain the distribution of the electric
potential along the cross-section of the nanoslit. The Poisson–
Boltzmann equation could be utilized for this specific prob-
lem, where ψ could be obtained as

d2ψ∗

dy∗2 = 1
2
(exp (ψ∗ )− exp (−ψ∗ )) , (77)

whereψ∗ and y∗ are the dimensionless formats of the electric
potential, defined as ψ∗ = ψ/VT and the unit of length as
y∗ = y/λ, respectively. Equation (77) could be rewritten in the
form of

d2ψ∗

dy∗2 = sinh (ψ∗ ) . (78)

Levine and Suddaby [138] demonstrated that there is an
analytical solution to the rapidly converging series for the
electric potential as

ψ∗ (y∗ ) = 8
∞∑

r = 0

q
′ (2r+1)

1− q′ (4r+2)
cosh

[
(2r + 1) (1− y∗ ) v

]
2r + 1

, (79)

where k′ = (1− k2)0.5 , K = K (k), v = πκh
2k0.5K ′ , q′ =

exp(− πK
K ′ ) , and K ′ = K (k′ ) where k is defined as

k = exp(−ψ∗(h)) and K (k) = F ( π

2 , k). F is the incom-
plete elliptic integral of the first kind and defined as [135]

F (φ, k) =
φ

∫
0

dθ(
1− k2sin2θ

)0.5 . (80)

If we introduce Eq. (79) into Eq. (76), then we have a re-
lation for G as

G = 8
ψ∗ (0)

∞∑
r = 0

q
′ (2r+1)

1− q′ (4r+2)
1

2r + 1
sinh [(2r + 1) v]

(2r + 1) v
, (81)

where

ψ∗ (0) = 8
∞∑

r = 0

q
′ (2r+1)

1− q′ (4r+2)
cosh [(2r + 1) v]

2r + 1
. (82)

Thus far, we introduced an analytical solution for EOF
velocity and the electric potential when the electrolyte is mov-
ing through a nanoslit under application of an external elec-
tric field. In another attempt to characterize electroosmosis
through nanochannels, Pennathur and Santiago [125] pro-
posed an analytical solution for EOF and experimentally val-
idated their theoretical study [126]. Regarding the theoretical
work, the NS equations that demonstrate the balance of the
viscous flow and the applied Lorentz electric force on the so-
lution were considered to be

∇ · u = 0,
μ∇2u = −ρe∇�,

(83)

where μ is the dynamic viscosity and � denotes the to-
tal electric potential, which could be decoupled (following
Probstein [139]) to the external electrical potential due to
the applied electric field and the internal electric field be-
cause of the EDL effect as � = φ + ψ . Integration of
Eq. (83) gives rise to Eq. (74). By double integration of
Eq. (74) across the cross-section of the nanochannel, Pen-
nathur and Santiago [125] obtained the area-averaged velocity
by numerical simulation. However, an analytical solution for
low zeta potentials is available based on the Debye–Hückel
theory [139]:

uEOF (y) = UHS

(
1− A1 exp

( y
λ

) + A2 exp
(− y

λ

)
ζ

)
, (84)

where

A1 = ζ

(
1−exp

(
2h
λ

)
exp

(
h
λ

)
−exp

(
− 3h

λ

)
)

,

A2 = ζ exp
(− h

λ

) − A1 exp
(− 2h

λ

)
.

(85)

Here it is worth reminding that EOF that is proposed by
Eq. (84) is only valid for very small zeta potentials when ζ �
VT .

One way to analyze EOF through the nanofluidic chan-
nels is to consider the electrolyte solution with some analyte
ion. For instance, let us assume an electrolyte solution with
fully ionized background electrolyte with ionic species A and
B. The general NP equation with electromigration-diffusion-
advection contributions can predict the distribution of all the
ionic species. As a low concentration of the analyte ion S does
not affect the distribution of background ionic species, we can
separate the governing equation for background ionic species
A and B from the analyte ion S. With this aim, Pennathur and
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Figure 38. Normalized analyte ion mobility as a function 2λ/h in

nanochannel with themobility in amicrochannel. The normalized

mobility is compared with the theoretical model. The large open

symbols are the measured data and the closed symbols are the

error bars. The overlapping of the EDL is for 2λ
h

> 1. Themeasure-

ments were performed for two nanochannels with 40 and 100 nm

height. Reprinted with permission from [126]. Copyright (2005)

American Chemical Society.

