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Abstract: Cytogenetics laboratory tests are among the most important procedures for the diagnosis
of genetic diseases, especially in the area of hematological malignancies. Manual chromosomal
karyotyping methods are time consuming and labor intensive and, hence, expensive. Therefore,
to alleviate the process of analysis, several attempts have been made to enhance karyograms. The
current chromosomal image enhancement is based on classical image processing. This approach
has its limitations, one of which is that it has a mandatory application to all chromosomes, where
customized application to each chromosome is ideal. Moreover, each chromosome needs a different
level of enhancement, depending on whether a given area is from the chromosome itself or it is just
an artifact from staining. The analysis of poor-quality karyograms, which is a difficulty faced often in
preparations from cancer samples, is time consuming and might result in missing the abnormality or
difficulty in reporting the exact breakpoint within the chromosome. We developed ChromoEnhancer,
a novel artificial-intelligence-based method to enhance neoplastic karyogram images. The method
is based on Generative Adversarial Networks (GANs) with a data-centric approach. GANs are
known for the conversion of one image domain to another. We used GANs to convert poor-quality
karyograms into good-quality images. Our method of karyogram enhancement led to robust routine
cytogenetic analysis and, therefore, to accurate detection of cryptic chromosomal abnormalities.
To evaluate ChromoEnahancer, we randomly assigned a subset of the enhanced images and their
corresponding original (unenhanced) images to two independent cytogeneticists to measure the
karyogram quality and the elapsed time to complete the analysis, using four rating criteria, each
scaled from 1 to 5. Furthermore, we compared the enhanced images with our method to the original
ones, using quantitative measures (PSNR and SSIM metrics).
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1. Introduction

Chromosomes, which are residents in the nuclei of all human cells (except mature
red blood cells), each comprise a deoxyribonucleic acid molecule (DNA) and associated
proteins. Each human somatic cell contains 23 different pairs of linear chromosomes. The
study of chromosomes and their role in disease pathology is the main goal of the field of
cytogenetics. Furthermore, it is considered an essential diagnostic approach for genetic
disorders that are caused by chromosomal aberrations.

Cytogenomic studies include the visual observation and analysis of human chromo-
somes using a light microscope (also called conventional cytogenetics), determination of
the presence of a specific DNA sequence using fluorescent in situ hybridization (FISH),
and examination of the entire genome for copy number variation by array comparative
genomic hybridization (aCGH). Although FISH and microarray studies have provided a
higher-resolution analysis of chromosomal abnormalities in hematological malignancies,
Giemsa-banding (G-banding) is still considered the gold standard for the conventional
cytogenetic testing of bone marrow (BM) samples for most hematological malignancies,
as it provides an overall visual examination of all chromosomes rather than the targeted
approach provided by other techniques [1]. Furthermore, G-banding analysis reveals the
presence of distinct and related clonal populations, which is an important determinant of
disease prognosis [1].

Cytogeneticists are trained to manually classify G-banded metaphase chromosomes,
obtained from culturing living cells, based on their length and banding pattern, which are
specific to each chromosome, in order to construct the karyogram, which is the ordered
appearance of chromosomes based on size and banding pattern. This is the initial step in the
analytical stage of all samples received in the cytogenetics lab. As part of the development
and progression of malignancies, cancer cells gain multiple numerical and structural
chromosomal aberrations, including rearrangements, deletions, and duplications. The
correct interpretation of these abnormalities plays a key role in the evaluation of patients
with hematological malignancies for disease classification, prognosis determination, and
treatment decision. However, frequently encountering metaphases of poor morphological
quality and low resolution is a major complicating factor in the analytical process of BM
samples. As a result, an abnormality may be interpreted incorrectly or remain unknown.
Therefore, several artificial intelligence (AI) approaches to chromosome-based genetic
diagnosis have been explored, many of which have focused on the development of tools
that aid in the automated classification of chromosomes.

