

Received 28 November 2018 Accepted 6 February 2019

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; nickel; five-coordinate; tripodal tetradentate ligand; phosphine; thioether.

CCDC reference: 1895701

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of chlorido{tris[2-(isopropylsulfanyl)phenyl]phosphane- $\kappa^4 P$,S,S',S''}nickel(II) trifluoromethanesulfonate

Nobuhiro Takeda,* Rin Oma and Masafumi Unno

Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan. *Correspondence e-mail: ntakeda@gunma-u.ac.jp

The complex cation of the title compound, $[NiCl{P(C_6H_4-2-S-i-Pr)_3}](CF_3SO_3)$, has a slightly distorted trigonal-bipyramidal coordination geometry in which three S atoms are located in the equatorial plane, and one P and one Cl atom in the apical positions. In the cation, there are two intramolecular C-H···S hydrogen bonds. In the crystal, there are some intermolecular C-H···O and C-H···F hydrogen bonds formed between the cation and the anion. The trifluoromethanesulfonate anion and one of the methyl groups are both disordered over two sets of sites with occupancies of 0.629 (17):0.371 (17) and 0.786 (14):0.214 (14), respectively.

1. Chemical context

Unusual five-coordinate nickel(II) complexes have been often obtained by use of polydentate ligands such as tripodal tetradentate ligands (Orioli, 1971; Morassi *et al.*, 1973; Hierso *et al.*, 2003). A variety of tripodal tetradentate ligands having phosphines and/or amines as coordinating sites have been used for the synthesis of five-coordinate nickel(II) complexes. However, for PS₃-type tripodal tetradentate ligands in which three thioether moieties are tethered to a phosphine moiety, only one crystal structure (Haugen & Eisenberg, 1969) had been reported before we started our studies. Recently, we have synthesized new PS₃-type tripodal tetradentate ligands, tris(2-isopropylthiophenyl)phosphine, **1a** and tris(2-*tert*butylthiophenyl)phosphine, **1b** (Fig. 1), and reported the syntheses and properties of their group 10 metal complexes (Takeda *et al.*, 2010, 2016). Reaction of **1a** with NiCl₂·6H₂O in

OPEN 3 ACCESS

R = iPr Ia: R = iPr Ib: R = t-Bu $NiCl_2 \cdot 6H_2O, NaX$ CH_2Cl_2 $X = BF_4: reflux, 72 h$ CH_2Cl_2 $X = BF_4: 3: X = OTf$ CI t-Bu t-Bu CI t-Bu t-Bu

the presence of NaBF₄ gave the corresponding cationic fivecoordinate nickel(II) complex, **2**, while the reaction of **1b** with NiCl₂·6H₂O resulted in the elimination of *t*-BuCl to afford a neutral five-coordinate nickel(II) complex, **4** (Fig. 1). In this paper, we describe the structure of the title compound, [NiCl(*L*)]CF₃SO₃ (L = 1a), **3**, which was prepared by reaction of **1a** with NiCl₂·6H₂O in the presence of an excess amount of NaCF₃SO₃ (Fig. 1).

2. Structural commentary

The structure of the title compound, 3, is shown in Fig. 2. The triflate anion and one of the methyl groups are each disordered over two sets of sites with occupancies of 0.629 (17):0.371 (17) and 0.786 (14):0.214 (14), respectively. The complex cation of 3 has a five-coordinate slightly distorted trigonal-bipyramidal structure, in which one P atom and one Cl atom coordinate to the nickel center(II) in the apical positions [P1-Ni1-Cl1 177.83 (5)°] and three S atoms are located in the equatorial positions. In addition, there are two weak C-H···S intramolecular hydrogen bonds (C26-H26B···S1 and C17-H17B···S3; Table 1). Table 2 presents selected bond lengths and angles of **3** along with those of the related complexes, complex 2 (Takeda et al., 2010) and the methyl derivative, $[NiCl{P(C_6H_4-2-SCH_3)_3}]ClO_4$, 5 (Haugen & Eisenberg, 1969). The conformation of the Ni(S-*i*-Pr)₃ unit of **3** is similar to that of complex **2**, but different from that of **5**, as shown in Fig. 3. This is probably due to the difference in the bulkiness between the isopropyl and methyl groups. In 3, the

Figure 2

The molecular structure of the title compound, **3**. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms and minor disorder components are omitted for clarity.

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O1^{i}$	0.95	2.42	3.336 (5)	162
$C5-H5\cdots O3B^{ii}$	0.95	2.55	3.328 (11)	140
$C8-H8\cdots F2A^{iii}$	0.98	2.53	3.318 (14)	138
$C8-H8\cdots F2B^{iii}$	0.98	2.50	3.30 (2)	139
C17−H17B···S3	0.98	2.82	3.652 (5)	143
C18-H18 B ···F3 B ^{iv}	0.98	2.15	3.099 (12)	162
$C20-H20\cdots O1^{i}$	0.95	2.58	3.477 (5)	157
$C22-H22\cdots O2A^{v}$	0.95	2.31	3.127 (12)	144
$C26-H26B\cdots S1$	0.98	2.85	3.762 (6)	156
$C27B - H27D \cdots O1$	0.98	2.46	3.308 (19)	144

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) x + 1, y, z; (v) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Table 2 Selected bond distances (Å) and angles (°) in complexes **2**, **3** and **5**.

compounds	3	2 ^{<i>a</i>}	5 ^b
Ni1-P1	2.1124 (11)	2.1108 (7)	2.113 (7)
Ni1-S1	2.2574 (12)	2.2454 (7)	2.242 (8)
Ni1-S2	2.2612 (13)	2.2678 (7)	2.269 (6)
Ni1-S3	2.3072 (13)	2.3510 (7)	2.290 (7)
Ni1-Cl	2.2412 (11)	2.2437 (7)	2.227 (7)
P1-Ni1-Cl1	177.83 (5)	178.60 (3)	178.5 (3)
S2-Ni1-S3	120.87 (5)	109.53 (3)	112.1 (3)
S3-Ni1-S1	116.04 (5)	119.03 (3)	127.1 (3)
S1-Ni1-S2	122.83 (5)	130.74 (3)	120.6 (2)
P1-Ni1-S	88.16 (4)-88.1 (4)	86.9 - 87.5	88.0 - 88.7
Cl1-Ni1-S	89.88 (4)-93.48 (5)	92.0 - 94.5	90.7 - 92.4

Notes: (a) Takeda et al. (2010); (b) Haugen & Eisenberg (1969).

