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Abstract

Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and
sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses;
EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles.
Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of
temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur
species (DSS). Here we demonstrate that a 3uC increase in temperature induces EhV-resistant phenotypes in three E. huxleyi
strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their
documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound
surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications
for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E.
huxleyi strains exhibit viral resistance.

Citation: Kendrick BJ, DiTullio GR, Cyronak TJ, Fulton JM, Van Mooy BAS, et al. (2014) Temperature-Induced Viral Resistance in Emiliania huxleyi
(Prymnesiophyceae). PLoS ONE 9(11): e112134. doi:10.1371/journal.pone.0112134
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Introduction

Emiliania huxleyi (Lohman) Hay & Mohler is a cosmopolitan,

coccolithophorid haptophyte known to form dense annual blooms,

with reported concentrations ranging from 106 to 108 cells per mL

[1,2]. These blooms are large enough to impact both the global

carbon and sulfur cycles. E. huxleyi largely impacts the sulfur cycle

through the production of dimethylated sulfur species (DSS) like

dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS),

because of this E. huxleyi is one of the most well studied and

ecologically relevant species of marine phytoplankton.

Algal DMSP is converted into DMS and acrylate primarily via

the activity of the enzyme DMSP lyase, which is produced by both

phytoplankton and bacteria [3,4]. DMS is detectable in the surface

water column, and is a highly volatile compound that easily

diffuses into the atmosphere. Through mechanisms such as photo-

oxidation, DMS is converted into sulfate aerosols which represent

the largest biogenic source of cloud condensation nuclei (CCN).

CCN production increases the earth’s cloud albedo, thereby

significantly impacting the earth’s radiation budget [5,6].

In recent years the ecological importance of marine algal viruses

in controlling phytoplankton community structure and succession

has become a topic of great interest among phycologists,

oceanographers, and biogeochemists [7–15]. In fact it is now

generally accepted that E. huxleyi blooms are often terminated by

a host-specific virus, Emiliania huxleyi Virus (EhV) [9,13,16]. This
phenomenon has also been seen in the harmful bloom-forming

Raphidophyte, Heterosigma akashiwo [17].

Several possible resistance mechanisms have been proposed

based on physiological differences between resistant host strains

and their sensitive counterparts. For example, some E. huxleyi
strains may switch to a haploid life stage that is physiologically

impervious to virus infection, through an as yet unidentified

mechanism [18,19]. Likewise, observations of successful virus

entry and subsequent recovery of a resistant strain (Center for the

Culture of Marine Phytoplankton, CCMP 373) implicate a

subcellular ‘molecular armor’ revolving around regulation of the

programmed cell death (PCD) machinery, which EhVs activate

and recruit for successful infection [20]. Elevated DSS production

in resistant strains has also been proposed as a mechanism for viral

resistance [21], presumably through its role as a subcellular

antioxidant. Indeed, EhV infection is known to cause late lytic-

phase oxidative stress in E. huxleyi [22,23] and cellular DSS

compounds such as DMS, DMSP, dimethylsulfoxide (DMSO),

and their metabolites have established antioxidant roles in algal

cells [24]. Steinke et al. [25] characterized resistant E. huxleyi
strains (CCMP 373 and 379) as having high DMSP lyase activity,
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which could lead to elevated intracellular antioxidant capacity due

to the free radical scavenging ability of DMS [24]. If the oxidative

stress induced by infection makes the host cell more susceptible to

viral replication then an elevated antioxidant capacity due to

higher DMSP-lyase activity could mitigate oxidative stress to levels

beneath the threshold required for host lysis.

The antioxidant function of DSS can be summarized by the

DMSP antioxidant cascade described by Sunda et al. [24]. Under

periods of oxidative stress, DMSP can be oxidized or enzymat-

ically cleaved into DMS and acrylic acid, both of which have been

shown to decrease infectious titers of EhV [21]. DMS can be

oxidized by hydroxyl radicals to DMSO and finally to methane-

sulfinic acid [24]. Many species of phytoplankton, including E.
huxleyi, can reduce DMSO back to DMS allowing the process to

repeat [26]. Additionally, several steps in the pathway result in a

higher affinity for hydroxyl radicals than DMSP [24] making this a

very effective pathway for relieving oxidative stress. The DMSP

antiviral hypothesis put forth by Evans et al. [21] was later framed

as a mechanism by which virally lysed cells can lead to a decrease

in the infectivity of subsequent viral progeny, allowing a subset of

the population to temporarily resist viral mortality and delay

bloom termination [23]. This may have important climatic

impacts as E. huxleyi’s contribution to atmospheric sulfur may

be dependent on delayed bloom termination.

Another potential mechanism for viral resistance involves the

lipid composition of E. huxleyi cells. EhVs employ a sophisticated,

co-evolutionary ‘‘arms race’’ to manipulate host lipid metabolism,

most notably glycosphingolipid (GSL) production, and critically

regulate infection and cell fate via activation of PCD

[20,23,27,28]. EhVs possess a lipid envelope in addition to a

protein capsid, and they contain a suite of glycosphingolipid

biosynthetic genes within their genome [8,29–31]. Furthermore,

recent work has shown that the viral lipid envelope is comprised

almost entirely of GSLs that appear to be acquired by budding

from lipid rafts on the host cell plasma membrane [28,32–34].

Resistant strains appear to lack a specific GSL with a sialic acid

headgroup (sGSL) that are enriched in purified lipid raft fractions

[33] and may play a role in virus attachment or release [32]. In

addition, while these host-derived GSLs (hGSLs) can serve to

influence cellular response to EhV infection, simultaneous

synthesis of virus-derived GSL (vGSL) molecules ultimately

regulates the synthesis of viral progeny [27,28,33]. The subcellular

processes that regulate the production of vGSLs ultimately control

the induction of reactive oxygen species (ROS), PCD, and

dynamics of viral infection [27,28].

Here, we examine the impact of temperature on E. huxleyi-EhV
interactions. Although the Intergovernmental Panel on Climate

Change (IPCC) predicts a 1.5–3uC increase in sea surface

temperature by the year 2100 [35], its impact on the biology

and ecology of this host-virus system remains unexplored.