Artificial Intelligence (AI) transformed many disciplines of science, including genomics
and genetics [2]. In the context of medicine and healthcare, the combination of AI with
genomics and genetics, resulted in data sets that reshaped precision medicine. Machine
learning (ML), a subset of AI, together with physiological genomics data, proved to be a
powerful approach for precision medicine in common diseases [3]. Precision cancer care is
another example of the amalgamation of AI/ML algorithms and big cancer genomics data
sets to identify or discover individual genetic or genomics diagnostic and/or prognostic
factors, helping to charter personalized treatment plans [4]. The most successful application
of AI in medicine is medical-imaging-based clinical diagnostic tools, where computer-vision
approaches utilize the imaging data to obtain sensitive diagnostics [5,6]. Genetic data of
the primary sequence type (DNA or RNA) have been explored rigorously with machine
learning algorithms for the task of predicting/annotating various genomic elements, such
as gene-structure prediction of intron splice sites, 3′ untranslated regions, promoters, and
cis-regulatory elements [7]. Besides, genetic data of primary sequence type (aligned on a
reference genome) could also be transformed into images for the identification of genetic
variants using deep learning methods [8]. Last but not least, the study of genetic data
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structural types, such as chromosomal images (cytogenetics), could also be well explored
by various ML techniques to help in disease diagnosis and/or prognosis, especially in
hematological cancers.

The application of AI in cytogenetics for karyotype analyses is not new. Several
attempts have been made to automate, with better accuracy, the variety of tedious and
time-consuming manual cytogenetic analyses, such as automatic segmentation of chro-
mosomes [9], automatic detection of chronic myeloid leukemia (CML) using chromosome
images from BM specimens of CML patients [10], automatic pairing algorithm using bone
marrow cells karyograms for leukemia diagnosis [11], and automatic karyotyping of de-
formed chromosomes from BM cells [12]. These studies unanimously faced one major
challenge in analyzing the bone marrow cell karyograms; that is, these karyogram im-
ages are of poor quality, with chromosomes appearing distorted, overlapped, and blurred.
Therefore, the development of new or novel AI methods is highly needed to enhance the
karyogram images to help correctly diagnose a large amount of cancer patient cytogenetic
data. The enhancement has to be optimal, as the over enhancement might affect the telom-
eres, which are sometimes involved in abnormalities [13]. However, little progression have
taken place in this context [14], so more sophisticated algorithms using different AI-based
methods, especially deep neural network, are highly sought.

In this study, we used exported karyogram images from the cytogenetics system
instead of using the tangled chromosomes image on the microscopic slide. We developed
the ChromoEnhancer model using the CycleGAN to convert the poor-quality karyogram
images into good quality. The idea of using poor- and good-quality chromosome pairs in
the CycleGAN model led to a robust routine cytogenetic analysis and to accurate detection
of cryptic chromosomal abnormalities. We validated our method using two different
cytogeneticists, rating the enhanced karyograms with PSNR and SSIM metrics.

2. Materials and Methods

Karyogram images were collected from King Abdulaziz Medical City under the
Institutional Review Board (IRB) number. The images were chosen to have the following
features: 1—not short; 2—either of poor or excellent quality (i.e., medium-quality images
were excluded).