Ni1-S3 bond length [2.3072 (13) Å] is slightly longer than the Ni1-S1 and Ni1-S2 bond lengths [2.2574 (12) and 2.2612 (13) Å, respectively], and the S1-Ni1-S2 bond angle [122.83 (5)°] is slightly larger than the S2-Ni1-S3 and S3-Ni1-S1 bond angles [120.87 (5) and 116.04 (5)°, respectively]. This properties suggests that in complex **3** the five-coordinate trigonal-bipyramidal structure slightly approaches a fourcoordinate square-planar structure by the elongation of the Ni-S3 bond. This is a similar tendency to the structure of **2**, and the deviation from trigonal-bipyramidal structure in **3** is smaller than that in **2**. The Ni-S bond lengths of **3** are very close to those of methyl derivative **5**, while the S3-Ni-S1 bond angle of **5** [127.1 (3)°] is large as expected from the conformation **B** (Fig. 3).

The conformation diagrams of the Ni(SR)₃ moieties (R = i-Pr or Me) for **3** (A) and **5** (B), viewed along the Ni–Cl bond.

research communications

Figure 4

Intramolecular C-H···S hydrogen bonds and intermolecular C-H···O and C-H···F hydrogen bonds (blue dashed lines) in **3**. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iv) x + 1, y, z; (v) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.]

3. Supramolecular features

In the crystal of **3**, there are some hydrogen bonds between the cation and the anion (Fig. 4). The cation and the anion are linked into a tape structure along the *b*-axis direction *via* C– $H \cdots O$ and C– $H \cdots F$ hydrogen bonds (C2– $H2 \cdots O1^{i}$, C8– $H8 \cdots F2A^{iii}$, C8– $H8 \cdots F2B^{iii}$, C20– $H20 \cdots O1^{i}$ and C22– $H22 \cdots O2A^{v}$; symmetry codes as in Table 1). The tapes are further linked by weak C– $H \cdots O$ and C– $H \cdots F$ hydrogen bonds formed between the cation and the minor component of the disordered anion (C5– $H5 \cdots O3B^{ii}$ and C18– $H18B \cdots F3B^{iv}$; Table 1), forming a three-dimensional network (Figs. 5 and 6).

Figure 5

A packing diagram of 3, viewed along the *a* axis. The C-H···O and C-H···F hydrogen bonds are shown as dashed lines.

Figure 6

A packing diagram of 3, viewed along the *c* axis. The $C-H \cdots O$ and $C-H \cdots F$ hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD; Groom et al., 2016) using WebCSD found four structures of nickel complexes having three Ni-S, one Ni-P and one Ni-Cl bonds. The structures of the complexes, $[NiCl{P(C_6H_4-2-$ SMe)₃]ClO₄, **5** (refcode: CMTPPN; Haugen & Eisenberg, 1969) and $[NiCl{P(C_6H_4-2-S-i-Pr)_3}]BF_4$, 2 (FULMOP; Takeda et al., 2010), are similar to that of the cationic choloridonickel(II) complex 3. The structures of the other two complexes, $[Ph_3P = N = PPh_3][NiCl{P(C_6H_3-3-SiMe_3-2-S)_3}]$ (YETYOM; Lee *et al.*, 2006) and [NiCl{P(C_6H_4 -2-S)(C_6H_4 -2-S-*t*-Bu)₂]], **4** (EZOQAN; Takeda et al., 2016), are different from that of complex 3. The former is an anionic nickel(III) complex having three thiolato (-SR), one chlorido and one phosphine ligands, and the latter, 4, is a neutral nickel(II) complex having two thioether, one thiolato, one chlorido and one phosphine ligands.

5. Synthesis and crystallization

A mixture of tris(2-isopropylthiophenyl)phosphine, **1a** (0.141 g, 0.291 mmol), NiCl₂·6H₂O (0.060 g, 0.25 mmol) and NaCF₃SO₃ (0.345 g, 2.01 mmol) in dichloromethane (5 ml) was stirred at room temperature for 4 d. After removal of the solvent under reduced pressure, recrystallization of the residue from a chloroform/hexane solution gave the title compound, **3**, as blue crystals (0.168 g, 91%).

M.p. 485 K (decomp.) ¹H NMR (300 MHz, CDCl₃): δ 1.31 (*d*, ³*J*_{HH} = 6.7 Hz, 18H), 3.73 (*sepd*, ³*J*_{HH} = 6.7 Hz, ⁴*J*_{HP} = 1.6 Hz, 3H), 7.71 (*tdd*, ³*J*_{HH} = 8.3 Hz, *J*_{HP} = 2.2 Hz, ⁴*J*_{HH} = 1.0 Hz, 3H), 7.80 (*ddd*, ³*J*_{HH} = 8.3 Hz, ⁴*J*_{HP} = 3.3 Hz, ⁴*J*_{HH} = 1.0 Hz, 3H), 7.91 (*tdd*, ³*J*_{HH} = 8.3 Hz, ³*J*_{HP} = 2.5 Hz, ⁴*J*_{HH} = 1.0 Hz, 3H), 8.68 (*dd*, ³*J*_{HH} = 8.3 Hz, ³*J*_{HP} = 8.3 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 22.3 (*s*, CH₃), 50.7 (*s*, CH), 132.9 (*d*, *J*_{CP} = 7.2 Hz, CH), 133.4 (*d*, *J*_{CP} = 63.6 Hz, C), 137.0 (*d*, ²*J*_{CP} = 23.1 Hz, C), the peak of CF₃ could not be detected. ³¹P NMR (162 MHz, CDCl₃): δ 103.3. ¹⁹F NMR (376 MHz, CDCl₃): δ -77.92. IR (KBr): 516.9, 532.3, 551.6, 572.8, 638.4,

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	[NiCl(C ₂₇ H ₃₃ PS ₃)](CF ₃ SO ₃)
M _r	727.91
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	13.428 (3), 14.008 (3), 17.110 (3)
β (°)	93.164 (4)
$V(Å^3)$	3213.5 (11)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.04
Crystal size (mm)	$0.10 \times 0.08 \times 0.02$
Data collection	
Diffractometer	Rigaku CrystalClear-SM Expert 2.1 b29
Absorption correction	Numerical (<i>CrystalClear</i> ; Rigaku, 2013)
T_{\min}, T_{\max}	0.924, 0.971
No. of measured, independent and observed $[I > 2\sigma(D)]$ reflections	51723, 7359, 5054
P_{i}	0.096
$(\sin \theta/\lambda)$ (\mathring{A}^{-1})	0.649
$(\sin \theta/\lambda)_{\max}(A)$	0.049
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.144, 1.08
No. of reflections	7359
No. of parameters	451
No. of restraints	20
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.75, -0.35

Computer programs: CrystalClear (Rigaku, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Yadokari-XG (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).