Santiago [125] developed a relation to explain the analyte ion
velocity as

〈uS〉 = 〈uEOF〉 + 〈uEP〉

= −UHS

〈
exp

(
−zSe

(
ψ (y)− ψc

kBT

)) (
1− ψ (y)

ζ

)〉

+ νSzSFE, (86)

where ψc represents the centerline of the nanochannel elec-
tric potential. zS, F , and νS represent the ionic valence of
the sample analyte, Faraday’s constant, and the ion mobil-
ity, respectively. Equation (86) denotes the average velocity of
the sample analytes as a result of EOF flow due to the back-
ground solution movement together with the electrophoresis
movement of the sample analytes due to the applied exter-
nal electric field. Figure 38 shows the normalized mobility of
the ionic species in a nanochannel with respect to the mo-
bility in microchannel as a function of 2λ/h. It is interesting
to note that mobility in both nanochannels with 40 nm and
100 nm height, increases with increase in the thickness of
EDL. However, the increase in ionic mobility has a peak at
2λ/h ≈ 0.5 and any further increase in EDL thickness (i.e.,
stronger overlapping of EDLs) decreases mobility. One rea-
son behind this is that upon an increase in overlapping of
EDLs, the first term on the right-hand side of Eq. (86) tends to
zero because the electric potential in the bulk solution tends
closer to the zeta potential (1− ψ (y)

ζ
) → 0. Consequently, the

electrophoretic phenomenon plays a key role in driving the
species from the inlet to the outlet of the nanochannel.

The electroosmosis inside the nanochannel could be
employed to separate the species with a different electrical
charge. As Eq. (86) indicates, the positive sample analytes
experience lower velocity in comparison with the negative
analytes. This simple fact was used by Garcia et al. [140]

Figure 39. Dimensionless velocity because of the electroosmosis

for the negatively charged dye in (1) 60 nm and (2) 200 nm height

nanochannels. Curves (3) and (4) represent the 60 and 200 nm

nanochannels for the neutral dye, respectively. The figure has

been reprinted from [140].

Figure 40. (A) Flow field in a negatively charged conical nanopore

located between two large reservoirs carrying different salt con-

centrationswhen an axial electric field is imposed. (B) Schematics

of EOF in (I) a cylindrical pore without a salt gradient, (II) a cylin-

drical pore with an axial salt concentration gradient, and (III) a

conical pore with an axial salt concentration gradient. Reprinted

with permission from [149]. Copyright (2018) American Chemical

Society.

to demonstrate molecular separation in nanoscale fluidic
channels. They analyzed the electrokinetic transport of
the negatively charged species by introducing a negatively
charged dye, Alexa 488, and EOF with a neutral dye, rho-
damine B. Their measurements revealed that for a negatively
charged nanochannel, the electroosmotic velocity toward the
cathode (negative electrode) of the negatively charged dye is
higher than the neutral dye. This behavior of the negatively
charged species inside a nanochannel is anomalous. It is the
opposite of what was observed with microchannels, where
the neutral dye was transported faster than the negatively
charged dye. Themain reason for this phenomenon is that for
themicrochannel, the electrophoretic drag force will decrease
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Figure 41. (A) Variation in ion

concentration n+, n− (solid

and dashed curves indicate

n+ and n−, respectively) along
the monolayer molybdenum

disulfide nanopore axis at

different applied electric

potential difference 
φ. (B)

Variation in average flow

velocity vave (negative and

positive values indicate the

solution directions toward the

cathode and anode, respec-

tively) as a function of 
φ.

Contours of the flow velocity

magnitude |ν| and streamlines

in the monolayer molybde-

num disulfide nanopore at the

bulk concentration n0 = 1 M,

and (C) 
φ = 0.1 V, (D) 
φ

= 1 V. The gray shadow area

in (A) indicates the nanopore

region and “EDL EOF” and

“TIC EOF” in (B) denote

the “electric double layer

electroosmotic flow” and

“transport-induced-charge

electroosmotic flow,” re-

spectively. Reprinted with

permission from [149].