Temperature has a well-known impact on lipid membrane

composition and fluidity [36] and, given the importance of lipids

to the aforementioned E. huxleyi-EhV ‘arms race’, it likely impacts

infectivity. There is precedence for a temperature influence on

virus infectivity. For example, the algicidal activity of H. akashiwo
Virus (HaV) varies with only a few degrees change in temperature

[17]. We specifically show that host resistance to EhV86 is induced

by only a 3uC elevation in incubation temperature, and that

successful infection leads to changes in DSS and polar membrane

lipid composition and dynamics. Our findings shed light on the

interactive effects of elevated temperature and viral infection on a

globally important phytoplankton species and provide correspond-

ing context into its impact on the biogeochemical cycling of

carbon and sulfur in E. huxleyi bloom areas.

Materials and Methods

Experimental Cultures
Axenic cultures of Emiliania huxleyi CCMP 374, isolated from

the Gulf of Maine and obtained from the National Center for

Marine Algae and Microbiota (formerly CCMP), were maintained

at 18uC in L1 medium (-Si) on a 12/12 light/dark cycle and

irradiance of 57 mE m22s21. Growth media was mixed and

sterilely transferred to 1L polycarbonate bottles, six of which were

kept at 18uC and six at 21uC. Since the IPCC predicts a 1.5–3uC
increase in global mean temperature by the year 2100 [35], a 3uC
increase was chosen for these experiments. Bottles were inoculated

to 2.5*104 cells ml21 and cell density was monitored until cultures

reached roughly 4*105 cells ml21. Cultures were then subjected to

infection with EhV86 at an average multiplicity of infection (MOI)

of 5 (day 0). Uninfected cultures were grown at each temperature

to serve as controls, and each treatment or control was replicated

three times for a total of 12 bottles.

Sampling Protocol, Cell and Virus Abundance, and
Physiological Status of Host
Cultures were sampled daily in a Class 100 laminar-flow hood

under sterile conditions by transferring 150 mL into amber

polyethylene bottles from which subsamples were taken and

processed as described. One mL was diluted in filtered sea water

and analyzed on a Coulter Counter (Beckman Coulter Multisizer

III) for culture density and cell biovolume. Viral abundance was

measured via flow cytometry following the SYBR Green staining

protocol [37]. Briefly, two mL were fixed with 40 mL of 25%

glutaraldehyde at 4uC in the dark for 30 min. Samples were then

flash frozen in liquid nitrogen and stored at 280uC until analysis

on a Beckman Coulter MoFlo Astrios flow cytometer (FCM). Viral

particles were enumerated using side scatter and SYBR green

fluorescence (513620 nm). The cellular induction of ROS was

also measured via FCM by treating one mL of culture with 5-(and-

6)-chloromethyl-29,79-dichlorodihydrofluorescein diacetate (CM-

H2DCFDA) to a final concentration of 5 mM and incubated for

60 min in the dark. Cellular ROS were visualized and quantified

based on the mean fluorescence at ,522 nm following the

protocol of Evans et al. and Vardi et al. [22,23]. To assess the

photochemical quantum yield of photosystem II (PSII; Fv/Fm), five

mL were dark adapted for 15 min, and Fv/Fm was measured using

a Walz Phyto-C PHYTO-PAM fluorometer.

Dimethylated Sulfur Species
To measure total DMSP (DMSPt) and total DMSO (DMSOt)

concentrations, five mL were taken from each sample, acidified

with 25 mL of 50% H2SO4 to prevent conversion of DMSP into

DMS, and stored at 4uC until analysis. For dissolved pools of

DMS, DMSP, and DMSO, approximately 25 mL were gravity

filtered through a Whatman GF/F filter, collected in 25 mL

plastic scintillation vials with no headspace, and stored on ice.

DMS was measured immediately (typically within 6 hours of

sampling). All samples were measured using a Hewlett Packard

5890 Series II gas chromatograph equipped with flame photo-

metric detection. Samples were sparged with helium (125 mL/

min) for at least 25 min and collected on glass fibers in a Teflon

loop submerged in liquid nitrogen. Once collected, the sample was

heated to ,80uC and injected into the gas chromatograph [38].

Total and dissolved DMSO samples were base hydrolyzed in

2N NaOH to convert DMSP to DMS (volumes varied with cell

density) and sparged with ultra-high purity (UHP) nitrogen for 1

hour to remove the DMS. Samples were then transferred to a

purge and trap manifold, sparged with UHP helium for an
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additional five minutes, and analyzed by gas chromatography to

insure all DMSP was removed. If residual DMSP remained,

samples were sparged with helium again at 5 minute intervals and

re-analyzed until DMSP was undetectable. A cobalt-doped sodium

borohydride tablet (Sigma-Aldrich) was then dropped into the

sparging chamber and the collection loop was opened without

starting the sparging helium to prevent over-pressurizing the

chamber [39]. After five minutes, the sparging helium was turned

on and the sample run as described above. Particulate pools of

DMSP (DMSPp) and DMSO (DMSOp) were calculated by

subtracting dissolved values from total values.

Intact Polar Lipids
Samples for intact polar lipid (IPL) analysis, including polar

glycerolipids and GSLs, were taken by filtering 15 mL through a

precombusted GF/F filter, flash freezing the filters, and storing

them at 280uC prior to analysis following the high performance

liquid chromatography/mass spectrometry (HPLC/MS) protocol

of Van Mooy and Fredricks [40]. IPLs were extracted using a

mixture of polar and non-polar solvents [41,42] and were analyzed

on a Hewlett Packard 1100 HPLC and LCQ Deca XP ion-trap

mass spectrometer. Polar glycerolipids were quantified using

molecular ion peak areas as described by Van Mooy and Fredricks

[40] and GSLs were quantified by comparison with a response

factor for glucocerebrosides (soy, Avanti Polar Lipids) as described

by Fulton et al. [33].

Additional Strains and Temperatures
A series of experiments was performed in which six E. huxleyi

strains (CCMP 373, 374, 379, 392, 1516, and DWN 61/87/10)

were infected with EhV 86 at four temperatures (12u, 15u, 18u, and
21uC) in order to assess whether the temperature effect was shared

in a variety of strains. E. huxleyi cultures were grown at the

experimental temperature for at least one week prior to beginning

the experiment. Six replicate 50 mL vials of L1 medium (-Si) were

prepared for each strain and allowed to reach experimental

temperature overnight. Vials were inoculated to an initial cell

concentration of,105 cells mL21. Cells were allowed to grow and

infected at an average MOI of ,5 once a concentration of 3*105

to 5*105 cells mL21 was reached (day 0). EhVs used for infection

had previously been propagated at 18uC. Two mL were sampled

daily on days 1 through 4 and again on day 7 when successfully

infected cultures had totally cleared. Samples were preserved with

glutaraldehyde and stored at 280uC according to Brussaard et al.

