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Hepatocellular carcinoma (HCC) has been one of the most highly lethal cancers. The acqui-
sition of drug resistance accounts for the majority of poor effects of chemotherapy in HCC.
Non-coding RNAs (ncRNAs) including miRNAs, long ncRNAs (lncRNAs), and circular RNA
(circRNA) have been well-documented to participate in cancer occurrence and progres-
sion. Recently, multiple studies have highlighted the key roles of ncRNAs in chemoresis-
tance of HCC. In addition, accumulating evidence has demonstrated that they can serve as
biomarkers in diagnosis, treatment, and prognosis of HCC. In this review, we first overviewed
up-to-date findings regarding miRNA and lncRNA in drug resistance of HCC, then summa-
rized specific mechanisms that they modulate chemoresistance of HCC, and finally dis-
cussed their potential clinical application in overcoming the obstacle of HCC chemoresis-
tance in the future.

Introduction
Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers and the second leading
cause of cancer-related deaths amongst males worldwide, which is largely caused by chronic hepatitis B
virus (HBV) infection [1]. In parts of Western countries, the mortality of HCC continues to grow and
seriously affects public health [1]. In general, many treatments are curative for early HCC, such as trans-
plantation, surgical resection, and chemotherapy [2]. However, the absence of obvious early symptoms
results in most HCC cases being first diagnosed at advanced stage. The principal therapeutic agent for
advanced HCC, sorafenib, is greatly limited by its drug-resistance [3,4].

Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins. It is well recognized that
ncRNA makes up a vast majority of cellular RNAs, accounting for greater than 90% of human RNAs
[5]. Recent studies have shown that ncRNAs, just as important as proteins, act as underlying players in
multiple cellular processes, such as cell proliferation, migration, apoptosis and angiogenesis, and im-
mune response [6]. Non-coding variants are closely linked to most of common diseases, such as hu-
man cancers [7]. Additionally, ncRNAs are involved in drug resistance in multiple types of cancer in-
cluding HCC [8]. The majority of ncRNAs involved in drug resistance are miRNAs and long ncR-
NAs (lncRNAs) [9]. miRNAs are a class of non-coding single stranded RNA molecules, which are
constituted by approximately 22 nucleotides. Recent studies have found an association between miR-
NAs and drug resistance in HCC [10-14]. LncRNAs are ncRNAs with a length more than 200 nu-
cleotides, which have been shown to interplay with multiple ‘biological elements’ including DNA, RNA,
and protein [15]. Through these approaches, lncRNAs exert their effects in various physiological and
pathobiological processes like autophagy and metastasis [16-18]. Additionally, lncRNAs also mediate
chemoresistance of HCC, offering a new diagnostic marker and therapeutic target for HCC [19, 20].
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In addition to miRNA and lncRNA, another type of non-coding RNA- circular RNA (circRNA) has been recently en-
tered into the eyes of researches and scholars. It has been reported to act as a sponge for miRNAs, thereby participating
in a series of biological and pathological processes as well as drug resistance [21]. Herein, this review summarized the
relationship between ncRNAs and drug resistance of HCC.

MiRNAs
miRNA and multidrug resistance
Multidrug resistance
During the long-term of traditional chemotherapy for HCC, multidrug resistance (MDR) occurs frequently, lead-
ing to the relapse of cancer and intractable tumor [22]. Many mechanisms contribute to this resistance. One is that
cancer cells enhance the ability of the efflux of hydrophobic cytotoxic drugs [23], partly through overexpression
of ATP-binding cassette (ABC) transporters family, including P-glycoprotein (P-gp) and MDR-associated protein
(MRP) [24-27], and decrease the uptake of hydrophilic drugs like cisplatin [28]. Recent investigations have shown
that 170 kd membrane glycoprotein (170 GP) also has a close relationship with MDR [29]. Another crucial mecha-
nistic branch leading to MDR is resistant to cell apoptosis. For example, wild-type p53 (wt-p53) gene re-sensitizes
Bel-7402 cells to VCR chemotherapy [30]. Furthermore, wt-p53 regulates expression of genes of enzymes to medi-
ate function such as activation of pro-drugs, inactivation of active agents, DNA damage repair, modification of stem
cells, metabolic alterations, and microenvironment change [14,23,28,31,32]. Various kinds of pathways are related to
chemoresistant phenotypes in tumor such as TRPC6/calcium/STAT3 pathway in HCC [33].

