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In insects, odours are coded by the combinatorial activation of ascending

pathways, including their third-order representation in mushroom body

Kenyon cells. Kenyon cells also receive intersecting input from ascending

and mostly dopaminergic reinforcement pathways. Indeed, in Drosophila,

presenting an odour together with activation of the dopaminergic mush-

room body input neuron PPL1-01 leads to a weakening of the synapse

between Kenyon cells and the approach-promoting mushroom body

output neuron MBON-11. As a result of such weakened approach tendencies,

flies avoid the shock-predicting odour in a subsequent choice test. Thus,

increased activity in PPL1-01 stands for punishment, whereas reduced activity

in MBON-11 stands for predicted punishment. Given that punishment-

predictors can themselves serve as punishments of second order, we tested

whether presenting an odour together with the optogenetic silencing of

MBON-11 would lead to learned odour avoidance, and found this to be the

case. In turn, the optogenetic activation of MBON-11 together with odour

presentation led to learned odour approach. Thus, manipulating activity in

MBON-11 can be an analogue of predicted, second-order reinforcement.
1. Introduction
Animals and humans go to great lengths to obtain rewards, such as food and

water, and to avoid punishment, such as bodily damage and pain. Essential

to these processes is the learning of cues predictive of such actual or first-

order reinforcement. Critically, predictive cues not only acquire learned valence

but, once predictive relationships are established, also can confer learned

valence themselves; i.e. they can serve as second-order reinforcement [1–3].

In humans, for example, learning that money can buy food establishes

money as a second-order reward. In general, second-order conditioning may

underlie chains of predictions and early anticipatory behaviour in humans

and animals. Indeed, the capacity for second-order conditioning is widely dis-

tributed across the animal kingdom, including insects [4–7], and is

implemented in many computational models of associative learning [8].

In flies, presenting odour A with an electric shock punishment and odour B

without punishment leads to learned avoidance of A in a subsequent choice

test. This learning of an odour as a predictor of electric shock takes place in

the Kenyon cells (KCs) of the mushroom body (figure 1a) [9–12]. The mush-

room body provides a sparse, combinatorial representation of the sensory

environment, including odours. Along their long axonal fibres, the KCs further
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Figure 1. (Caption opposite.)

Figure 1. (Opposite.) (a) Simplified account of odour – shock associative
learning in flies (after [9 – 14]). Odour presentation in untrained animals
mediates balanced approach and avoidance tendencies of mushroom body
output neurons (MBONs). Coincidence of odour-evoked activity in the mush-
room body Kenyon cells (KCs) and activity of the dopaminergic neuron
PPL1-01 evoked by the electric shock leads to a depression of the synapses
from these KCs to an approach-promoting MBON. In a subsequent test, this
allows avoidance tendencies through non-depressed KC-MBON synapses in
parallel compartments to prevail. The organization of innate olfactory, punish-
ment- and reward-related behaviour largely bypasses the mushroom body.
For simplicity KC – KC, KC – DAN, DAN – MBON and MBON – MBON synapses
are omitted from this figure [15,16]. Cloud: odour; star: depressed/non-
depressed KC-MBON synapse. A possible feedback from the MBONs towards
the DANs is indicated. Note the multiple targets of MBON-11 within the ipsi-
and contralateral mushroom body, as well as outside the mushroom body
sketched in (d). (b) Presenting odour (cloud) with green light (star) leads
to aversive associative memory in flies expressing the green-light-gated
anion-channel GtACR1 in MBON-11, but not in genetic controls. (c) As in
(b), using three training trials with an inter-trial interval of 3 min. (d)
Sketch of connectivity of MBON-11; Greek letters refer to mushroom body
lobes. Target regions of MBON-11 outside the mushroom body include
MBON-01, the crepine (CRE) and the superior medial, intermediate and lateral
protocerebrum (SMP, SIP, SLP) (after [13]). Postsynaptic partners of the con-
tralateral branch of MBON-11 include PPL1-01 [17]. All these target regions
could contribute to the reinforcing effects of manipulating the activity of
MBON-11. Data are displayed as box plots (middle line: median; box bound-
aries and whiskers: 25/75% and 10/90% quantiles, respectively). Data were
analysed across groups by Kruskal – Wallis tests at p , 0.05, followed in the
case of significance by pairwise comparisons with Mann – Whitney U-tests at
p , 0.05 with Bonferroni – Holm correction (asterisk). Underlying preference
scores can be found in the electronic supplementary material, figure S1.
Sample sizes and statistical results can be found in the electronic supplemen-
tary material, table S1. A ‘þ ’ below box plots indicates the presence of the
respective transgene. (Online version in colour.)
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receive intersecting input from neurons mediating internal

reinforcement, many of which are dopaminergic (DANs).