[37]. Cell and virus concentrations were measured via FCM as

described above. All strains were tested at all 4 temperatures

except CCMP 1516 and 373. E. huxleyi 1516 was only tested at

18uC and 21uC, and CCMP 373 was not tested at 12uC as it

would not grow at this temperature.

Virus incubations, Absorption, and Burst sizes
To test whether elevated temperature affected only the host’s

susceptibility to infection, rather than the direct infectivity of the

virus itself, EhV86 isolates were incubated for 24 hours at 18uC
and 21uC in the dark and used to infect E. huxleyi 374 growing at

18uC. Host cell and virus abundance were measured on day 0

(immediately post infection), as well as 3 and 7 days later to test the

infectivity of the isolate. Viral abundance was measured by FCM

as described and cell abundance was also measured by FCM with

cells discriminated based upon side scatter and chlorophyll

fluorescence characteristics (,710622.5 nm). A separate experi-

ment was performed to assess the rate of viral absorption into the

host. Four replicate cultures of E. huxleyi 374 were infected at

each temperature (18u and 21uC). EhV abundance was measured

via FCM (as above) immediately and at 1, 2, 3, 4, and 24 hours

post infection.

Burst size, or the number of viral progeny produced per host cell

lysed, was calculated from the increase in viral abundance over the

corresponding decreases in host abundance during a 24 hour

period using the following equation:

Burst size~DV4{V3D=DC3{C4D

Where V4 and V3 represent viral abundance on days 4 and 3,

respectively; C3 and C4 represent cell abundances on day 3 and 4,

respectively. All burst sizes were calculated between days 3 and 4

except in strain 1516 which was calculated between days 2 and 3.

Days selected represented the latest period in the infection cycle

for which measurements were no more than 24 hours apart. Burst

size was also calculated for virus incubation data between days 3

and 7 as data were not collected on a 24 hour scale.

Statistical Analysis
Most data were graphed as a function of time with data points

representing the mean of experimental replicates and error bars

representing one standard deviation. Data were initially analyzed

via a two-way repeated measures (RM) ANOVA using Sigmaplot.

When assumptions of normality and/or equal variance were not

met (as was frequently the case), a post hoc Holm-Sidak t-test was

also used. Lipid data were normalized to cell abundance (fmol

cell21) prior to graphing and statistical analysis. Burst size data

were compared using a one-way ANOVA (Sigmaplot ver. 11.2,

SPSS Inc., Chicago, IL).

Results

Temperature, Cell Growth, and Viral Propagation
All experimental cultures had an average initial (day 0)

concentration of approximately 3.4*105 cells mL21 (Fig. 1A).

Control (C) cultures grown at 18uC (hereafter referred to as 18C)

reached ,1.16106 cells mL21 by day 3, while 21uC control

cultures (21C) reached ,1*106 cells mL21. Virus-infected (V)

cultures grown at 18uC (18V) showed a depressed growth rate

within 24 hours of infection and were 20% less dense than all other

cultures by day 1. Cell densities in 18V decreased rapidly

thereafter to a final concentration of 1.5*105 cells mL21, a net

decline of more than 50% over the course of the experiment and

,85% lower than all other treatments on day 4. A 2-way RM

ANOVA revealed significant differences between 18V and all

other treatments on days 1 through 4 (p,0.05). Viral abundances

(Fig. 1B) in both 18V and 21V averaged 5.3*106 virions mL21 on

day 0, but only showed rapid and substantial increases (by 33-fold)

in 18V with concentrations reaching 1.75*108 virions mL21 by

day 2. Viral abundance in 21V was not significantly different from

18C and 21C (i.e. 0 virions mL21), indicating that successful EhV

infection and propagation did not occur at 21uC (Fig. 1B).

Physiological Status of Host and Oxidative Stress
The photochemical quantum yield of PS II was measured as the

ratio of variable fluorescence to maximum fluorescence (Fv/Fm)

and used as a proxy of host photosynthetic health. Fv/Fm is one of

the first physiological parameters to change upon EhV infection of

E. huxleyi cells [20,28]. Fv/Fm in 18V fell to ,0.1 by day 2 while

the other cultures remained at or above an average of 0.5, an 80%

decrease in photosynthetic efficiency (Fig. 1C). Hence, viral

infection in 18V significantly (p,0.05) compromised photosyn-

thetic competency in PSII. Concurrent with the decrease in
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photosynthetic efficiency and cell abundance in 18V was a 22-fold

increase in cellular ROS staining from 0.5 relative fluorescence

units per cell (rfu cell21) to 11 rfu cell21 by day 3 (Fig. 1D). ROS

in 18V then fell by 48% to 4.3 rfu cell21. All other treatments

remained at ,0.5 rfu cell21 throughout the experiment.

Transmission Electron Microscopy
Electron micrographs were made of preserved cells taken from

all treatments on day 2 of the experiment (Fig. 2). Electron dense,

intracellular, icosahedral virus particles (indicated by arrows) were

present only in 18V (Fig. 2A). These results are consistent with

previously published EhV morphology [8] and are indicative of a

successful EhV infection in this treatment. Notably, no EhV

particles were observed to be incorporated or attached to host

membranes in the 18C, 21C (See Fig. S1), and 21V samples

(Fig. 2B), suggesting that resistance likely involved a compositional

change in surface properties and/or receptors.

Dimethylated Sulfur Species
Dissolved DMS concentrations in 18V increased 29-fold from

7 nM to 202 nM by day 3 (Fig. 3A) indicative of DMS efflux into

the culture medium upon host lysis. A subsequent 15% decrease

was observed on day 4 to 172 nM, which may partially be due to

an increase in DMS oxidation to DMSO (see below). DMS

concentrations in the remaining treatments never significantly

differed from one another, but increased approximately 3-fold

from a mean of 6 nM to 19 nM.