2.1. Data Selection

Following regular protocol [15], metaphase spread images were captured using the
CytoVision software (Leica Biosystems Inc., Vista, CA, USA). Afterward, the karyogram
was prepared and enhanced using built-in tools in the cytoVision software. We then ex-
tracted those karyograms and used them for the application of our proposed enhancement
method. The CycleGAN model we designed is shape and length sensitive; thus, we aimed
at maximizing the shape similarity between chromosomes. Accordingly, our problem is
data-centric and requires expertise that knows both how the CycleGAN algorithm works
and how to classify the quality of karyograms. We wanted to have two groups of data sets,
namely, medium-size poor and medium-size excellent bone marrow karyograms. After
that, we created a training data set by manually choosing 88 poor-medium karyograms
and 143 excellent-medium karyograms among thousands of images to achieve the shape
similarity target. A typical karyogram image consists of 23 pairs of chromosomes. We
divided each karyogram image into 23 images, i.e., each karyogram generates 23 pairs, each
consisting of a chromosome pair except for chromosomes X and Y, see Figure 1. Addition-
ally, to mitigate the chromosomes’ shape and length model bias, we removed chromosomes
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, X, and Y from the training set. This pre-processing step
maximizes the shape and length similarity between chromosomes. However, we tested
the predictive ability of the proposed model on all pairs of chromosomes. The final data
set for training included 1056 poor and 1727 excellent images. Furthermore, for the testing
data set, we selected another 30 poor random karyograms and divided them into 23 pairs
as mentioned above. Before feeding the images into the network, we scaled each pair of
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chromosome images into 256 × 256 with instance norm. The final step was to enhance each
of the 23 images individually and used these enhanced images to reform the karyogram.
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Figure 1. Pipeline of our method. (A) Karyogram taken from cytogenetics state-of-the-art system.
(B) Cutting each pair of chromosomes. (C) Feeding each pair into the model. (D) The output of the
pairs is gathered. (E) Reformed karyogram from the enhanced pair. (F) The karyogram is ready
for analysis.

2.2. ChromoEnhancer Model

ChromoEnhancer model is a model that was designed over the CycleGAN, a deep
model that we utilized in order to learn the image enhancement process. The image enhance-
ment task is posed as an image-to-image translation problem. We used the cycle-consistent
generative adversarial network approach (CycleGAN; [16]), which is an adaptation of
the generative adversarial network (GAN) approach (Goodfellow et al., 2014) to image
generation and translation, see Figure 2. A GAN is trained to generate an image that
resembles real-world images it has in its database, without directly seeing and/or copying
the images. Instead, a GAN involves two networks playing a game with each other. A
generator network learns to produce images, given some random noise on the input. A
discriminator network is given either a real image, or an image produced by the generator,
and its goal is to learn to tell the real image from the fake one. In the process of training,
the generator learns how to produce images that can deceive the discriminator.

The CycleGAN approach works with two separate databases of images (unenhanced,
U, and enhanced, E, in our case) and consists of two image generators (GUE and GEU) and
two image discriminators, DE and DU. Both generators take images on input, instead of
random noise as in the standard GAN. Generator GUE} takes an image from database U
and produces an image that is fed into DE discriminator, which is tasked with learning
whether the image comes from the generator, or is a real image from database E. In the
course of improving both networks, the discriminator will become better at distinguishing
real images from artificially generated ones. Crucially, at the same time, the generator will
learn to be better at producing realistic artificial images. In particular, the GUE generator
will learn how to transform an unenhanced image U into an enhanced image that has a
similar quality to real images from database E. In addition to the above learning process,
the image generated by the GUE generator is provided as input to the GEU generator, and its
output is compared to the original image from the U database. This ensures that the image
generated by GUE generator retains relevant information from the input image so that GEU
generator can reconstruct the input image. Similarly, a real image from database E will be
provided on input to generator GEU, then the output produced by GEU will be provided to
(a) discriminator U, and (b) generator GUE. In the process of training the generator, GEU
learns to translate enhanced images into unenhanced images, and the generator GUE learns
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to translate unenhanced images into enhanced images. Crucially, the learning process does
not rely on the availability of paired unenhanced–enhanced images.
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Figure 2. CycleGAN model architecture.

CycleGAN model uses the logistics loss for the adversarial loss and for CycleGAN
Consistency Loss it uses L1 loss. We used unet_256 for network G. We set the batch size
parameter to four and we applied batch normalization to each batch. Further, we set input
and output networks channel to one as our chromosomal images are gray-scale images. No
resize or crop was needed. For the rest of the parameters, we used the CycleGAN defaults.

2.3. Model Evaluation

Model evaluation was carried out to assess the quality of our enhancement in qual-
itative and quantitative manners. As part of the qualitative assessment, we asked two
independent cytogeneticists to evaluate the images whereas quantitative evaluation focused
on the use of PSNR and SSIM metrics.