The coincidence of activation by odour and of DAN signal-

ling can lead to presynaptic plasticity at the cholinergic

synapse between the KCs and the output neurons of the

mushroom body (MBONs). Arborizations from DANs and

MBONs overlap and are regionally confined along the KC

fibres, establishing a characteristic compartmental organiz-

ation. In the case of the PPL1-01 DAN mediating an

internal punishment signal, synaptic strength between the

odour-coding KCs and the approach-promoting MBON-11

is reduced [18,19]. For the punished odour, the innate bal-

ance between approach and avoidance is thus tilted in

favour of avoidance. In other words, activity in PPL1-01

can provide first-order punishment, and an odour that
predicts first-order punishment leads to reduced activity in

MBON-11. We therefore wondered whether, in experimen-

tally naive flies, optogenetically silencing MBON-11 might

be an analogue of a punishment-predicting odour such that

it confers a punishing effect of second-order upon an actually

present odour associated with such silencing (also see [20])—

and whether in turn optogenetically activating MBON-11

might have a rewarding effect.
2. Material and methods
Procedures follow [21], unless mentioned otherwise. Drosophila
melanogaster were maintained on standard food, with 60–70%

relative humidity, at 258C, and in constant darkness to prevent

unintended optogenetic effects. Flies aged 1–3 days after hatch-

ing were collected and kept at 188C for up to four additional

days. MB320C and MB085C (Fly Light Split-GAL4 Driver Collec-

tion) [13] as driver strains covering the PPL1-01 and MBON-11

neurons, respectively, were crossed to UAS-ChR2-XXL (Bloo-

mington stock number: 58374) [22] or UAS-GtACR1 as effectors

for optogenetic activation or silencing, respectively. To generate

the latter strain, the GtACR1 DNA was synthesized (Thermo

Fisher Scientific) according to the published sequence [23] with

codon usage optimized to D. melanogaster. The synthesized

GtACR1 DNA with a C-terminal YFP was inserted into the

expression vector pJFRC7. Embryo injection (BestGene Inc.) was
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Figure 2. (a,b) The same as in figure 1b, c but using ChR2-XXL to activate
MBON-11 (star). This leads to stronger appetitive learning in the experimental
genotype than in genetic controls. (c) Same as the experiment in (a), but
with an initial 18 h period of wet starvation, which improves appetitive learn-
ing [24]. Underlying preference scores can be found in electronic
supplementary material, figure S3. Sample sizes and statistical results can
be found in electronic supplementary material, table S1. Other details as
in the legend of figure 1. (Online version in colour.)
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performed to establish flies carrying UAS-GtACR1. Crosses for

genetic controls yielded animals heterozygous for either con-

struct. Synonyms for PPL1-01 are PPL1-g1pedc and MB-MP1;

synonyms for MBON-11 are MBON-g1pedc.a/b and MB-

MVP2.

Behavioural experiments used a set-up from CON-ELEK-

TRONIK (Greussenheim, Germany) and took place at 23–258C
and 60–80% relative humidity. Training was performed in red

light, which is invisible to flies, and testing in darkness. As odor-

ants, 50 ml benzaldehyde (BA) and 250 ml 3-octanol (OCT) (CAS

100-52-7, 589-98-0; both from Fluka, Steinheim, Germany) were

applied to 1 cm-deep Teflon containers of 5 and 14 mm diameter,

respectively. Flies were presented with both odours during train-

ing, but only one was paired with light for optogenetic activation

(465 nm) or silencing (520 nm), whereas the other odour was pre-

sented alone (see electronic supplementary material, figure S2,

for more details). The flies were then tested in a T-maze for

their choice between the two odours. From the number of

flies choosing each odour (#), the relative preference was

calculated as

BA Preference ¼ # BA � # OCT

# Total

� �
� 100: ð2:1Þ

The presentation of BA and OCT with or without the light (*)

was alternated between repetitions of the experiment, allowing

an associative memory score to be obtained from reciprocally

trained sets of flies as

Memory score ¼ BA PreferenceBA� � BA PreferenceOCT�
2

: ð2:2Þ

Data were analysed with Kruskal–Wallis tests (KW-tests) to

compare more than two groups, Mann–Whitney U-tests

(U-test) for pairwise comparisons, one-sample sign-tests for

comparisons to chance level (i.e. zero), in all cases with Bonfer-

roni–Holm corrections of p , 0.05 significance levels as

appropriate, using Statistica 11.0 (StatSoft, Hamburg, Germany)

and R 2.15.1 (www.r-project.org).
3. Results
Presenting an odour together with optogenetically silencing

MBON-11 via the green-light-gated anion-channel GtACR1

established aversive memory for the odour (figure 1b). This

effect was replicated using three training cycles (figure 1c).

Consideration of the genetic controls suggests a weak appe-

titive olfactory memory through the pairing of odour with

the green light, which is visible to the flies. Critically, relative

to either genetic control, silencing MBON-11 had a punish-

ing effect. Conversely, does activating MBON-11 have a

rewarding effect?