Copyright (2018) American

Chemical Society.

the speed of the negatively charged species while the neu-
tral species move faster. This interesting experiment demon-
strated the impact of the transport phenomena in nanochan-
nels with overlapped EDLs and microchannels with nonover-
lapped EDL regimes. To explain their experimental measure-
ments, the authors followed the same theory as we discussed
above for EOF through nanochannels.

The same relation as Eq. (74) for EOF velocity was pro-
posed while the local electric potential was obtained analyti-
cally as [39]

ψ∗ (y) = 4
z

(
tanh−1

(
tanh

(
ζ ∗

4

)
exp (−κy)

))

+4
z

(
tanh−1

(
tanh

(
ζ ∗

4

)
exp (−κ (h − y))

))
, (87)

where ψ∗ is an approximate solution for the electric potential
under three assumptions: (I) 2D flow in (II) channels with
parallel walls and (III) weak EDL interaction. By introduc-
ing the electric potential (Eq. (87)) into Eq. (74), Garcia et al.
[140] obtained the concentration-weighted velocity of a dye as
a function of EOF and electrophoretic velocities:

utot = C (y) uEOF (y)

C̄
− uep, (88)

where C̄ = 1
h

h
∫
0
C(y)dy and C (y) = nb exp(−zψ∗(y)).

As Fig. 39 demonstrates, on one hand, for the neu-
tral species, there is no peak velocity in the middle of the
nanochannel. This phenomenon is expected because the neu-

tral species do not feel any electrostatic force from the charged
solid–liquid interface. Consequently, there would be a uni-
form distribution of the neutral dye at the middle of the
nanochannel and uniform concentration-weighted velocity at
the major part of the nanochannel (Fig. 39, curves (3) and
(4)). In contrast, the negatively charged dye will mostly repel
the middle of the nanochannel owing to the negative surface
charge on the solid–liquid interface, which makes the C̄/C(y)
smaller and consequently increases concentration-weighted
velocity at the centerline of the nanochannel (Fig. 39, curves
(1) and (2)). Furthermore, Fig. 39 demonstrates the impact
of the nanochannel height on the concentration-weighted ve-
locity. It shows that the maximum electrokinetic velocity dif-
ferences will be in the approximately 60 nm height or when
κh ∼ 4. For heights below this number, the interaction of the
EDLs will increase and, as a result, an electric potential along
the cross-section of the nanochannel will be developed to the
zeta potential. This will lead to the development of EOF ve-
locity profiles.

The employment of a nonuniform EOF can enhance
the efficiency of protein separation in nanochannels as
well as the efficiency of molecule detection in nanopores.
Considering a nonuniform zeta potential distribution along
the surface of cylindrical capillaries by partially coating with
a polymer layer, Herr et al. investigated the induced pressure
gradient and nonuniform EOF profiles along the axial direc-
tion [141]. Similarly, distribution of surface charge and EDL
thickness can be generated by introducing salt concentra-
tion or pH gradients in silica channels [142–145], enabling
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Figure 42. (A) Schematic illustration of the experimental setup in

which the ionic current is driven from an anode in a reservoir to

a perm-selective membrane. (B) For the ordered porous media in

the vicinity of the perm-selective membrane, the strong EOF (red

arrows) and back pressure-driven (green arrows) electrolyte so-

lution will initiate a salt (blue area) depletion region (white area)

and the vortices are restricted to the space between grains. (C)

For the porous media with a random distribution of the grains,

the vortices are generated around the grains. Reprinted with per-

mission from [160]. Copyright (2013) American Chemical Society.

Figure 43. Three regimes of ionic species transport through

a microchannel, which is dead ended via a perm-selective

nanoporous membrane. For further details see [161].