2.3.1. Qualitative Evaluation

Two cytogeneticists were invited to analyze 60 pairs of random karyogram images
consisting of 30 normal and 30 abnormal karyograms. Each karyogram pair consists of
the poor image and its enhanced version. The images were randomly ordered to create
120 karyograms. The evaluation process was blind in that the cytogeneticists were provided
with the 120 karyograms without notification of their status, i.e., original or enhanced.
Numerical abnormalities that can be identified without enhancement were excluded. We
asked the evaluator to document the following: 1—the suspected abnormality; 2—the
overall quality of each karyogram on a scale of 1 to 5 (1 being poor and 5 being excellent);
3—the sharpness of the chromosomal bands on a scale of one to five (1 being sharp and
5 being fuzzy); 4—the duration of analysis of each karyogram in seconds. We analyzed
the data using a one-tailed paired t-test with the following hypothesis: 1—enhancing the
images with our method will increase the overall quality, therefore, increasing the time
required to complete the analysis; 2—enhancing the images with our method will increase
band sharpness. Based on our hypotheses, we were expecting to identify abnormalities
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in the enhanced images that were originally missed in the non-enhanced images due to
poor quality.

2.3.2. Quantitative Evaluation

To quantify the quality of the enhancement, we used the two popular image quality
assessment measuring metrics, peak signal-to-noise ratio (PSNR) and structural index
similarity (SSIM). PSNR is defined as the ratio between the maximum possible value (power)
of the ground truth signal and its corrupted noise that affects the ideal representation of
the signal. SSIM on the other hand uses luminance, contrast, and structure of the images to
mimic the human visual perception evaluation instead of pixel difference quantification.

2.3.3. Comparing to Other Methods

To evaluate our method against some well-known methods, namely, histogram equal-
ization (HE) and block-matching and 3D filtering (BM3D) [14], we added noise to the
original image (ground truth), then we applied our method, ChromoEnhancer, along with
the above-mentioned methods.

3. Results

A total of 120 karyogram images, consisting of 60 original images and their 60 en-
hanced images, was used to test our image enhancement model. The first stage in as-
sessing the applicability of this enhancement model was by simple visualization of these
120 karyogram images. Overall, the original image had low contrast and low scale of
image sharpness when compared to the enhanced image, which appears to have increased
sharpness and better overall quality, as shown in Figure 3. In our method, we glued back
the enhanced paired chromosomes to form a new karyogram, and Figure 4 shows the
whole karyogram, before and after enhancement.
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Figure 4. Example of whole karyogram enhancement. (A) Original karyogram taken from cytogenet-
ics state of the art system, (B) enhanced karyogram by ChromoEnhancer.

Further, to test our proposed hypotheses, two cytogeneticists analyzed the above-
mentioned set of 120 original and enhanced karyograms, which were randomly ordered.
Using a paired t-test, we compared the overall quality, the sharpness level, and the time
required to complete the analysis between the original images and their enhanced version,
see Table 1. The overall quality of enhanced images was significantly improved compared
to their original counterparts, with a p-value equal to 0.00005 and 0.000004 for specialist
one and specialist two, respectively. Moreover, chromosomal bands appeared significantly
sharper in the enhanced images in comparison to the original ones (p = 0.02774, 0.00025).
Given the overall significant improvement in the quality of the enhanced images, those
karyograms required significantly more time for analytical completion than the original
karyograms (p = 0.00184, 0.00525). The increase in the analysis time for enhanced images
can be explained by the fact that good-quality chromosomes were considered for careful
analysis, while poor chromosomes were not thoroughly analyzed and were often skipped
due to the increase in image noise and artifacts, thus, uncertainty. It is noteworthy that the
experiments were performed by two cytogenetics.
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Table 1. This table shows a significant p-value on the following hypothesis: 1. Enhancing the images
with our method will increase overall quality; 2. Enhancing the images with our method will increase
the sharpness; 3. Enhancing the images with our method will increase the analysis time.