Presenting an odour together with optogenetically acti-

vating MBON-11 via the blue-light-gated cation-channel

ChR2-XXL established appetitive memory for the odour

(figure 2). Corresponding to what is typically observed for

primary food rewards such as sugar [24], this appetitive

memory appeared slightly stronger under starved conditions

(figure 2c; indeed starvation was shown to facilitate

MBON-11 activity [25]). In the case of blue light too, the

data from the genetic controls suggest a weakly rewarding

effect. We further note that relative to the respective genetic

controls, the punishing effect of silencing MBON-11

(figure 1c) appears to be stronger than the rewarding effect

of activating it (figure 2b).

We conclude that silencing/activating MBON-11 has a

punishing/rewarding effect.
4. Discussion
MBON-11 is GABAergic [13]. It targets premotor circuitry

outside the mushroom bodies, and hetero-compartmental

regions in the ipsi- and the contralateral mushroom body,

and furthermore features a homo-compartmental and con-

tralateral feedback loop onto the dopaminergic, punishing

PPL1-01 neuron (figure 1d) [13,17,25,26]. All of these regions

could contribute to reinforcement through manipulation of

MBON-11 activity, and we expressly do not draw a con-

clusion as to which of these regions is indeed involved in

these reinforcing effects. One scenario is that silencing

MBON-11 lifts inhibition from PPL1-01, promotes PPL1-01

activity and thus exerts a punishing effect (but see [20]).

Accordingly, the observation that activating MBON-11 has

just a mild rewarding effect (figure 2) would suggest that

spontaneous activity in PPL1-01 is moderate, and thus that

silencing PPL1-01 would have less effect than activating it.

Indeed, as previously reported, activating PPL1-01 is very

strongly punishing (electronic supplementary material,

figure S4B) [14,19], whereas silencing it is of no measureable

rewarding effect (electronic supplementary material, figure

S4C) (see [27] for a punishing effect of silencing the DAN

of the g3 compartment). This scenario would therefore

suggest that targets other than PPL1-01 are responsible for

the rewarding effect of activating MBON-11 (also see [20]).

Interestingly, the pathway from MBON-11 onto the gluta-

matergic MBON-01 neuron of the g5 compartment and

further from MBON-01 to the rewarding DANs of that

http://www.r-project.org
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compartment is critical for extinction learning after aversive

training ([26]; also see [25]) (synonyms for MBON-01 are

MBON-g5b02a and MB-M6). According to the scenario put

forward in [26, fig. 7E-F], odours presented with MBON-11

silencing should lift inhibition from MBON-11 to MBON-01

and should thus drive the rewarding DANs of the g5 compart-

ment. This indirect, hetero-compartmental connection would

thus support appetitive learning through MBON-11 silencing,

whereas aversive learning would result for odours presented

with MBON-11 activation—which is the opposite of what we

report here! To reconcile this contradiction, consider that

during second-order conditioning a stimulus X is first paired

with primary reinforcement, and then X is presented together

with a novel stimulus A in the absence of primary reinforce-

ment. Whereas during AX training the effects of X as a

reinforcement-predicting, second-order reinforcer will initially

dominate, extended AX training will extinguish the X-with-

reinforcement association. The above scenario would thus

suggest that the opposing effects of second-order reinforcement

and extinction learning, well known to practitioners of this

paradigm, are related to homo- versus hetero-compartmental

processes.

We note that placing the behavioural effects of manipulat-

ing MBON-11 activity into an experimental psychology

framework of secondary reinforcement processing also

encompasses the effect labelled ‘BGAM’ (for blockade of

MBON-g1pedc-induced aversive memory) [20, fig. 3B,C],

obtained by blocking synaptic output from MBON-11 (also

see [28]). Critically, the present framework suggests that

silencing MBON-11 or preventing synaptic output from it
leads to aversive learning about the odour paired with such

treatment, whereas [20, p. 569] suggests that synaptic

output from MBON-11 is necessary to prevent aversive learn-

ing about odours presented in an unpaired manner (for a

discussion of paired and unpaired learning, see [29]).

We think that it is interesting that activity in a cell such as

MBON-11 can be an analogue of second-order reinforcement,

because this is the earliest site efferent to the memory trace in

the presynaptic terminals of the mushroom body KCs for

such an effect. This might inform the search for such ana-

logues of secondary reinforcement in other species. It also

raises the question of how much further down efferent path-

ways such analogues of second-order reinforcement can be

observed, and indeed what the relation of action to valence is.
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A GABAergic feedback shapes dopaminergic input
on the Drosophila mushroom body to promote
appetitive long-term memory. Curr. Biol. 28,
1783 – 1793. (doi:10.1016/j.cub.2018.04.040)

18. Aso Y, Siwanowicz I, Bräcker L, Ito K, Kitamoto T,
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