Dysregulated miRNAs related with MDR in the treatment of HCC
miRNAs in HCC
MiR-122 could not only adverse to cisplatin resistance in cisplatin-treated HepG2 cells [34], but also make HCC cells
re-sensitize to adriamycin (ADM) and vincristine by down-regulating MDR related genes, such as MDR-1, MRP,
GST-pi [35]. In another study, Wu et al. [36] have found a novel regulatory pathway (Hnf4α/miR-122/GALNT10)
that could increase sensitivity of cancer cells to doxorubicin and sorafenib. MiR-223 could decrease expression of
ABCB1 at both mRNA and protein levels, which could decrease doxorubicin IC50 dose of HCC cells [37]. MiR-216b
regulated MDR of HCC via mediating modification of autophagy through HIF-2α-MALAT1-miR-216b axis [38].
One study has found that miR-27a might reverse chemoresistance in HCC by inhibiting FZD7/β-catenin pathway
[39]. MiR-612 mediated the function of anti-MDR also throughβ-catenin pathway, and finally relieved 5-fluorouracil
(5-FU) and cisplatin resistance [40]. Furthermore, miR-34a could also re-sensitize the effect of radiotherapy by in-
hibiting LDHA [41]. Zhao et al. [42] demonstrated that miR-491-3p/Sp3/ABCB1 axis could offer a new pathway
for chemotherapy of HCC. Up-regulation of miR-503 suppressed HCC cells proliferation, sensitized HCC cells to
chemotherapeutic agents like 5-FU [43], moreover, reversed ADM and cisplatin resistance [44,45]. Besides, miR-137
[46], miR-205-5P [47], and miR-27b [48] also have shown a low expression and close correlation with chemoresis-
tance in HCC. Let-7 family consists of 11 closely related genes. Most of them acted as tumor suppressor like Let-7g
[49]. Let-7g increased the effectiveness of fluorouracil in treating Bel-7402/5-Fu by targeting on the HMGA2 gene.
However, some Let-7 family members were up-regulated in certain tumors and promoted tumor progression, like
Let-7a in HCC [50]. Besides, miR-199a could not only increase sensitivity to cisplatin via enhancement of autophagy
by targeting autophagy-associated gene 7(ATG7) [51], but also increase doxorubicin sensitivity of HCC cells by reg-
ulating mammalian target of rapamycin (mTOR) and c-Met [52] (Table1).

Up-regulated miRNAs in HCC
MiR-21 plays a vital role in modulating anti-tumor effect of 5-FU and interferon (IFN)-α on HCC cell lines and clin-
ical patients with HCC [53]. The team of Wang and co-workers suggested that miR-183 promoted MDR in HCC cells
by regulating miR-183-IDH2/SOCS6-HIF-1α feedback loop. Both miR-183 knockdown and SOCS6 overexpression
sensitized BEL-7402/5-FU cells to 5-FU [54].

miRNAs mediate single drug resistance of HCC
miRNAs and sorafenib
At present, acquisition of sorafenib resistance is a primary limitation of sorafenib-based chemotherapy. MiR-338-3p
was proved to sensitize sorafenib in HCC by down-regulating hypoxia-induced factor 1α, which is significant for
hypoxia signaling pathway [55]. Additionally, miR-193b increased the sensitivity of HCC cells to sorafenib [56].
MiR-494 increased sorafenib resistance to HCC cells by targeting PTEN. [57]. MiR-34a was reported to increase the
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Table 1 Summary of miRNAs involved in multiple drug resistance in HCC

Dysregulation miRNA Pathway/target Corresponding drugs References

Down-regulated miR-122 MDR-1, GST-pi, MRP, Bcl-w,
cyclinB;
Hnf4α/miR-122/GALNT10
pathway