673.1, 727.1, 740.6, 779.2, 879.5, 931.6, 1029.9, 1056.9 (S=O), 1116.7, 1157.2 (S=O),1224.7, 1242.1, 1249.8, 1265.2, 1274.9, 1282.6, 1369.4, 1388.7, 1433.0, 1460.0, 1568.0, 1635.5, 2868.0, 2927.7, 2968.2, 3055.0, 3082.0, 3301.9, 3319.3, 3392.6, 3406.1, 3423.4, 3444.6, 3477.4, 3489.0. UV–vis (CHCl₃): λ_{max} 246 (ε 35000), 332 (ε 5700), 474 (ε 350), 639 nm (ε 2000). Analysis calculated for C₂₈H₃₃ClF₃NiO₃PS₄: C 46.20, H 4.57%. Found: C 45.38, H 4.55%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were positioned geometrically (C–H = 0.95–1.00 Å) and refined as riding atoms with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl or $1.2U_{eq}(C)$ for aromatic and methine H atoms. The methyl groups were allowed to rotate freely around the C–C bond. The triflate anion exhibits disorder and was modelled with occupancies of 0.629 (17) and 0.371 (17). The geometric parameters of the minor component were restrained to be similar to those of the major component by using *SAME* restraint. In addition, one of the methyl groups in the complex cation exhibits disorder and was modelled with occupancies of 0.786 (14) and 0.214 (14). The C25–C27A and C25–C27B bond lengths were restrained to be equal to each other by using *SADI* restraint.

Funding information

Funding for this research was provided by: Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (JSPS), 'Development of Innovative Catalytic Processes for Organosilicon Functional Materials' project (PL: K. Sato) from the New Energy and Industrial Technology Development Organization (NEDO).

References

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Haugen, L. P. & Eisenberg, R. (1969). Inorg. Chem. 8, 1072-1078.
- Hierso, J.-C., Amardeil, R., Bentabet, E., Broussier, R., Gautheron, B., Meunier, P. & Kalck, P. (2003). Coord. Chem. Rev. 236, 143–206.
- B., Meuner, F. & Katck, F. (2003). Coord. Chem. Rev. 250, 145–200.
 Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.
- Lee, C.-M., Chuang, Y.-L., Chiang, C.-Y., Lee, G.-H. & Liaw, W.-F. (2006). *Inorg. Chem.* 45, 10895–10904.
- Morassi, R., Bertini, I. & Sacconi, L. (1973). Coord. Chem. Rev. 11, 343–402.
- Orioli, P. L. (1971). Coord. Chem. Rev. 6, 285-308.
- Rigaku (2013). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Takeda, N., Tanaka, Y., Oma, R., Sakakibara, F. & Unno, M. (2016). Bull. Chem. Soc. Jpn, 89, 922–930.
- Takeda, N., Tanaka, Y., Sakakibara, F. & Unno, M. (2010). Bull. Chem. Soc. Jpn, 83, 157–164.
- Wakita, K. (2001). Yadokari-XG. Software for Crystal Structure Analyses. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2019). E75, 350-353 [https://doi.org/10.1107/S2056989019002068]

Crystal structure of chlorido{tris[2-(isopropylsulfanyl)phenyl]phosphane- $\kappa^4 P, S, S', S''$ }nickel(II) trifluoromethanesulfonate

Nobuhiro Takeda, Rin Oma and Masafumi Unno

Computing details

Data collection: *CrystalClear* (Rigaku, 2013); cell refinement: *CrystalClear* (Rigaku, 2013); data reduction: *CrystalClear* (Rigaku, 2013); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *Yadokari-XG* (Wakita, 2001; Kabuto *et al.*, 2009); software used to prepare material for publication: *Yadokari-XG* (Wakita, 2001; Kabuto *et al.*, 2009) and *publCIF* (Westrip, 2010).

 $Chlorido \{ tris [2-(isopropylsulfanyl) phosphane - \kappa^4 P, S, S', S'' \} nickel (II) trifluoromethane sulfonate$