DMSPt showed an attenuated rate of accumulation in 18V

compared to all other treatments (Fig. 3B). The maximum

concentration of DMSPt in 18V occurred on day 3 reaching

2,853 nM, a ,2.6-fold increase from day 0. The other 3

treatments exhibited a nearly 5-fold increase in DMSPt to a mean

of ,5,000 nM. DMSPt accumulation in 18V cultures was only

54% that observed in other treatments on day 4. DMSPp
accumulated in 18C, 21C, and 21V in a similar manner to

DMSPt with an approximately 5-fold increase from,1,100 nM to

,5,000 nM (Fig. 3C). This value calculates to ,0.77 pg cell21 in

18C, which is similar to the value reported by Keller et al. [43] of

0.75 pg cell21. DMSPp concentration in 18V cultures began to

decline by day 2, reaching a minimum of ,400 nM by day 4, a

net,64% decrease over the course of the experiment. Conversely,

DMSPd increased by 29-fold in 18V reaching 2,309 nM by day 4;

all other treatments increased by ,3-fold on average to 240 nM

(Fig. 3D). All three DMSP pools were significantly different in 18V

compared to other treatments by day 2 (2-way RM ANOVA, p,

0.05).

With the exception of a 30% decrease in 18V between days 2

and 3, all DMSOt concentrations showed a net 3.8-fold increase

over the course of the experiment from an initial mean

concentration of 71 nM to a final mean concentration of

273 nM (See Fig. S2). The only significant (p,0.05) difference

observed in DMSOt was between 18V and all other treatments on

day 3. DMSOp in 18C, 21C, and 21V all demonstrated a net ,5-

fold increase from day 0 to day 4 (Fig. 3E). The 18V treatment

Figure 1. Cell Abundances, Virus Abundances, and Host Health. (A) Mean cell abundance, (B) mean virus abundance, (C) photosynthetic
efficiency of photosystem II, (D) and reactive oxygen species (ROS). Host cell abundance and photosynthetic efficiency decrease in the 18V treatment
,24 h post infection, concomitant with a dramatic increase in viral abundance and accumulation of ROS. All are indicative of active viral infection.
The decrease in ROS on day 4 could be due to free radical scavenging by DMSP and its metabolites or a drop-off in late phase viral replication. Error
bars represent one standard deviation, and asterisks represent statistical significance according to a Holm-Sidak t-test (p,0.05).
doi:10.1371/journal.pone.0112134.g001
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increased to ,100 nM for a 2-fold net increase over the course of

the experiment, despite a drop to near 0 on day 3 (Fig. 3E).

DMSOd increased in 18V to 192 nM, nearly 200-fold, compared

to a mean 3.7-fold increase in all other treatments (Fig. 3F). All

DSS responses are consistent with the lysis of host cells releasing

particulate (i.e. intracellular) sulfur into the dissolved phase.

Viral Absorption
EhV absorption showed very different dynamics for 18V and

21V treatments, which support altered virus attachment (Fig. 4).

Normally, EhV adsorption to the host cell membrane occurs

within 30 minutes, with viral progeny detectable roughly 4 hours

post infection [30]. Consequently, successful infection should

induce an initial drop in free EhV abundance as virions

successfully contact and cross the host plasma membrane, followed

by a measurable increase in virus abundance as host cells begin to

Figure 2. Visual Confirmation of Infection. TEM images of E. huxleyi cells from treatments (A) 18V and (B) 21V taken on day 2 of sampling.
Arrows indicate viral particles. The absence of viral particles in B demonstrates that the virus could not cross the host plasma membrane at 21uC.
doi:10.1371/journal.pone.0112134.g002
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release viral progeny into the surrounding media. As expected,

viral abundance in 18V declined in the first 3 hours, indicating

absorption of viral particles into a permissive host followed by

increases to 1.4*107 virions mL21 after 24 hours indicative of

active infection. At no time was viral abundance significantly

different than time 0 in 21V indicating no change in virus

concentration. A 2-way RM ANOVA with a post-hoc Holm-Sidak

t-test of natural log transformed data revealed that viral

abundance was significantly lower in 18V at 4 hours and

significantly higher at 24 hours relative to 21V. This result is

consistent with successful absorption and infection of 18V. In

addition, these results confirm that the higher temperature

treatment conferred a first-order resistant phenotype to E. huxleyi
374 due to a reduced ability of EhVs to attach to host cell

membranes, perhaps due to a change in the content and/or

composition of host cell surface receptors (see discussion below).

Intact Polar Lipids
Viral infection has been shown to decrease the IPL content of

infected E. huxleyi 374 populations by ca. 25% four days post

infection [33]. We examined several key lipid groups in 18uC and

Figure 3. Dimethylated Sulfur Species. (A) Dissolved DMS, (B) total DMSP, (C) particulate DMSP, (D) dissolved DMSP, (E) particulate DMSO, and
(F) dissolved DMSO. Dissolved DMS increases by day 3 due to dumping of cellular contents upon host lysis with a decrease in day 4 possibly due to
free radical scavenging. Total DMSP and DMSO accumulated more slowly in 18V than other treatments with a decrease in DMSO and DMSP
beginning on days 2 and 3, respectively. Particulate pools showed a similar trend, while dissolved pools increased in 18V and remained mostly
unchanged in other treatments. If the antioxidant capacity of DSS is responsible for resistance then elevated production of these compounds should
be seen in 21C and 21V. Error bars represent one standard deviation, and asterisks represent statistical significance according to a Holm-Sidak t-test
(p,0.05). DMS – Dimethylsulfide, DMSP – Dimethylsulfoniopropionate, DMSO – Dimethylsulfoxide. Subscript letters p, d, and t represent particulate,
dissolved, and total, respectively.
doi:10.1371/journal.pone.0112134.g003
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21uC cultures, including the three types of polar diacylglycer-

olipids: phospholipids, glycolipids, and betaine lipids (Fig. 5).

Phospholipids included phosphatidylcholine (PC), phosphatidyl-

glycerol (PG), and phosphatidylethanolamine (PE), which contrib-

ute to several functional membranes including the outer cell

membrane-lipid bilayer [34]. No significant differences were seen

in PG abundance; however, a significantly (p,0.05) lower PC

concentration per cell was observed in 18V relative to the earlier

time points, while PE concentration starting on day 2 was

significantly (p,0.05) higher than all other treatments.