Adriamycin; vincristine;
sorafenib; doxcrubicin; cisplatin

[34-36]

miR-223 ABC1 Doxorubicin; paclitaxel [37]

miR-216b HIF-2α-MALAT1-miR-216b 5-FU; adriamycin; cisplatin;
Mitomycin C

[38]

miR-27a FZD7/β-catenin pathway 5-FU; adriamycin; Mitomycin C [39]

miR-612 Wnt/β-catenin signaling Cisplatin; 5-FU [40]

miR-491-3p miR-491-3p/Sp3/ABCB1 axis Doxorubicin; vinblastine [42]

miR-503 EIF4E 5-FU; adriamycin; cisplatin [43-45]

miR-137 FBI-1 Adriamycin [46]

miR-205-5P PTEN/JNK/ANXA3 pathway 5-FU [47]

miR-27b p53; CYP1B1 Doxorubicin; sorafenib;
Epirubicin

[48]

Let-7 g HMGA2 gene 5-FU [49]

miR-199a (3p/5p) ATG7; mTOR and c-Met 5-FU; doxorubicin [51, 52]

Up-regulated Let-7a Caspase-3I Interferon-γ; doxorubicin;
paclitaxel

[50]

miR-21 PETN, PDCD4 Interferon-α; 5-Fu; cisplatin [34, 53]

miR-183 IDH2/SOCS6-HIF-1α 5-FU [54]

Table 2 Summary of other miRNAs involved in single drug resistance in HCC

Drugs miRNA Pathway/ target Dysregulation References

Sorafenib miR-338-3p HIF-1 α Down-regulated [55]

miR-193b Mcl-1 Down-regulated [56]

miR-494 PTEN, PI3K and p-Akt Up-regulated [57]

miR-34 Bcl-2 Sorafenib [58]

miR-216a/217 PTEN; SMAD7 Sorafenib [59]

Cisplatin miR-363 Mcl-1 Down-regulated [60]

miR-182 TP53INP1 Up-regulated [64]

miR-130a Wnt/β-catenin Up-regulated [65]

miR-340 Nrf2-dependent antioxidant
pathway

Down-regulated [67]

miR-33a-5p / Down-regulated [68]

5-FU miR-141 Nrf2-dependent antioxidant
pathway

Up-regulated [69]

miR-195 BCL-w Down-regulated [70]

miR-193a-3p SRSF2 Up-regulated [72]

Doxorubicin miR-26 ULK1 Down-regulated [73]

Gemicitabine miR-106a PDGF-D/miR-106a/Twist1
pathway

Down-regulated [74]

Adriamycin miR-215 DHFR and TS Up-regulated [75]

miR-31 NDRG3 Down-regulated [76]

Etoposide miR-23a TOP1 Up-regulated [77]

Radiation miR-20a PTEN/PI3K/Akt signaling
pathway

Up-regulated [78]

Interferon-α miR-146a SMAD4 Up-regulated [79]

Arsenic trioxide miR-539 Bcl-2 and Bcl-xL Down-regulated [80]

effect of sorafenib in HCC cells via direct suppression of Bcl-2 [58]. Besides, Xia et al. [59] found that SMAD7 (one of
the TGF-β type 1 receptor antagonists) and PTEN were two functional targets of miR-216a/217. By targeting PTEN
AND SMAD7, miR-216a/217 activated the PI3K/Akt and TGF-β pathways, thereby promoting drug resistance and
recurrence of liver cancer (Table2).
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Figure 1. NcRNAs involved in drug resistance of HCC

HCC largely caused by chronic HBV infection, and the effect of chemotherapy was seriously limited by drug resistance. A lot of ncR-

NAs are involved in drug resistance of HCC. These ncRNAs can mediate the sensitivity of single-antitumor drug or multi-antitumor

drug of HCC, and the molecular mechanisms constitute a complicated network machinery.

miRNAs and cisplatin
Apoptosis is a critical underlying mechanism contributing to cisplatin resistance. Recently, numerous studies have
shown that miRNAs work in regulating the cisplatin resistance via targeting apoptosis-associated signaling pathways.
For instance, miR-363 reverses cisplatin resistance of HCC cell by directly targeting 3′-UTR of Mcl-1 [60]. Tumor
protein p53-induced nuclear protein 1(TP53INP1) promotes the activity of p53, which has confirmed to be related
with tumor cell apoptotic progression [61-63]. MiR-182 expression was negatively correlated with TP53INP1 both in
vitro and in vivo [64]. In addition, miR-130a increased drug resistance [65]. Sulforaphane, one of the best anticancer
plant active substances discovered in vegetables, could prevent apoptosis in BALB/c mice by activating the defensive
response that mediated by NF-E2-related factor 2 (Nrf2), revealing a underlying relationship between Nrf2 and cell
apoptosis [66]. Besides, miR-340 has the ability of reversing cisplatin resistance by regulating Nrf2-dependent antiox-
idant pathway, supporting that miR-340 may be a potential candidate for treating cisplatin resistance of HCC [67].
Up-regulation of miR-33a-5p also increased the sensitivity of HCC cells to cisplatin [68].