Cytogeneticist Hypothesis 1 Hypothesis 2 Hypothesis 3

Specialist 1 0.000004 0.02774 0.00184
Specialist 2 0.00005 0.00025 0.00525

Furthermore, PSNR and SSIM are two image quality metrics that use pixels from
the paired image to check the fidelity of our paired testing image sets. To use PSNR and
SSIM for quantitative evaluation, ground truth images with their distorted version are
needed. We prepared 700 pairs of 24 chromosomes that have excellent quality. We used the
CycleGAN model to generate poor images from excellent-quality images that we did not
train the model on. Afterward, we used our model to convert the generated poor images
into enhanced images. As a result, we obtained the needed enhanced images along with
their ground truths. PSNR and SSIM show an outstanding improvement in the quality
of the images, as shown in Figure 5. Higher PSNR and SSIM numbers indicate better
quality in the enhanced image. The calculated average PSNR and SSIM were 40.795 and
0.988, respectively.
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Finally, we visually compared the results of enhancement methods (HE and BM3D)
against our method, ChromoEnhancer. Figure 6 shows four examples of paired and
different length chromosomes, each being enhanced with a different enhancement method,
including ours. It is obvious that our proposed method is superior and produces a better
visualization effect. Figure 6 also shows that our method produces better results than the
ground truth.
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4. Discussion

In this study, we sought to improve the process of chromosomal analysis in neoplastic
disorders using artificial intelligence. In this regard, we developed ChromoEnhancer, a
CycleGAN-based model, to enhance the quality of karyogram images. Unlike traditional
image-to-image translation methods, CycleGAN is an image-to-image translation algorithm
that does not require a training set of aligned image pairs. Generally, image pairing
is often difficult and labor intensive to acquire, which applies to pairing and aligning
chromosomal images [16]. To the best of our knowledge, this approach is the first to
enhance prepared karyograms, as opposed to common enhancement techniques on the
raw captured metaphase. Additionally, our approach does not target the karyogram as
a whole, but it divides it into 23 images, after which each is enhanced individually, then
using the 23 enhanced images collectively to reform the karyogram. We believe this unique
artificial-intelligence-based model can be used to tackle similar problems.

The significant improvement in the overall quality of the enhanced images, including
the better appearance of chromosomal bands, can be of great benefit to cytogeneticists
and patients, in several ways. First, the analysis of poor-quality preparations, which is a
common observation in metaphase spreads obtained from bone marrow samples, is more
feasible when enhanced and converted into a better-quality karyogram. This, in turn, helps
in decreasing the number of reported sub-optimal results due to the inability to complete
the analysis of poor-quality images. A sub-optimal result is frustrating, as it puts the
patient through an invasive procedure of obtaining another bone marrow sample. Second,
analyzing a karyogram that is of excellent quality helps in the correct identification of the
underlying abnormality, thus, providing better management of the patient’s condition.
Third, analyzing chromosomes with sharp bands aids in the accurate identification of
breakpoints, which is often a challenging task in poor-quality preparations. Although the
application of our model increased the time required for the analysis due to the enhanced
quality, this might decrease the need for an additional sample to complete the analysis.

We believe that our model is robust; however, as with any AI model, it may be
subjected to unintended bias [17,18]. CycleGAN models are good at improving the visual
quality of images, but like GANs, in general, they have no guarantees that the details
will match a ground truth exactly. Therefore, ChromNet must be used as an assistant
tool to improve the efficiency of the cytogenetics laboratories. Additionally, to boost the
applicability of our model in clinical practice, it needs external cross-study validation [19].

We built our model to be robust by not adding or deleting information to the karyo-
gram. Such information could be completing a missing part of abnormal chromosomes
(Figure 7) or auto-complete the short chromosomes to match long chromosomes.
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5. Patents

This manuscript is part of our patent application in the US patent office: App.
17/204,286 [20].
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