Significant (p,0.05) accumulation of all three different GSL

classes (sGSLs, hGSLs, and vGSLs) was seen in 18V starting on

day 2 (Fig. 5). Similar levels of sGSLs, potential markers of E.
huxleyi infection susceptibility, were detected in all treatments.

While the sGSL concentration increased in 18V throughout the

experiment, changes in sGSL content were not observed in 18C,

21C or 21V. Pools of hGSLs in 18V initially increased, becoming

significantly higher than other treatments on days 2 and 3 then

dropped to nearly zero by day 4 which coincided with an increase

in the rate of vGSL accumulation (Fig. 5). However, hGSLs were

not significantly different between 18C and 21C at any time point.

Significant accumulation of vGSLs was also seen in 18V starting

on day 2, while vGSL concentrations did not increase significantly

in the other treatments (Fig. 5). Data values for host cell and virus

abundance, host physiology, DSS, and IPLs can be found in Table

S1.

Additional Strains and Temperatures
In order to assess whether the observed temperature effect was

strain specific, the sensitivity of five other E. huxleyi strains was
tested at four temperatures. A combination of EhV86-susceptible

(374, 61/87/10, and 1516) and EhV86-resistant (373, 379, and

392) strains were tested. These host strains spanned a range of

reported DMSP lyase activities, implying differences in efficacy of

the putative DMSP antioxidant cascade from strain to strain

[22,24]. These additional experiments confirmed temperature-

induced resistance for strain 374 (Fig. 6A, B) and demonstrated

nearly identical responses for strains 1516 (Fig. 6C, D) and 61/87/

10 (Fig. 6E, F). We classified successful infection as requiring a

significant increase in viral abundance concomitant with a

significant decrease in cell abundance over the course of the

experiment. Host cell abundance in infected cultures of strain 374

decreased by an order of magnitude from day 1 to day 7 at 18uC
but not at 21uC (Fig. 6A). Control cell abundances at 21uC were

significantly higher than infected cultures (3.4*106 cells mL21 to

2.3*106 cells mL21, respectively) on day 7 (Fig. 6A). Virus

abundance showed opposite trends with significant accumulation

of viral particles at 18uC but not at 21uC (Fig. 6B).

In strain 1516, 18V cell abundances increased from 1*106 cells

mL21 on day 1 to 1.5*106 cells mL21 by day 2 before falling

precipitously to ,0 by day 7 (Fig. 6C). EhV production increased

by ,6 orders of magnitude in 18V during the same time interval

(Fig. 6D). Cell abundances at 21uC did not vary significantly from

one another but 21C grew 3-fold over the course of the

experiment while 21V grew by less than one million cells per

mL before decreasing to initial levels by day 7. This attenuated

Figure 4. Time course of viral absorption and production. The initial decrease in EhV abundance in 18V represents successful adsorption to
and absorption into the host membrane. Emergence of EhV progeny is evident by 4 h. Time-points in 21V are never significantly different from one
another, but are different from 18V by hour 4. Resistance of 21V appears to be derived from an inability of the virus to bind to or cross host
membranes. Error bars represent one standard deviation, and asterisks represent statistical significance according to a Holm-Sidak t-test (p,0.05).
Data were ln transformed for statistical analysis.
doi:10.1371/journal.pone.0112134.g004
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growth in 21V could not be adequately explained by viral

mortality alone, as viral abundance was not significantly higher in

21V than 21C by day 7 (Fig. 6D).

Strain 61/87/10 demonstrated similar trends to 374 with

significant (p,0.05) decreases in cell abundance and increases in

viral concentrations occurring by day 3 at 18uC (Fig. 6E, F). While

the 18uC cultures lost cell abundance towards the end of the

experiment, they were significantly denser than 18V from days 3

to 7 (Fig. 6E). The significant EhV accumulation (.2*108 virions

mL21) classified this result as successful infection (Fig. 6F). The

21C host cell abundances were significantly higher than those of

infected cultures until day 7 when both cultures decreased in

abundance by nearly 50%. Final cell abundance was at least

5*105 cells mL21 higher by day 7 indicating net growth.

Importantly, the final decrease cannot be attributed to viral

mortality, as EhV abundance was never significantly higher than 0

(i.e. control values). Strains 373, 379, and 392 were resistant at all

temperatures tested (See Fig. S3). Cell and virus abundances for

each strain can be found in Table S2.

Figure 5. Intact Polar Lipids. Pie charts represent relative concentrations of individual lipids at days 0, 2, and 4 in the respective treatments. Colors
are explained in the legend (right). Viral GSLs (red pie slices) accumulated in 18V and not the other treatments again indicating successful infection.
Chloroplast lipids such as MGDG (yellow slices), DGDG (blue slices), and SQDG (pink slices) decrease dramatically in 18V as photosynthetic efficiency
decreases. 18V also demonstrates a significant decrease in diacylglycerylcarboxy-N-hydroxymethyl-choline (DGCC, dark green slices) which is involved
in fatty acid transport into the MGDG synthesis pathway. Host derived GSLs are significantly higher in 21C than in 18C by day 4. GSL –
Glycosphingolipid (h, v, and s represent host-derived, virus-derived, and scialic acid, respectively), MGDG – Monogalactosyldiacylglycerol, DGDG –
Digalactosyldiacylglycerol, SQDG – Sulfoquinovosyldiacylglycerol, PG – Phosphatidylglycerol, PE – Phosphatidylethanolamine, PC – Phosphatidyl-
choline, DGTS – Diacylglyceryltrimethylhomoserine, DGCC – Diacylglycerylcarboxyhydroxymethylcholine.
doi:10.1371/journal.pone.0112134.g005
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Burst Size
We also tested whether elevated temperature impacted the

inherent infectivity of EhVs by incubating EhV86 virions

overnight in the dark either at 18u or 21uC followed by infection

of exponentially growing E. huxleyi 374 cells at a permissible

infection temperature of 18uC. Both treatments had burst sizes

that were significantly higher than the uninfected control following

a 24 h incubation (Fig. 7), indicating that exposure of EhVs to

elevated temperature alone was not the cause of the induced

resistance, but rather tied with alterations of host properties.