Crystal data [NiCl(C₂₇H₃₃PS₃)](CF₃SO₃) F(000) = 1504 $M_r = 727.91$ $D_{\rm x} = 1.505 {\rm Mg} {\rm m}^{-3}$ Monoclinic, $P2_1/n$ Mo *K* α radiation, $\lambda = 0.71075$ Å a = 13.428 (3) Å Cell parameters from 5728 reflections b = 14.008 (3) Å $\theta = 2.8 - 27.5^{\circ}$ c = 17.110(3) Å $\mu = 1.04 \text{ mm}^{-1}$ T = 120 K $\beta = 93.164 \ (4)^{\circ}$ $V = 3213.5 (11) \text{ Å}^3$ Prism. blue $0.10 \times 0.08 \times 0.02 \text{ mm}$ Z = 4Data collection Rigaku CrystalClear-SM Expert 2.1 b29 51723 measured reflections diffractometer 7359 independent reflections Radiation source: Rotating Anode 5054 reflections with $I > 2\sigma(I)$ Confocal monochromator $R_{\rm int} = 0.096$ Detector resolution: 5.8140 pixels mm⁻¹ $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$ profile data from ω -scans $h = -17 \rightarrow 17$ $k = -18 \rightarrow 18$ Absorption correction: numerical (CrystalClear; Rigaku, 2013) $l = -22 \rightarrow 22$ $T_{\rm min} = 0.924, \ T_{\rm max} = 0.971$ Refinement Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.057$ H-atom parameters constrained $wR(F^2) = 0.144$ $w = 1/[\sigma^2(F_0^2) + (0.0517P)^2 + 5.7574P]$ where $P = (F_0^2 + 2F_c^2)/3$ *S* = 1.08 7359 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.75 \text{ e} \text{ Å}^{-3}$ 451 parameters 20 restraints $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.75663 (4)	0.31726 (4)	0.35830(3)	0.02972 (15)	
Cl1	0.77545 (8)	0.29069 (9)	0.23080 (6)	0.0409 (3)	
P1	0.73682 (7)	0.33699 (7)	0.47886 (5)	0.0246 (2)	
C1	0.6229 (3)	0.2789 (3)	0.5066 (2)	0.0262 (8)	
C2	0.5845 (3)	0.2845 (3)	0.5811 (2)	0.0321 (9)	
H2	0.6179	0.3205	0.6216	0.039*	
C3	0.4967 (3)	0.2363 (3)	0.5944 (3)	0.0384 (10)	
H3	0.4706	0.2389	0.6448	0.046*	
C4	0.4466 (3)	0.1846 (3)	0.5360 (3)	0.0381 (10)	
H4	0.3872	0.1516	0.5468	0.046*	
C5	0.4822 (3)	0.1805 (3)	0.4619 (3)	0.0358 (10)	
Н5	0.4465	0.1470	0.4210	0.043*	
C6	0.5721 (3)	0.2269 (3)	0.4482 (2)	0.0274 (8)	
S1	0.61937 (8)	0.22394 (8)	0.35266 (6)	0.0304 (2)	
C7	0.6643 (3)	0.0991 (3)	0.3441 (3)	0.0386 (10)	
H7	0.7114	0.0985	0.3008	0.046*	
C8	0.7218 (4)	0.0635 (4)	0.4164 (3)	0.0491 (12)	
H8	0.6777	0.0613	0.4601	0.074*	
H8A	0.7778	0.1066	0.4294	0.074*	
H8B	0.7473	-0.0008	0.4067	0.074*	
C9	0.5777 (4)	0.0336 (4)	0.3189 (3)	0.0570 (14)	
H9	0.6037	-0.0287	0.3038	0.085*	
H9A	0.5396	0.0620	0.2743	0.085*	
H9B	0.5342	0.0254	0.3625	0.085*	
C10	0.8429 (3)	0.2904 (3)	0.5377 (2)	0.0297 (9)	
C11	0.8506 (4)	0.2885 (3)	0.6188 (2)	0.0364 (10)	
H11	0.7951	0.3060	0.6479	0.044*	
C12	0.9387 (4)	0.2611 (4)	0.6570(3)	0.0460 (12)	
H12	0.9448	0.2618	0.7126	0.055*	
C13	1.0190 (4)	0.2325 (4)	0.6148 (3)	0.0515 (13)	
H13	1.0798	0.2145	0.6418	0.062*	
C14	1.0113 (3)	0.2299 (4)	0.5342 (3)	0.0471 (12)	
H14	1.0653	0.2075	0.5056	0.057*	
C15	0.9229 (3)	0.2607 (3)	0.4950 (3)	0.0364 (10)	
S2	0.91100 (8)	0.26050 (9)	0.39095 (6)	0.0383 (3)	
C16	1.0134 (4)	0.3448 (4)	0.3714 (3)	0.0515 (13)	
H16	1.0729	0.3224	0.4041	0.062*	
C17	0.9930 (4)	0.4436 (4)	0.3978 (3)	0.0529 (13)	
H17	1.0532	0.4825	0.3946	0.079*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