Figure 44. Schematic illustration of the effective pore size of the

pack of solid silica nanospheres. The figure has been reprinted

from [162].

high-performance label-free separation of proteins in
nanochannels [146,147]. In terms of nanopore sensing, it
has been experimentally demonstrated that both capture rate
and translocation time of DNA molecules in a nanopore can
be simultaneously enhanced by adding a salt concentration
gradient [148]. Hsu and Daiguji theoretically investigated
electroosmotic behavior in a cylindrical nanopore chan-
nel when a salt concentration gradient exists in the axial
direction [149]. Due to the variation in EDL thickness, a
nonuniform EOF was induced along the surface, which
yielded an induced pressure gradient near the nanopore
centerline to satisfy mass conservation, as shown in Fig. 40.
As a result, EOF became weaker near the molecule entrance
(downstream), facilitating the capture, while the amplified
EOF near the trans reservoir in the nanopore (upstream)
extended the translocation time. Moreover, it was found that
a conical geometry can enlarge this effect, giving rise to an
induced reverse EOF (IREOF). This unique characteristic
enables flexible control of flow behavior in a nanoconfined
space for molecule manipulation in versatile bionanosensing
systems by altering the bulk solution conditions. Not only
can the concentration difference be directly generated by
manipulating the bulk conditions, but a local concentration
can be induced at the junctions between the nanochan-
nels/nanopores and the microchannels (or reservoirs) when
an electric field is applied over ion-selective channels, due to
ion concentration polarization [150]. As seen in Fig. 41A, a
clear concentration difference occurs that increases with the
magnitude of the applied electric field. The large electric field
and concentration gradient across an ultrathin nanopore
yield significant ion separation, known as transport-induced-
charge (TIC) [151]. Note that both induced charge and surface
charge are negative and, hence, a reversal of EOF appears
when increasing the applied electric field, as shown in
Fig. 41B. At low applied electric potentials, the EOF behavior
is dominated by the charge at the interface (see Fig. 41C)
whereas EOF direction along the axis is governed by TIC
when the applied electric potential is high (see Fig. 41D).

This nonlinear electroosmotic behavior has an enormous
influence on DNA molecule translocation behavior through
2D nanopores, where a threshold voltage is needed for a
translocation event to occur to overcome the opposite EOF
[152]. An ion concentration difference between the nanopore
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Figure 45. (A)Measured zeta potential as function of Trismolarity

for the packed silica nanospheres. EOF mobility as a function of

(B) Tris molarity and (C) the ratio of the effective pore size to the

EDL thickness. The experimental measurements carried out for

a different pack of solid silica nanospheres with distinct average

pore sizes. The results have been reprinted from [162].

inlet and outlet could be induced when an electric field exists
within a nanochannel. The phenomenon is known as ion con-
centration polarization [153].When a current is established in
a negatively charged ion-selective nanopore, cations at the an-
ode end are transported through the nanopore to the cathode
end. Anions at the cathode end are repelled from the elec-
trode and accumulate at the nanopore junction. Conversely,
ion concentration at the anode end near the nanopore junc-
tion decreases. As a result, a solute concentration difference
between the nanochannel junctions is established.

4.2 EOF through nanoporous media

In the previous section, we introduced the theory of EOF
through nanofluidic channels and discussed some relevant
applications. We showed that the height of the channel plays

a key role inmultiphysics transport phenomena and that EOF
velocity depends on the ratio of the nanochannel height to the
EDL thickness. In this section, we discuss transport phenom-
ena through unstructured media, such as nanoporous mem-
branes and rocks, which has practical applications in water
treatment [154–157], underground remediation of toxic ionic
species [26,158], and biological applications [159].

The transport of ionic species through nanoporous me-
dia is of great interest theoretically and experimentally. For
instance, Deng et al. [160] investigated the flow through a sil-
ica glass frit, which is a negatively charged porous medium.
In their experimental study, the ionic current was driven
from an anode in a reservoir to a perm-selective (or cation-
selective) membrane, namely Nafion (Fig. 42A). The exper-
imental setup was a sandwich of a reservoir, a 1 mm silica
glass frit with an average pore size of 500 (nm), and a cation-
selective membrane. They stated that the transport of ionic
species through an electrically charged nanoporous media is
under the impact of the surface charge and EOF (Fig. 42B
and C). Considering surface conductance (SC), Deng et al.
[160] showed that the transport of the ionic species is mainly
carried out by the surface charge for ultra-confined porous
membranes or low salinity electrolytes. This means that for
the strong EDL overlapping regime, the surface charge de-
termines the transport of ionic species through the porous
media because the pores are electrically charged and makes
it a counter-ion-selective medium.