Elevated temperature had a pronounced negative effect on lytic

burst sizes in strains 374 (Fig. 8A), 1516 (Fig. 8B), 61/87/10

(Fig. 8C), and 392 (Fig. 8D). All strains tested were resistant to

infection at 21uC and had a burst size of 0 virions cell21 at that

temperature. Strain 374 had very similar burst sizes at 12u and

15uC with means of 623 and 495 virions cell21, respectively. In

comparison, the burst size at 18uC was 1,206 virions cell21,

although not significantly different from 12uC and 15uC (Fig. 8A).

Strain 1516 had a mean burst size of only 8 virions cell21 in 18V

(Fig. 8B), likely due to the calculations being performed on the 24-

hour period between days 2 and 3, presumably during the chronic

phase of infection, instead of days 3 and 4 as with other strains.

Data from day 4 were not taken. Strain 61/87/10 exhibited a

,50% lower burst size at 18uC than at 12uC or 15uC, although
this result was not statistically significant (Fig. 8C). Burst sizes in

Figure 6. Dynamics of Cell and Virus Abundance for Additional Sensitive Strains. Cell and viral abundance for E. huxleyi strain (panels A
and B, respectively) CCMP 374, (C and D, respectively) CCMP 1516, and (E and F, respectively) DWN 61/87/10 at 18u and 21uC. Significant
accumulation of viral particles and loss of host cell abundance indicates successful infection. This is only seen in 21V treatments. Error bars represent
one standard deviation, and asterisks represent statistical significance according to a Holm-Sidak t-test (p,0.05).
doi:10.1371/journal.pone.0112134.g006
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392, a strain thought to be virus-resistant, decreased, ranging from

644 virions per cell at 12uC to 42 at 15u and 11 at 18u (Fig. 8D).

These burst sizes were not significantly different between

temperature treatments; however, when considered in conjunction

with virus and host abundance data the results are noteworthy.

Data for the virus incubation experiment, and burst sizes for

sensitive strains and the virus absorption experiments may be

found in Table S3.

Discussion

Given current climate change predictions of 1.5–3.0uC increas-

es in SST by 2100 [35], it is critically important to understand how

elevated temperatures impact E. huxleyi-EhV interactions and

how they may manifest in the termination of E. huxleyi blooms.

These impacts could have global significance for the biogeochem-

ical cycling of carbon and sulfur. Using the IPCC temperature

predictions and several E. huxleyi-EhV86 model systems as a

platform, we tested the effect of a 3uC temperature increase on this

globally-distributed and ecologically relevant host-virus system.

Our results clearly demonstrate an elevated temperature-induced

resistance to EhV infection in an array of sensitive host strains

(CCMP374, CCMP1516, and DWN61/87/10). Though novel in

E. huxleyi, similar temperature effects on infectivity/sensitivity

have been demonstrated in the bloom-forming Rhaphidophyte,

Heterosigma akashiwo-HaV system [17], and in terrestrial plant

host/virus systems such as the Potato Leafroll Virus [44] and

Soybean Mosaic Virus [45]. Together with the results from our

study on E. huxleyi, it is clear that temperature plays a

fundamental mechanistic role in host-virus interactions.

Notably, the temperature-induced resistant phenotype in E.
huxleyi occurred without an increase in net DSS production.

Observed increases in the dissolved pools of DMS, DMSP, and

DMSO in 18V were most likely due to a release of particulate

pools into the surrounding media upon virus-induced cell lysis. A

comparison of dissolved DMS to dissolved DMSP, however,

indicates that shifting of DMSP from the particulate to dissolved

fraction outpaced conversion into DMS, possibly due to a

bottleneck in DMSP lyase activity [29]. We interpret the decreases

in the total pools of DMSP and DMSO to be partially caused by

turnover due to scavenging of free oxygen radicals in an attempt to

mitigate oxidative stress. Unfortunately, the lack of data for total

DMS due to the presence of headspace in the experimental bottles

precludes quantification of the rate of DMSP turnover in our

axenic cultures. Hence, caution must be used in interpreting our

DMS data as true values may be underestimated. Nonetheless, our

DMS, DMSPp, and DMSPd data corroborate those reported by

Evans et al. [29], although they demonstrated an attenuated

DMSP lyase activity during viral infection compared to uninfected

controls. Our results are also consistent with the findings of Malin

et al. [46], which determined that viral infection in Phaeocystis
pouchetii increased DMS production. In conjunction with radical

Figure 7. Viral Incubation. Burst Size (i.e. viral progeny produced per host cell lost calculated over a 24-hour period) for the viral incubation
experiment on strain 374. Viral isolate was incubated overnight at 18uC and 21uC, then used to infect cells growing at 18uC in order to assess whether
elevated temperature affected the host or the virus. ‘‘18V’’ and ‘‘21V’’ here represent viral incubation temperatures rather than host growth
temperatures, and ‘‘18C’’ represents the uninfected control. Error bars represent one standard deviation, and Asterisks represent a significant
difference from the control (p,0.05), but not between treatments compared via two-way ANOVA.
doi:10.1371/journal.pone.0112134.g007
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scavenging, this repressed DMSP-lyase activity may partially

explain why dissolved DMSP concentration is an order of

magnitude higher than dissolved DMS.

Viral termination of natural phytoplankton blooms represents

an important mechanism by which the concentrations of DMSPd
can increase in seawater [7,10,11]. It has been speculated that

bacterial degradation may be sufficient to completely convert a

post-bloom DMSPd pulse to DMS [11], suggesting that viral lysis

and the release of intracellular DMSP may be even more

climatologically significant than once thought, though other

factors may also be important, such as DMS consumption rates

[47]. Evans et al. [29] found that microzooplankton grazing of

batch cultures leads to more DMS production than EhV-

associated lysis. In the ocean, there are several additional

mechanisms of DMSP cleavage including zooplankton grazing,

algal senescence, bacterial degradation, and photo-oxidation. It is

also important to note that, while viral lysis has been documented

to cause E. huxleyi bloom termination [9,12,13,16], it is difficult to

say which may be the more important process for DMS release as

grazers have been shown to preferentially feed on infected E.
huxleyi cells [48]. In our experiments DMSPd concentrations

increased more than an order of magnitude relative to controls, a

much greater increase than in DMS, though there was a marked

increase in DMS production within the sensitive infected cultures.