				0.050*	
HI7A	0.9732	0.4421	0.4521	0.079*	
H17B	0.9390	0.4713	0.3643	0.079*	
C18	1.0401 (4)	0.3352 (5)	0.2900 (3)	0.0659 (16)	
H18	0.9819	0.3502	0.2550	0.099*	
H18A	1.0617	0.2696	0.2805	0.099*	
H18B	1.0945	0.3794	0.2799	0.099*	
C19	0.7307 (3)	0.4636 (3)	0.5007 (2)	0.0270 (8)	
C20	0.7291 (3)	0.5015 (3)	0.5767 (2)	0.0297 (9)	
H20	0.7287	0.4601	0.6206	0.036*	
C21	0.7283 (3)	0.5992 (3)	0.5871 (3)	0.0341 (9)	
H21	0.7258	0.6248	0.6383	0.041*	
C22	0.7312 (3)	0.6603 (3)	0.5236 (3)	0.0370 (10)	
H22	0.7312	0.7274	0.5315	0.044*	
C23	0.7340 (3)	0.6238 (3)	0.4487 (3)	0.0372 (10)	
H23	0.7375	0.6657	0.4053	0.045*	
C24	0.7317 (3)	0.5263 (3)	0.4371 (2)	0.0288 (9)	
S3	0.72947 (8)	0.47865 (8)	0.34063 (6)	0.0310 (2)	
C25	0.6003 (3)	0.5122 (5)	0.3077 (3)	0.0551 (15)	
H25A	0.5974	0.5834	0.3110	0.066*	0.786 (14)
H25B	0.5936	0.4535	0.2745	0.066*	0.214 (14)
C26	0.5214 (3)	0.4751 (4)	0.3611 (3)	0.0459 (12)	
H26	0.4550	0.4935	0.3396	0.069*	
H26A	0 5329	0 5027	0.4135	0.069*	
H26B	0.5257	0.4054	0 3645	0.069*	
C27A	0.5825 (5)	0.4890 (6)	0.2012 0.2262(3)	0.049(2)	0 786 (14)
H27A	0.5843	0.4195	0.2202 (3)	0.074*	0.786(14)
H27R	0.6342	0.5184	0.1959	0.074*	0.786(14)
H27C	0.5170	0.5132	0.1939	0.074*	0.786(14)
C27B	0.5769 (15)	0.5677 (16)	0.2455(12)	0.074	0.700(14) 0.214(14)
H27D	0.5064	0.5589	0.2495 (12)	0.040(7)	0.214(14) 0.214(14)
1127D 1127E	0.5004	0.5502	0.2272	0.059*	0.214(14)
	0.0104	0.5302	0.2024	0.039*	0.214(14)
Π2/Γ S4A	0.3887	0.0348	0.2390	0.039°	0.214(14)
54A	0.2394(0)	0.3990(0)	0.1690(4)	0.0017(17)	0.029 (17)
	0.3333(3)	0.0108(2)	0.25204 (19)	0.0508 (9)	0 (20 (17)
02A	0.2/4/(16)	0.6526 (8)	0.1192 (6)	0.119 (6)	0.629 (17)
O3A G284	0.1589 (6)	0.6058 (12)	0.2106 (7)	0.114 (6)	0.629 (17)
C28A	0.2/34 (13)	0.4774 (10)	0.15/1 (6)	0.061 (6)	0.629 (17)
FIA	0.3485 (7)	0.4632 (8)	0.1181 (5)	0.070 (2)	0.629 (17)
F2A	0.1947 (10)	0.4527 (12)	0.1075 (7)	0.104 (5)	0.629 (17)
F3A	0.2727 (9)	0.4177 (5)	0.2155 (4)	0.083 (3)	0.629 (17)
S4B	0.2809 (6)	0.6234 (5)	0.1799 (4)	0.0279 (14)	0.371 (17)
O2B	0.3381 (11)	0.6469 (12)	0.1159 (7)	0.056 (4)	0.371 (17)
O3B	0.1917 (9)	0.6754 (11)	0.1844 (6)	0.055 (4)	0.371 (17)
C28B	0.2460 (16)	0.4994 (15)	0.1619 (11)	0.060 (9)	0.371 (17)
F1B	0.320 (2)	0.4458 (15)	0.152 (2)	0.160 (17)	0.371 (17)
F2B	0.1807 (14)	0.4953 (11)	0.0986 (11)	0.061 (4)	0.371 (17)
F3B	0.1961 (17)	0.4693 (15)	0.2206 (8)	0.116 (10)	0.371 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0264 (3)	0.0409 (3)	0.0222 (3)	-0.0057 (2)	0.0052 (2)	-0.0053 (2)
C11	0.0365 (6)	0.0615 (8)	0.0254 (5)	-0.0050 (5)	0.0077 (4)	-0.0094 (5)
P1	0.0243 (5)	0.0283 (5)	0.0214 (5)	-0.0028 (4)	0.0023 (4)	-0.0017 (4)
C1	0.024 (2)	0.027 (2)	0.028 (2)	0.0007 (16)	0.0046 (15)	0.0029 (16)
C2	0.035 (2)	0.033 (2)	0.029 (2)	-0.0028 (19)	0.0064 (17)	-0.0028 (17)
C3	0.044 (3)	0.035 (2)	0.038 (2)	0.001 (2)	0.019 (2)	0.0055 (19)
C4	0.030 (2)	0.034 (2)	0.051 (3)	-0.0036 (19)	0.014 (2)	0.006 (2)
C5	0.031 (2)	0.034 (2)	0.042 (2)	-0.0056 (19)	0.0038 (18)	-0.0005 (19)
C6	0.022 (2)	0.029 (2)	0.032 (2)	-0.0018 (17)	0.0046 (16)	0.0003 (16)
S1	0.0306 (5)	0.0352 (6)	0.0255 (5)	-0.0062 (4)	0.0021 (4)	-0.0049 (4)
C7	0.045 (3)	0.035 (2)	0.038 (2)	-0.005 (2)	0.014 (2)	-0.0136 (19)
C8	0.056 (3)	0.042 (3)	0.051 (3)	0.008 (2)	0.014 (2)	0.002 (2)
C9	0.065 (4)	0.038 (3)	0.068 (4)	-0.014 (3)	0.009 (3)	-0.020 (3)
C10	0.028 (2)	0.027 (2)	0.034 (2)	-0.0057 (17)	-0.0026 (17)	-0.0012 (16)
C11	0.047 (3)	0.032 (2)	0.030(2)	0.001 (2)	-0.0038 (19)	0.0004 (17)
C12	0.052 (3)	0.046 (3)	0.039 (3)	0.001 (2)	-0.010 (2)	0.005 (2)
C13	0.039 (3)	0.059 (3)	0.054 (3)	-0.002 (3)	-0.015 (2)	0.009 (3)
C14	0.027 (2)	0.063 (3)	0.052 (3)	0.005 (2)	0.001 (2)	0.008 (2)
C15	0.027 (2)	0.041 (3)	0.041 (2)	-0.0025 (19)	-0.0005 (18)	0.0003 (19)
S2	0.0317 (6)	0.0464 (7)	0.0379 (6)	0.0025 (5)	0.0105 (4)	-0.0053 (5)
C16	0.028 (2)	0.068 (4)	0.061 (3)	-0.005 (2)	0.018 (2)	0.002 (3)
C17	0.040 (3)	0.064 (4)	0.055 (3)	-0.022 (3)	0.007 (2)	-0.005 (3)
C18	0.057 (4)	0.091 (5)	0.052 (3)	-0.002 (3)	0.020 (3)	-0.004 (3)
C19	0.0209 (19)	0.030 (2)	0.031 (2)	-0.0013 (16)	0.0051 (15)	-0.0012 (16)
C20	0.025 (2)	0.035 (2)	0.029 (2)	-0.0009 (17)	0.0050 (16)	0.0011 (16)
C21	0.032 (2)	0.033 (2)	0.038 (2)	-0.0042 (19)	0.0028 (18)	-0.0078 (18)
C22	0.031 (2)	0.029 (2)	0.051 (3)	0.0009 (18)	0.0029 (19)	-0.0011 (19)
C23	0.036 (2)	0.031 (2)	0.044 (3)	0.0018 (19)	0.0061 (19)	0.0096 (19)
C24	0.025 (2)	0.035 (2)	0.027 (2)	-0.0007 (17)	0.0060 (16)	0.0035 (16)
S3	0.0256 (5)	0.0430 (6)	0.0247 (5)	-0.0003 (4)	0.0048 (4)	0.0063 (4)
C25	0.029 (3)	0.096 (4)	0.040 (3)	0.009 (3)	0.002 (2)	0.022 (3)
C26	0.024 (2)	0.067 (3)	0.046 (3)	0.005 (2)	0.0067 (19)	0.014 (2)
C27A	0.034 (3)	0.079 (6)	0.035 (3)	-0.003 (3)	0.000 (3)	-0.005 (3)
C27B	0.022 (11)	0.032 (14)	0.065 (16)	0.010 (9)	0.010 (10)	0.005 (11)
S4A	0.082 (4)	0.063 (3)	0.0385 (19)	0.032 (3)	-0.009(2)	-0.001(2)
01	0.059 (2)	0.054 (2)	0.0383 (18)	-0.0034 (18)	-0.0051 (16)	0.0042 (15)
O2A	0.229 (17)	0.066 (6)	0.057 (6)	0.046 (10)	-0.024 (8)	0.009 (4)
O3A	0.059 (5)	0.171 (15)	0.111 (8)	0.051 (7)	-0.012 (5)	-0.075 (9)
C28A	0.078 (12)	0.074 (12)	0.033 (7)	-0.028 (10)	0.015 (7)	-0.016 (8)
F1A	0.079 (5)	0.070 (5)	0.065 (4)	0.014 (3)	0.029 (4)	-0.008 (3)
F2A	0.093 (7)	0.151 (12)	0.066 (6)	-0.020 (8)	-0.005 (5)	-0.050 (8)
F3A	0.135 (8)	0.055 (4)	0.061 (4)	-0.023 (5)	0.026 (4)	0.002 (3)
S4B	0.036 (2)	0.032 (3)	0.015 (2)	-0.0002 (19)	0.0013 (14)	0.0037 (16)
O2B	0.069 (9)	0.068 (9)	0.031 (6)	-0.027 (8)	0.007 (6)	0.018 (5)
O3B	0.051 (7)	0.065 (9)	0.046 (6)	0.024 (6)	-0.013 (5)	-0.013 (6)