miRNAs and 5-fluorouracil
MiR-141 reversed the resistance of HCC cells to 5-FU via the Nrf2-dependent antioxidant pathway [69]. Yang et
al. [70] reported that overexpression of miR-195 markedly decreased the level of anti-apoptotic protein Bcl-w, and
improved the sensitivity of 5-FU in HCC. Furthermore, down-regulation of SRSF2 (a splicing factor) could induce
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apoptosis [71]. By repressing SRSF2, DNA methylation-regulated change in the expression of miR-193a-3p conse-
quently increased the 5-FU resistance of HCC cells [72].

Other miRNAs involved in drug resistance in HCC
Apart from those miRNAs mentioned above, miR-106a, miR-215, miR-23a, miR-20a, miR-146a, miR-539, miR-31,
miR-26, and miR-33a-5p also show underlying ability to regulate resistance during the treatment of HCC. Although
miR-26 reverses the effect to doxorubicin sensitivity [73]. In addition, inhibit the expression of miR-106a offered
HCC patients a novel treatment strategy [74]. ADM also named adriamycin is a frequent chemotherapy medication
utilized to treat multiple types of cancers. Recent study indicated that up-regulation of miRNA-215 resulted in insen-
sitivity to ADM by directly targeting dihydrofolate reductase (DHFR) and thymidylate synthase [75]. However, over-
expression of miR-31 exerted opposite effect [76]. MiR-23a could enhance the anti-tumor effect of etoposide in HCC
by inhibiting topoisomerase 1 expression [77]. MiR-20a resensitized HCC cells to radiotherapy via PTEN/PI3K/Akt
pathway [78]. MiR-146a regulate the effect of IFN-α to HCC cells by mediating SMAD4 [79]. Additionally, miR-539
induced HepG2 cells apoptosis and remarkably overcame arsenic trioxide resistance [80].

LncRNAs
In recent studies, lncRNAs are widely recognized as crucial regulators in suppressing tumor and oncogenesis, and
emerge as potentially vital mediators in regulating drug resistance through modulation of apoptosis, drug efflux sys-
tem, drug metabolism, DNA repair, and EMT [81-83]. A new study finds that ncRNAs including lncRNAs can par-
ticipate in drug resistance mediation by controlling the function of cancer stem cells [84]. Li et al. [85] demonstrated
that lncARSR was involved in doxorubicin resistance during the treatment of HCC. By knockdown of lncARSR,
PTEN expression was decreased whereas PI3K/Akt pathway was activated. Thus, sensitized HCC cells reacted with
the resistance of doxorubicin. Linc-VLDLR contributed to improve drug resistance of HCC patients by regulating
chemotherapeutic agents transport, in other words, by modulating expression of drug transporter genes, like ABC
subfamily G member 2 (ABCG2), leading the development of sorafenib-resistance, but decline the viability of cells
[86]. As we all know, TGF-β is a key factor related with drug resistance of human cancers. LncRNA ribonucleic
acids-ROR (lncRNA-ROR) is a functional player in chemoresistance during the treatment of chemotherapy. Recent
study showed that TGFβ selectively enriched lnc-RoR within extracellular vesicles, thereby promoting HCC chemore-
sistance [87]. Tsang and Kwok [88] have found that knockdown of H19 by transfecting antisense H19 oligonucleotides
suppressed the expression of MDR1 gene as well as its protein product P-gp, and increased doxorubicin sensitivity in
both R-HepG2 cells and HepG2 parent cells, which was partially due to the regulation of MDR1 promoter methyla-
tion by H19. Xiong et al. [89] provided a new insight into the function of HULC/USP22/silent information regulator 1
(Sirt1)/protective autophagy pathway and demonstrated the capacity of lncRNA HULC to decrease chemosensitivity
of HCC cells. To be specific, HULC up-regulated ubiquitin-specific peptidase 22 (USP22) through down-regulating
three miRNAs and stabilizing Sirt1 protein. Therefore, triggered protective autophagy was harmful for patients with
HCC. Taurine up-regulated gene 1 (TUG1) is a lncRNA that was identified to be related with tumor cells apoptosis and
was up-regulated in ADM-resistant cells. Yang et al. [90] found that down-regulation of TUG1 attenuated the resis-
tance of HCC cells to chemotherapy via suppressing the expression of MDR1 and P-gp. In addition, after transfected
with TUG1 siRNA and treated with ADM, SMMC-7721/ADM, and HepG2/ADM cells showed higher apoptosis
rate. Furthermore, HANR, NR2F1-AS1, and HOTAIR were lncRNAs up-regulated in HCC tissue. Down-regulation
of HANR enhanced chemosensitivity to doxorubicin in HCC cell lines [91], NR2F1-AS1 regulated HCC oxaliplatin
resistance by targeting miR-363-ABCC1 pathway [92], and knockdown of lncRNA HOTAIR sensitized HCC cells
to cisplatin through regulating the STAT3/ABCB1 signaling pathway [93]. Besides, Schmitt et al. [94] suggested that
lncRNAs can be regulated by p53. Thus, p53 modulated lncRNAs may be one of the mechanisms for drug resistance
in HCC (Table 3).