Given our results were derived from a simplified model system

lacking microbial ecosystem complexity, they likely do not

accurately reflect the total degree to which viral lysis may increase

seawater DMS concentrations during bloom collapse. Nonethe-

less, the fact that DSS production does not directly increase with

temperature corroborates the findings of van Rijssel and Gieskes

[49], who questioned the positive climate feedback loop put forth

in the CLAW hypothesis [5]. Our observed temperature-induced

resistance phenotype cannot be explained by the ‘DMSP antiviral

hypothesis’ [21], whereby DMSP cleavage into DMS and acrylic

acid serves as a temporal antiviral mechanism, delaying viral

mortality of E. huxleyi and bloom collapse and serving as a

possible way to facilitate host-virus coexistence [20,23,28].

The hypothesis that temperature-induced differences in lipid

content impart resistance to virus infection predicts changes in key

lipid constituents and/or concentrations. Constitutive levels of

sulfoquinovosyldiacylglycerol (SQDG), diacylglyceryltrimethylho-

moserine (DGTS), and PG were consistently, though not

significantly, lower at 21uC. DGTS levels did become significantly

higher at 18uC by day 4. The lack of statistical significance may be

due to natural variation that may be rectified by repeating the

experiment with E. huxleyi 374 and other strains. Further tests

should also include comparing lipid levels in resistant strains to

those of susceptible strains as well as resistant and susceptible

phenotypes within strains. A significant decrease in total IPLs

occurred in 18V from a maximum of 6.960.4 fmol cell21 on day

1 to a minimum of 4.060.3 fmol cell21 on day 3 (Fig. 5), and was

associated with a simultaneous loss in photosynthetic efficiency

(Fig. 1C). For example, glycolipids such as digalactosyldiacylgly-

cerol (DGDG) and monogalactosyldiacylglycerol (MGDG) are

involved in chloroplast membrane function. In fact, MGDG as

well as the sulfur-containing glycolipid, SQDG, appear to be

Figure 8. Burst Sizes. Burst Sizes for strains (A) CCMP 374, (B) CCMP 1516, (C) DWN 61/87/10, and (D) CCMP 392. Burst sizes were calculated using
the 24-hour period between days 3 and 4 following infection except for CCMP1516 which were calculated from the 24-hour period between days 2
and 3, likely during the early infection chronic phase, explaining the atypically low values. Error bars represent one standard deviation. Within each
strain no significant differences were found between infection-permissive temperatures. All comparisons made via two-way ANOVA.
doi:10.1371/journal.pone.0112134.g008
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restricted to thylakoid membranes in E. huxleyi [50,51]. Coinci-
dent with the decrease in photosynthetic efficiency were significant

decreases in MGDG and SQDG in 18V by day 2 and a smaller

decrease in DGDG (Fig. 5). No large changes were observed in

glycolipids in 18C, 21C and 21V experiments, consistent with our

observation of high photosynthetic efficiency (Fig. 1C).

DGTS is a betaine lipid confined to plasma and chloroplast

membranes [52]. Like PE and vGSL, DGTS increased signif-

icantly in 18V and no other treatment (Fig. 5). Diacylglyceryl

carboxyhydroxymethylcholine (DGCC), an extraplastidial betaine

lipid that may be involved in MGDG production [53], increased

in 18V relative to other treatments becoming significantly higher

by day 2 before falling below other treatments by day 4. These

changes in betaine lipids are particularly interesting. The

significant loss of DGCC in 18V relative to other treatments

likely explains the decrease in MGDG. Incubation experiments of

Pavlova lutheri with 14C-labelled oleic acid suggested a connec-

tion between the biosynthesis of DGCC and MGDG, leading to

the proposal that DGCC was involved in the transfer of fatty acids

to MGDG in the chloroplast [53]. The mechanism of transfer,

however, remains unknown. Increase in DGTS in 18V could be

correlated with changes in DMSP. For example, the synthesis

pathways for both compounds involve methionine and N-

methylation via S-adenosylmethionine [54,55]. Increased DGTS

could also be due to a simple replacement of PC lost to viral

infection as observed in primitive vascular plants [54].

Given their mechanistic importance to different aspects of E.
huxleyi-EhV interactions, [23,27,32,33] we also specifically exam-

ined the levels of three GSL classes (hGSLs, vGSLs, and sGSLs).

The healthy, host-derived hGSLs initially showed significant

accumulation in successfully infected cultures, but dropped

dramatically by day 4. Its production decreased with impaired

photosynthetic productivity as evidenced by compromised Fv/Fm
on day 3. The decline in hGSL concentration in infected cells

occurred concomitantly with an increase in vGSL accumulation,

which indicates a retrenchment in GSL synthesis pathways toward

virus-derived GSLs by day 3. Since vGSL synthesis is necessary for

EhV production and host PCD [28], it is possible that initial

increases in hGSL concentrations in infected cells represent a

biochemical up-regulation of the host’s serine palmitoyl transfer-

ase, the first and rate-limiting enzyme in the ceramide biosynthesis

pathway, as a competitive inhibition reaction with the EhV-

derived serine palmitoyl transferase enzyme. This ostensible up-

regulation is inconsistent with the notion that infected cells initially

silence and/or implement transcriptional controls over host-

derived sphingolipid synthesis genes [56].

A clear result from our study was the inhibitory effect that a 3uC
increase in temperature had on EhV adsorption/absorption to

host E. huxleyi cells, precluding successful infection. We confirmed

that this temperature effect was not due to an alteration of the

inherent EhV infectivity, as EhV86 virions exposed to overnight

treatments of 18uC and 21uC retained their infectivity when

incubated with host E. huxleyi cells at 18uC (Fig. 7). We were also

able to eliminate the possibility that elevated temperature induced

transition to a resistant haploid phase (i.e. ‘Cheshire Cat’ strategy

[18]) by analyzing SYBR-stained flow cytograms. Changes in

ploidy level would be represented by a decrease in both algal

SYBR green fluorescence and side scatter profile. No such

decreases were found in any treatment indicating no change in

life stage.

Rather, the temperature-induced resistance and alteration of

EhV absorption was at the level of host composition and/or

physiology. EhVs appear to employ an entry and exit strategy

through lipid rafts, chemically distinct membrane lipid micro-

domains that are enriched in GSLs and are involved in sensing

extracellular stimuli and activating signaling cascades through

protein-protein interactions [30,32]. Lipidomic analyses of purified

lipid rafts from control and EhV-infected E. huxleyi cells revealed
two distinct host-derived GSL classes–sGSLs (sialic acid GSLs) and

rGSLs (raft GSLs)–that were preferentially enriched in lipid rafts

and closely corresponded to lipid raft physical and biochemical

markers [32]. It is plausible that altered virus-sensitivity might be

due to changes in these GSL classes.