C28B	0.048 (12)	0.060 (13)	0.070 (19)	0.008 (10)	-0.023 (11)	0.021 (11)
F1B	0.25 (4)	0.056 (12)	0.17 (3)	0.068 (17)	-0.03 (2)	-0.033 (16)
F2B	0.054 (7)	0.066 (9)	0.061 (7)	-0.004 (6)	-0.017 (5)	-0.025 (6)
F3B	0.153 (18)	0.106 (15)	0.086 (9)	-0.096 (15)	-0.020 (9)	0.047 (8)

Geometric parameters (Å, °)

Ni1—P1	2.1124 (11)	C17—H17A	0.9800
Nil—Cl1	2.2412 (11)	C17—H17B	0.9800
Ni1—S1	2.2574 (12)	C18—H18	0.9800
Ni1—S2	2.2612 (13)	C18—H18A	0.9800
Ni1—S3	2.3072 (13)	C18—H18B	0.9800
P1-C19	1.815 (4)	C19—C24	1.398 (5)
P1-C1	1.819 (4)	C19—C20	1.406 (5)
P1-C10	1.820 (4)	C20—C21	1.380 (6)
C1—C6	1.385 (5)	C20—H20	0.9500
C1—C2	1.403 (5)	C21—C22	1.385 (6)
C2—C3	1.388 (6)	C21—H21	0.9500
С2—Н2	0.9500	C22—C23	1.382 (6)
C3—C4	1.379 (6)	C22—H22	0.9500
С3—Н3	0.9500	C23—C24	1.380 (6)
C4—C5	1.381 (6)	C23—H23	0.9500
C4—H4	0.9500	C24—S3	1.779 (4)
C5—C6	1.401 (6)	S3—C25	1.854 (5)
С5—Н5	0.9500	C25—C27B	1.341 (15)
C6—S1	1.787 (4)	C25—C27A	1.440 (7)
S1—C7	1.858 (5)	C25—C26	1.528 (6)
С7—С8	1.507 (7)	C25—H25A	1.0000
С7—С9	1.524 (7)	C25—H25B	1.0000
С7—Н7	1.0000	C26—H26	0.9800
C8—H8	0.9800	C26—H26A	0.9800
C8—H8A	0.9800	C26—H26B	0.9800
C8—H8B	0.9800	C27A—H27A	0.9800
С9—Н9	0.9800	C27A—H27B	0.9800
С9—Н9А	0.9800	C27A—H27C	0.9800
С9—Н9В	0.9800	C27B—H27D	0.9800
C10—C11	1.386 (6)	С27В—Н27Е	0.9800
C10—C15	1.396 (6)	C27B—H27F	0.9800
C11—C12	1.375 (6)	S4A—O3A	1.421 (8)
C11—H11	0.9500	S4A—O2A	1.432 (9)
C12—C13	1.390 (7)	S4A—O1	1.450 (7)
C12—H12	0.9500	S4A—C28A	1.809 (14)
C13—C14	1.378 (7)	O1—S4B	1.410 (8)
С13—Н13	0.9500	C28A—F1A	1.255 (19)
C14—C15	1.398 (6)	C28A—F3A	1.302 (13)
C14—H14	0.9500	C28A—F2A	1.364 (14)
C15—S2	1.779 (4)	S4B—O3B	1.408 (11)
S2—C16	1.857 (5)	S4B—O2B	1.410 (10)