However, for the weak EDL interactions that could occur
at larger pore sizes or more concentrated solutions, the trans-
port of the ionic species is mainly carried out via EOF while
the conductivity of the bulk solution is considerably higher
than the EDL conductivity. This principle was first predicted
theoretically by Dydek et al. [161]. They showed that the trans-
port of the ionic species is mainly a function of the connected
microchannel to the impermeable membrane. They found
that the height (depth) of the connecting microchannel to the
impermeable porous membrane specifies the ionic transport
regime, which could be the SC (Fig. 43A), EOF (Fig. 43B), or
electroosmosis instability (EOI) (Fig. 43C). For further useful
information, refer to Dydek et al. [161]. We mentioned this
phenomenon to emphasize the interesting phenomena ob-
served at the interface of the nanoporous membrane and a
microchannel.

EOF through the nanoporous media could be character-
ized by introducing a fluorescent buffer solution to examine
EOF velocity through nanoporous media with pores on the
order of the EDL.With this aim, Bell et al. [162] carried out ex-
perimental measurements on EOF velocity for a nanoporous
membrane made as a pack of solid silica nanosphere with ef-
fective pore sizes from 104 nm down to 8 nm (Fig. 44).

They utilized theoretical EOF mobility, which was de-
fined by Ref. [163] as

μEOF =
(
1+ φ

2

) (
2εζ
3μ

+ εψsχ

3μ

)
, (89)

where μEOF , φ, ε, μ, ψs, and χ denote EOF mobility, the vol-
ume fraction, electrical permittivity of the solution, dynamic
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Figure 46. (A) Schematic il-

lustration of the 3D randomly

generated porous media

where four different ionic

species are introduced at the

inlet of the porous media.

The cross-sections of the

porous media are shown with

porosities (B) ε = 0.3, (C) ε =
0.4, (D) ε = 0.5, and (E) ε =
0.6. The figures have been

reprinted from [96].

Figure 47. Normalized cross-sectional averaged velocity along

the length of the porous media. Two scenarios were compared:

homogenous and inhomogeneous external charge distribution.

The figure has been reprinted from [96].

viscosity, electric potential on the solid surface (which is
considered to be the zeta potential), and the correction fac-
tor (which is a function of

re f f
λ
), respectively. According

to Levin et al. [5], for thin EDLs or larger effective pore
sizes, χ = 1; this means that EOF mobility will be solely a

function of zeta potential. However, for thicker EDLs or
smaller effective pore sizes, it can be determined in a way to
consider the influence of the EDL overlapping on EOFmobil-
ity. Here, we should point out that EOFmobility is defined as
the ratio of the average EOF velocity through the nanoporous
media to the applied external electric field μEOF = uEOF

E .
Levin et al.’s experimental measurements revealed that EOF
mobility is not only increased by increasing the Tris concen-
tration but also by the effective radius (Fig. 45B). Moreover,
they showed that EOFmobility for all nanoporousmedia with
distinct effective pore sizes will be reduced to a single curve
if we plot EOF mobility as a function of re f f /λ. This behav-
ior of silica nanoporous media means that EOF mobility not
only depends on the surface potential but also the overlap-
ping of the EDLs [162]. EOFmobility, which was predicted by
Eq. (89), is supported by experimental data Fig. 45C) where
zeta potential of the packed silica nanospheres was measured
for different packs (Fig. 45A).

Similar to what we discussed for ionic transport
through microporous media (Section 3.2), transport through
nanoporous media can be investigated by considering the lo-
cal solution properties and, consequently, the local surface
charge impact on EOF. As we discussed above, the experi-
mental study has shown that transport in porous media with
an overlapped regime is considerably different from that in

© 2020 The Authors. Electrophoresis published by Wiley-VCH GmbH www.electrophoresis-journal.com



864 A. Alizadeh et al. Electrophoresis 2021, 42, 834–868

Figure 48. Schematic illus-

tration of in situ EKR of

groundwater from biological

contaminants. The two trans-

port mechanisms shown here

are (I) electromigration and

(II) electroosmosis. The figure

has been reprinted from [165].