Previous data revealed that sGSLs, which possess a sialic acid

headgroup, are effective markers for susceptible E. huxleyi cells
[33]. These lipids were relatively abundant in the four other

sensitive strains tested and either absent or at trace levels in six

resistant strains [33]. Possibly, sGSLs participate in viral attach-

ment and/or release through the interaction with an EhV-

encoded sialidase enzyme (ehv455) [31]. Here, the occurrence of

sGSLs in all E. huxleyi 374 treatments, including the resistant 21V

treatment, shows that infection dynamics depend upon additional

non-IPL components that must be temperature sensitive.

Alternatively, the mechanism of resistance and reduced virus

attachment might lie in fundamental changes to host cell surface

receptors. For instance, proteomic analyses of purified lipid rafts

from control and EhV-infected E. huxleyi cells revealed a variety

of proteins affiliated with host recognition, defense, PCD, and

innate immunity pathways [32]. These included: calmodulin-

binding DENN/MADD domain-containing proteins that are

involved in MAP kinase induction [57]; proline-rich extensins

(PRICHEXTENSN), which function in the signal transduction of

pathogen defense upon compromised cell wall structure [58,59];

toll interleukin 1 receptor (TIR) and leucine-rich repeat (LRR)

domain proteins, which are often connected by a nucleotide-

binding (NB) domain and collectively mediate pathogen recogni-

tion/resistance and activate host-cell defense responses [60,61].

TIR-NB-LRR proteins specifically recognize viral membrane

proteins through ligand-receptor interaction resulting in the stress-

induced, plant hypersensitive PCD response [62,63]. An EhV86

C-type lectin 1 domain–containing membrane protein (ehv149;

Q4A2Y5), a classic ligand-binding partner for toll-like receptors

(TLR/TIR) reported in poxviruses and African swine fever virus

(ASFV) [64,65], was also detected in purified lipid rafts,

implicating a possible protein-protein (TIR-NB-LRR/C-type

Lectin) specific binding interaction for the successful attachment,

entry, and exit through lipid rafts. Given this mechanistic role, we

hypothesize that elevated temperature repressed the expression of

TIR-NB-LRR proteins, but further verification is warranted using

relevant information from the E. huxleyi genome [31,32,66].

While we were not able to definitively identify the precise

mechanism of temperature-induced EhV resistance in E. huxleyi,
our study highlights the physiological plasticity of this host-virus

relationship within a realistic IPCC-projected global temperature

range over the next century (+3uC). This area of research is of

particular importance to understand and model current and future

changes in the earth’s climate. Given the global prevalence of

EhV-termination of E. huxleyi blooms and that all sensitive cells

displayed a general resistance to EhV infection when incubated at

these elevated temperatures (and also that the resistant strain 392

displayed potential EhV production at lower temperatures), it is

tempting to speculate how this plasticity will play out in natural

populations. It will likely be determined by the relative balance

between the rate of sea surface temperature rise and the tempo of

the co-evolutionary arms race between E. huxleyi-EhV [27]. On

balance, the latter would serve as a mechanism to adapt to host-

derived changes and possibly mute the ecological impact of

widespread resistance. Given the observed release of DSS species

Temperature-Induced Viral Resistance in Emiliania huxleyi

PLOS ONE | www.plosone.org 12 November 2014 | Volume 9 | Issue 11 | e112134



(this study) and greatly enhanced production of transparent

exopolymeric particles (TEP) [23] upon EhV infection, which

can greatly facilitate carbon export to deep waters, this may have

profound biogeochemical implications for S and C cycles in the

upper ocean such as disrupted transport of biogenic sulfur to the

atmosphere and sequestration of carbon.

Conclusion

Our results demonstrate that a 3uC increase in temperature

induced a profound shift towards viral resistance in an array of

normally sensitive E. huxleyi strains. Significant changes in DSS

pool sizes occurred during infection at 18uC, but in neither

treatment at 21uC indicating that the antioxidant capacity of DSS

is likely not the mechanism responsible for the resistant phenotype.

We did, however, confirm that elevated DMS production is a

symptom of successful viral infection [46]. This does not

necessarily contradict the DMSP antiviral hypothesis, which posits

that DSS from infected cells may reduce infectivity of viral

progeny and delay bloom termination [21]. Successful viral

infection imparted major changes in the polar lipid content of

host cells consistent with previous observations [32,33]. Our work

implicates fundamental cellular changes in the host at the level of

adsorption of EhVs to the cell surface as the mechanism behind

temperature induced resistance in E. huxleyi. Future work should

investigate the role of temperature in imparting viral resistance

through changes in lipid rafts and their associated receptor and

host response proteins.

Supporting Information

Figure S1 Transmission Electron Microscopy. TEM

images of E. huxleyi cells from control treatments 18C (A) and

21C (B) taken on day 2 of sampling.

(TIF)

Figure S2 Total DMSO. Total DMSO concentrations show-

ing a 30% decrease in 18V between days 2 and 3, all DMSOt

concentrations showed a net 3.8-fold increase over the course of

the experiment. Error bars represent one standard deviation, and

asterisks represent statistical significance according to a Holm-

Sidak t-test (p,0.05).

(TIF)

Figure S3 Dynamics of Cell and Virus Abundance for
Resistant Strains. Cell and viral abundance for E. huxleyi

strain (panels A and B, respectively) CCMP 373, (C and D,

respectively) CCMP 379, and (E and F, respectively) CCMP 392

at 18u and 21uC. There was no significant loss of cell abundance

or accumulation of viral particles indicating all three strains were

virus resistant at both temperatures. Error bars represent one

standard deviation.

(TIF)

Table S1 Cell Abundances, Virus Abundances, Host
Health, Dimethylated Sulfur Species, and Intact Polar
Lipids. Data values for Figures 1, 3, 5, and S1. All lipid data are

in fmol cell21.

(XLS)

Table S2 Dynamics of Cell and Virus Abundance for
Additional Strains. Data values for Figures 6 and S2.

(XLS)

Table S3 Virus Incubation and Burst Sizes. Data values

for Figures 4, 7, and 8.

(XLS)
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