C16—C18	1.462 (7)	S4B—C28B	1.822 (17)
C16—C17	1.487 (8)	C28B—F1B	1.26 (2)
C16—H16	1.0000	C28B—F3B	1.307 (17)
C17—H17	0.9800	C28B—F2B	1.357 (17)
P1Ni1C11	177 83 (5)	H17C17H17A	109.5
P1—Ni1—S1	88 34 (4)	$C_{16} - C_{17} - H_{17}$	109.5
Cl1—Ni1—S1	89 88 (4)	H17—C17—H17B	109.5
P1—Ni1—S2	88 16 (4)	H17A - C17 - H17B	109.5
C11—Ni1—S2	91 78 (4)	C16-C18-H18	109.5
\$1_Ni1_\$2	122 83 (5)	C_{16} C_{18} H_{18A}	109.5
P1—Ni1—S3	88 41 (4)	H18— $C18$ — $H18A$	109.5
Cl1—Ni1—S3	93 48 (5)	C16— $C18$ — $H18B$	109.5
\$1—Ni1—\$3	116.04(5)	H18—C18—H18B	109.5
\$2—Ni1—\$3	120.87(5)	H18A—C18—H18B	109.5
C19 - P1 - C1	109.59 (18)	C_{24} C_{19} C_{20}	119.0 (4)
C19 - P1 - C10	106 25 (18)	C_{24} C_{19} P_{1}	116.8 (3)
C1 - P1 - C10	109.81 (18)	C_{20} C_{19} P_{1}	1242(3)
C19—P1—Ni1	109.76 (13)	C_{21} C_{20} C_{19} C	119.6 (4)
C1 - P1 - Ni1	110 45 (13)	$C_{21} = C_{20} = H_{20}$	120.2
C10—P1—Ni1	110.90 (14)	C19 - C20 - H20	120.2
C6-C1-C2	119.5 (4)	C_{20} C_{21} C_{22}	120.8 (4)
C6-C1-P1	115.8 (3)	C_{20} C_{21} H_{21}	119.6
C2-C1-P1	124.7(3)	$C_{22} = C_{21} = H_{21}$	119.6
C_{3} $-C_{2}$ $-C_{1}$	118.7(4)	C_{23} C_{22} C_{21} C_{21}	120.1 (4)
C3—C2—H2	120.7	C23—C22—H22	120.0
C1—C2—H2	120.7	C21—C22—H22	120.0
C4—C3—C2	121.4 (4)	C24—C23—C22	119.9 (4)
C4—C3—H3	119.3	C24—C23—H23	120.1
С2—С3—Н3	119.3	C22—C23—H23	120.1
C3—C4—C5	120.5 (4)	C23—C24—C19	120.7 (4)
C3—C4—H4	119.7	C23—C24—S3	120.2 (3)
C5—C4—H4	119.7	C19—C24—S3	119.1 (3)
C4—C5—C6	118.6 (4)	C24—S3—C25	98.9 (2)
C4—C5—H5	120.7	C24—S3—Ni1	104.55 (14)
С6—С5—Н5	120.7	C25—S3—Ni1	115.2 (2)
C1—C6—C5	121.2 (4)	C27B—C25—C26	122.1 (9)
C1—C6—S1	119.1 (3)	C27A—C25—C26	114.8 (5)
C5—C6—S1	119.7 (3)	C27B—C25—S3	124.2 (9)
C6—S1—C7	103.16 (19)	C27A—C25—S3	109.8 (4)
C6—S1—Ni1	106.14 (13)	C26—C25—S3	113.6 (3)
C7—S1—Ni1	106.29 (15)	C27A—C25—H25A	105.9
C8—C7—C9	112.4 (4)	C26—C25—H25A	105.9
C8—C7—S1	113.6 (3)	S3—C25—H25A	105.9
C9—C7—S1	110.1 (3)	C27B—C25—H25B	91.0
С8—С7—Н7	106.8	C26—C25—H25B	91.0
С9—С7—Н7	106.8	S3—C25—H25B	91.0
S1—C7—H7	106.8	C25—C26—H26	109.5

С7—С8—Н8	109.5	C25—C26—H26A	109.5
С7—С8—Н8А	109.5	H26—C26—H26A	109.5
H8—C8—H8A	109.5	C25—C26—H26B	109.5
С7—С8—Н8В	109.5	H26—C26—H26B	109.5
H8—C8—H8B	109.5	H26A—C26—H26B	109.5
H8A—C8—H8B	109.5	С25—С27А—Н27А	109.5
С7—С9—Н9	109.5	C25—C27A—H27B	109.5
С7—С9—Н9А	109.5	H27A—C27A—H27B	109.5
Н9—С9—Н9А	109.5	C25—C27A—H27C	109.5
C7—C9—H9B	109.5	H27A—C27A—H27C	109.5
H9-C9-H9B	109.5	H27B - C27A - H27C	109.5
H9A_C9_H9B	109.5	C_{25} C_{27B} H_{27D}	109.5
$C_{11} - C_{10} - C_{15}$	120 1 (4)	C25 - C27B - H27E	109.5
$C_{11} - C_{10} - P_{1}$	125.0(3)	H27D - C27B - H27E	109.5
C_{15} C_{10} P_{1}	123.0(3) 1147(3)	C_{25} C_{27B} H_{27E}	109.5
C_{12} C_{11} C_{10} C_{10}	1197(3)	H27D C27B H27F	109.5
C_{12} C_{11} H_{11}	120.1	H27E C27B H27F	109.5
	120.1	034 - 544 - 024	111.6 (8)
C_{11} C_{12} C_{13}	120.1 120.4(4)	03A - 54A - 01	116.0(5)
$C_{11} = C_{12} = C_{13}$	120.4 (4)	$O_{2A} = S_{4A} = O_1$	110.0(3) 1150(7)
$C_{12} = C_{12} = H_{12}$	119.8	$O_{2A} = S_{4A} = O_{1}$	113.9(7) 104.6(8)
$C_{13} = C_{12} = 112$	119.0 120.7(4)	$O_{2A} = S_{4A} = C_{2BA}$	107.6 (6)
C14-C13-C12	120.7 (4)	02A - 54A - C28A	102.0(0) 104.2(6)
$C_{12} = C_{13} = H_{13}$	119.0	$\begin{array}{c} \mathbf{O1} \\ -\mathbf{O4} \\ \mathbf{O4} $	104.2(0)
$C_{12} = C_{13} = 1115$	119.0	F1A = C28A = F2A	104.3(14)
$C_{13} = C_{14} = C_{13}$	119.1 (5)	$\Gamma IA - C20A - \Gamma ZA$	104.3(11) 106.0(10)
$C_{15} = C_{14} = 1114$	120.4	$F_{1A} = C_{28A} = F_{2A}$	100.0(10) 114.2(0)
$C_{13} - C_{14} - H_{14}$	120.4	F1A - C28A - S4A $F2A - C28A - S4A$	114.2(9)
C10 - C15 - C14	119.9(4)	F3A - C28A - S4A	111.0(9) 100.7(12)
C10-C15-S2	119.7(3)	$\Gamma 2A - C_{2} \delta A - S_{4} A$	109.7(12)
C14 - C15 - S2	120.4(3)	03B - 54B - 01	114.7(7)
C15 - S2 - C16	98.8 (2) 10(11 (14)	03B - 54B - 02B	115.0 (9)
C15 = S2 = N11	106.11 (14)	01 - 54B - 02B	115.6 (7)
C10 - S2 - N11	114.20 (18)	03B - S4B - C28B	106.9 (9)
C18 - C16 - C17	115.8 (5)	O1 - S4B - C28B	98.3 (7)
C18 - C10 - S2	109.0 (4)	02B - 54B - C28B	103.7 (9)
C17 - C16 - S2	112.7 (3)	F1B = C28B = F3B	111(2)
C18—C16—H16	106.0	F1B - C28B - F2B	110.3 (19)
CI/-CI6-HI6	106.0	F3B-C28B-F2B	105.3 (16)
S2—C16—H16	106.0	F1B-C28B-S4B	113.1 (17)
С16—С17—Н17	109.5	F3B-C28B-S4B	108.4 (13)
C16—C17—H17A	109.5	F2B—C28B—S4B	109.0 (14)
C19—P1—C1—C6	125.3 (3)	C15—S2—C16—C17	-66.9 (4)
C10—P1—C1—C6	-118.4 (3)	Ni1—S2—C16—C17	45.3 (4)
Ni1—P1—C1—C6	4.2 (3)	C1—P1—C19—C24	-116.7 (3)
C19—P1—C1—C2	-54.1 (4)	C10—P1—C19—C24	124.7 (3)
C10—P1—C1—C2	62.3 (4)	Ni1—P1—C19—C24	4.8 (3)
Ni1—P1—C1—C2	-175.1 (3)	C1—P1—C19—C20	66.1 (4)