nonoverlapped EDL regime that is typically found in mi-
croporous media. With this aim, Alizadeh et al. [96] con-
ducted a theoretical study to investigate effect of local solution
properties on the macroscopic transport phenomena in tight
porous media with an average pore size on the order of a few
nanometers. Three-dimensional unstructured porous media
(Fig. 46A) were generated via random generation-growth
method that we discussed in Section 3.2 with four porosities
ε = 0.3, 0.4, 0.5, and 0.6 (Fig. 46B–E). Multicomponent ionic
species were introduced at the inlet of the nanoporous me-
dia, which could be transferred from the inlet to outlet by ap-
plying an external electric field. To obtain EOF, it is essential
to solving the Poisson, NP, and NS equations together. The
impact of the local surface charge was incorporated into Pois-
son’s equation as a boundary condition by employing the ETL
model (Section 2.1).

Their modeling results showed a non-negligible impact
of the local surface charge on different aspects of transport
phenomena through the nanoporous media. As the focus of
this tutorial is on EOF, we only present EOF velocity along
with the porousmedia (Fig. 47). As shown in Fig. 47, the inho-
mogeneous charge distribution and the porosity of the porous
media significantly affect EOF velocity. It was shown that by
increasing the porosity of the nanoporous media, EOF veloc-
ity increases for both homogeneous and inhomogeneous sur-
face charge scenarios. However, EOF velocity is higher for the
inhomogeneous scenario compared to the homogeneous sce-
nario.

As we mentioned at the beginning of this section, one
of the interesting applications of EOF is in driving under-
ground water from one site to another desired site. Under-
ground solute transport via EOF is one of the great advan-
tages of this transport phenomenon. The principle of under-
ground EOF is simple and straightforward. By applying an
electric field, which only needs injected electrodes into the de-
sired sites, we can collect the hazardous contaminants (i.e., ar-
senic) to a specified place and then remove them completely.
Thismethod, called EKR, has drawn considerable attention in

recent years because of its ability in removing both organic
and inorganic contaminants in low-permeability domains
such as underground soil [164]. There is a large body of litera-
ture that focuses on EKR. Its mechanism is the same as what
we discussed for channels and porousmedia, which are based
on (I) electromigration (displacement of charged species) and
(II) electroosmosis (movement of a fluid flow owing to the
nonzero netmovement of the ionic species) (Fig. 48). Amech-
anistic understanding of the multidimensional transport of
organic and inorganic contaminants coupled with the reac-
tions in porousmedia has drawn attention recently [165–167].
In this regard, Sprocati et al. [166] modeled the electrokinetic
transport with biogeochemical reactions in porous media for
continuum scale by combining COMSOL Multiphysics and
PhreeqcRM. The former was used for solving the Poisson–
Nernst–Planck equations and the latter [168] for solving the
geochemical reactions.

5 Concluding remarks

EOF has proven to be a practical fluid pumping method for
transferring water and charged species through tiny slit chan-
nels or pores that our understanding of this unique phe-
nomenon has been developing for more than two centuries.
The key role in EOF plays by a charged layer of solution called
the EDL that forms in the vicinity of a charged solid surface
and consists of ordered water molecules and counter-ions.
In addition to the role of EDL, the intermediate domain has
also demonstrated an interesting and unique impact on EOF.
The relative size of the channel/porous media with respect to
the thickness of EDL is also a critical parameter to determine
EOF. This is the reason why the transport phenomena of wa-
ter and ionic species at microscale and nanoscale are largely
different. In this tutorial, we summarized the works that con-
sider this effect for both straight channels and porous media.

The rising interest in employing EOF for emerging
applications has encouraged scientists to conduct further
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theoretical and experimental studies. Among the various
emerging research directions in this field, an interesting
one involves multicomponent multiphase electrokinetic
transport with an emphasis on transport in charged mi-
cro/nanochannel and porous media with broad applications
in energy, biology, and environmental issues. Another
interesting direction could be to study the impact of thermo-
dynamical forces because of the concentration, viscosity, and
temperature gradient on EOF through micro/nanochannels
and porous media by taking into account the impact of these
gradients on the local surface charge.
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