Conclusions
Clearly, drug resistance is the one that causes the most trouble during the therapy of HCC in clinic settings and
need urgent solution. NcRNAs including miRNAs, lncRNAs, and circRNAs are suggested to be the potential promis-
ing therapeutic targets for overcoming drug resistance in the treatment of HCC. Advanced experimental techniques
including RNA-sequencing, CRISPR screens, genome wide association studies and high-throughput studies allow
characterizing novel ncRNA roles in HCC drug resistance. Molecular mechanisms of ncRNAs in HCC constitute a
complicated regulatory network (Figure 1). Although a large biological signal pathways of ncRNAs involved in drug

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

5



Bioscience Reports (2018) 38 BSR20180915
https://doi.org/10.1042/BSR20180915

Table 3 Dysregulated lncRNAs involved in drug resistance in HCC

LncRNA Expression in HCC Drug Mechanism References

LncARSR Up-regulated Doxorubicin Modulating PTEN-PI3K/Akt
pathway

[85]

LincRNA-VLDLR Up-regulated Sorafenib, camptothecin,
doxorubicin

Reducing expression of ABCG2 [86]

LincRNA-ROR Up-regulated Sorafenib Response to TGF-β [87]

H19 Up-regulated Doxorubicin Inducing P-gp expression and
regulating MDR1 promoter
methylation

[88]

HULC Up-regulated Oxaliplatin, 5-fluorouracil,
pirarubicin

Triggering autophagy via
stabilizing Sirt1

[89]

TUG1 Up-regulated Adriamycin Promoting expression of P- gp
and MDR1

[90]

HANR Up-regulated Doxorubicin Regulating the phosphorylation
of GSK3β

[91]

NR2F1-AS1 Up-regulated Oxaliplatin Targeting miR-363-ABCC1
pathway

[92]

HOTAIR Up-regulated Cisplatin Activating STAT3/ABCB1
pathway

[93]

resistance are still unknown. More mechanisms and functions of chemoresistance-related ncRNAs need to be fur-
ther mined for advance of HCC therapy, which may offer new approaches to reverse drug resistance. Interestingly,
this paper finds that some miRNAs belong to same family but own opposite effects in regulating the development of
cancer like Let-7 family. Characterizing the underlying roles of those miRNAs may be propitious to HCC treatment.
Recently, exosomes are found to have a large content of miRNAs, which brings a bright research prospect. In addition,
the knowledge of the emerging functions of lncRNAs and circRNAs in drug resistance or other aspects in cancer is
only the tip of the iceberg. The evidence of ncRNAs in clinical application is still insufficient. More clinical trials need
to be further launched in the future. We believe that ncRNAs combine with chemotherapy will be an effective strategy
for advanced liver cancer.
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