C6—C1—C2—C3	0.9 (6)	C10—P1—C19—C20	-52.5(4)
P1—C1—C2—C3	-179.8 (3)	Ni1—P1—C19—C20	-172.5 (3)
C1—C2—C3—C4	-0.8 (7)	C24—C19—C20—C21	0.2 (6)
C2—C3—C4—C5	-0.8 (7)	P1-C19-C20-C21	177.5 (3)
C3—C4—C5—C6	2.4 (7)	C19—C20—C21—C22	-1.4 (6)
C2-C1-C6-C5	0.7 (6)	C20—C21—C22—C23	0.5 (7)
P1-C1-C6-C5	-178.6 (3)	C21—C22—C23—C24	1.4 (7)
C2-C1-C6-S1	177.8 (3)	C22—C23—C24—C19	-2.6 (6)
P1-C1-C6-S1	-1.6 (4)	C22—C23—C24—S3	177.1 (3)
C4—C5—C6—C1	-2.3 (6)	C20—C19—C24—C23	1.7 (6)
C4—C5—C6—S1	-179.4 (3)	P1-C19-C24-C23	-175.7 (3)
C1—C6—S1—C7	110.1 (3)	C20—C19—C24—S3	-177.9 (3)
C5—C6—S1—C7	-72.9 (4)	P1-C19-C24-S3	4.7 (4)
C1—C6—S1—Ni1	-1.5 (4)	C23—C24—S3—C25	-71.4 (4)
C5—C6—S1—Ni1	175.6 (3)	C19—C24—S3—C25	108.3 (4)
C6—S1—C7—C8	-43.9 (4)	C23—C24—S3—Ni1	169.5 (3)
Ni1—S1—C7—C8	67.5 (3)	C19—C24—S3—Ni1	-10.9 (3)
C6—S1—C7—C9	83.1 (4)	C24—S3—C25—C27B	121.1 (14)
Ni1—S1—C7—C9	-165.4 (3)	Ni1—S3—C25—C27B	-128.1 (14)
C19—P1—C10—C11	63.9 (4)	C24—S3—C25—C27A	174.4 (5)
C1—P1—C10—C11	-54.5 (4)	Ni1—S3—C25—C27A	-74.8 (5)
Ni1—P1—C10—C11	-176.9 (3)	C24—S3—C25—C26	-55.5 (5)
C19—P1—C10—C15	-112.0 (3)	Ni1—S3—C25—C26	55.3 (5)
C1—P1—C10—C15	129.6 (3)	O3A—S4A—C28A—F1A	163.6 (10)
Ni1—P1—C10—C15	7.2 (4)	O2A—S4A—C28A—F1A	47.0 (12)
C15—C10—C11—C12	2.7 (6)	O1—S4A—C28A—F1A	-74.3 (10)
P1-C10-C11-C12	-172.9 (3)	O3A—S4A—C28A—F3A	-70.4 (13)
C10-C11-C12-C13	-2.0 (7)	O2A—S4A—C28A—F3A	173.0 (12)
C11—C12—C13—C14	-0.8 (8)	O1—S4A—C28A—F3A	51.8 (13)
C12—C13—C14—C15	2.9 (8)	O3A—S4A—C28A—F2A	46.9 (11)
C11—C10—C15—C14	-0.6 (7)	O2A—S4A—C28A—F2A	-69.7 (12)
P1-C10-C15-C14	175.5 (4)	O1—S4A—C28A—F2A	169.1 (9)
C11—C10—C15—S2	178.4 (3)	O3B—S4B—C28B—F1B	176 (2)
P1-C10-C15-S2	-5.5 (5)	O1—S4B—C28B—F1B	-65 (2)
C13—C14—C15—C10	-2.2 (7)	O2B—S4B—C28B—F1B	54 (2)
C13—C14—C15—S2	178.8 (4)	O3B—S4B—C28B—F3B	-61.0 (16)
C10-C15-S2-C16	119.9 (4)	O1—S4B—C28B—F3B	58.1 (15)
C14—C15—S2—C16	-61.1 (4)	O2B—S4B—C28B—F3B	177.1 (14)
C10-C15-S2-Ni1	1.5 (4)	O3B—S4B—C28B—F2B	53.1 (16)
C14—C15—S2—Ni1	-179.5 (4)	O1—S4B—C28B—F2B	172.2 (14)
C15—S2—C16—C18	162.6 (4)	O2B—S4B—C28B—F2B	-68.9 (16)
Ni1-S2-C16-C18	-85.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C2—H2…O1 ⁱ	0.95	2.42	3.336 (5)	162
C5—H5···O3 <i>B</i> ⁱⁱ	0.95	2.55	3.328 (11)	140

C8—H8····F2A ⁱⁱⁱ	0.98	2.53	3.318 (14)	138
C8—H8…F2 <i>B</i> ⁱⁱⁱ	0.98	2.50	3.30 (2)	139
C17—H17 <i>B</i> ···S3	0.98	2.82	3.652 (5)	143
C18—H18 <i>B</i> ····F3 <i>B</i> ^{iv}	0.98	2.15	3.099 (12)	162
C20—H20…O1 ⁱ	0.95	2.58	3.477 (5)	157
C22—H22···O2 <i>A</i> ^v	0.95	2.31	3.127 (12)	144
C26—H26B···S1	0.98	2.85	3.762 (6)	156
C27 <i>B</i> —H27 <i>D</i> …O1	0.98	2.46	3.308 (19)	144

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1/2, y-1/2, -z+1/2; (iii) x+1/2, -y+1/2; (iv) x+1, y, z; (v) x+1/2, -y+3/2, z+1/2.