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Mathematical models of biochemical reaction networks are central to the study of
dynamic cellular processes and hypothesis generation that informs experimentation
and validation. Unfortunately, model parameters are often not available and sparse
experimental data leads to challenges in model calibration and parameter estimation.
This can in turn lead to unreliable mechanistic interpretations of experimental data and
the generation of poorly conceived hypotheses for experimental validation. To address
this challenge, we evaluate whether a Bayesian-inspired probability-based approach,
that relies on expected values for quantities of interest calculated from available
information regarding the reaction network topology and parameters can be used to
qualitatively explore hypothetical biochemical network execution mechanisms in the
context of limited available data. We test our approach on a model of extrinsic apoptosis
execution to identify preferred signal execution modes across varying conditions.
Apoptosis signal processing can take place either through a mitochondria independent
(Type I) mode or a mitochondria dependent (Type II) mode. We first show that in silico
knockouts, represented by model subnetworks, successfully identify the most likely
execution mode for specific concentrations of key molecular regulators. We then show
that changes in molecular regulator concentrations alter the overall reaction flux through
the network by shifting the primary route of signal flow between the direct caspase and
mitochondrial pathways. Our work thus demonstrates that probabilistic approaches can
be used to explore the qualitative dynamic behavior of model biochemical systems even
with missing or sparse data.

Keywords: systems biology, limited data, apoptosis, probabilistic, mechanism, inference, high performance
computing

INTRODUCTION

The complex dynamics of biochemical networks, stemming from numerous interactions and
pathway crosstalk, render signal execution mechanisms difficult to characterize (Bhalla and Iyengar,
1999; Kitano, 2002; Loscalzo and Barabasi, 2011). Mathematical modeling of biochemical networks
has become a powerful compliment to experimentation for generating hypotheses regarding
the underlying mechanisms that govern signal processing and suggesting targets for further
experimental examination (Aldridge et al., 2006; Le Novère, 2015). Models of biochemical reaction
networks, often based on a mass action kinetics formalism, are built to represent known pathway
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mechanics with knowledge garnered from years or even decades
of experimentation (Albeck et al., 2008; Lopez et al., 2013).
Although these models have yielded important predictions
and insights about biochemical network processes, they also
depend on kinetic rate parameters and protein concentrations
that are often poorly characterized or simply unavailable.
A typical workaround is to employ model calibration methods
to estimate suitable parameter values via optimization to protein
concentration time course data (van Riel, 2006; Shockley
et al., 2018; Mitra et al., 2019). However, the data needed
for parameter optimization is often scarce, leading to the
possibility of multiple parameter sets that fit the model to
that data equally well but exhibit different dynamics (Lopez
et al., 2013; Shockley et al., 2018). This poses a challenge
for the study of dynamic network processes as the mode
of signal execution can be highly dependent on a specific
parameter set and could in turn lead to inadequate model-
based interpretation. A computational approach that enables the
exploration of biochemical signal execution mechanisms from
a probabilistic perspective, constrained only by available data,
would facilitate a rigorous exploration of network dynamics
and accelerate the generation of testable mechanistic hypotheses
(Wrede and Hellander, 2018).

In this work, we investigate whether a Bayesian-inspired
probabilistic approach can identify network signal execution
mechanisms in extrinsic apoptosis restricted only by
experimental observations. Two execution phenotypes have
been identified for extrinsic apoptosis signaling: a mitochondria
independent (Type I) phenotype, whereby initiator caspases
directly activate effector caspases and induce cell death, and
a mitochondria dependent (Type II) phenotype whereby
initiator caspases engage the Bcl-2 family of proteins, which
ultimately lead to effector caspase activation (see Box 1 for
biology details). Most mammalian cells execute apoptosis via
the Type II mechanism, yet the Type I mechanism plays a
central role in specific cell types, particularly certain types
of lymphocytes (Scaffidi et al., 1999). A significant body of
experimental and modeling work has identified key regulators
for Type I vs. Type II execution. Computational approaches
to study apoptosis network dynamics are numerous and range
from simple dynamic Boolean networks to deterministic and
stochastic kinetic models (Bentele et al., 2004; Albeck et al.,
2008; Schlatter et al., 2009; Spencer and Sorger, 2011; Schleich
and Lavrik, 2013; Würstle et al., 2014; Anderson et al., 2019).
Aspects of apoptosis dynamics, like bistability (Eissing et al.,
2004; Bagci et al., 2006; Legewie et al., 2006; Ho and Harrington,
2010) are often targets of analysis, and the structure of the
apoptosis network has been examined via Bayesian model
selection methods (Eydgahi et al., 2013). To specifically study
phenotypic regulation of the extrinsic apoptosis network
Aldridge et al. (2011) used a kinetic model in conjunction
with Lyapunov exponent based bifurcation diagrams to define
a boundary between phenotypes on the space of regulatory
element concentrations. Raychaudhuri et al. (2008) also focused
on the Type I/II phenotypes and used Monte Carlo simulations
of an extrinsic apoptosis model to study stochastic fluctuations
through the network.

Despite these efforts, it is still unclear how network structure
and the interplay among multiple regulators can modulate signal
execution for either cell type. A more traditional approach would
prescribe intricate and detailed experimental measurements
of cellular response to yield the desired data and improve
our understanding of signal execution. However, the time
and cost associated with such experiments makes it unlikely,
and at times infeasible, to obtain said data. It is here that
we see probabilistic inference approaches as complementary
to experimentation, providing qualitative insights about signal
execution mechanisms by integrating the expected parameter
space subject only to available computer time. Here, we
demonstrate that a probabilistic approach, constrained by
network structure or molecular concentrations, can identify
the dominant signal execution modes in a reaction network.
Specifically, we demonstrate the dependence of Type I or a
Type II cellular apoptosis execution on network structure and
chemical-species concentrations. We use existing tools designed
for the calculation of Bayesian evidence and repurpose them
for the calculation of expected values for quantifiable in silico
experimental outcomes. These expected values are then used
as metrics for comparisons of signal flow through different
pathways of the network and subnetworks in order to identify
how regulators affect execution modes. We introduce two
complementary approaches that can be used in tandem to explore
signal execution modulation. We first define a multimodel
exploration method to explore multiple hypothesis about
apoptosis execution by deconstructing an established apoptosis
network model into functional subnetworks that effectively
represent in silico knockout experiments. We also define a
pathway flux method to characterize the signal flux through
specific network pathways within the chosen canonical network.
Combined, these two approaches enable us to qualitatively
identify key network components and molecular regulator
combinations that yield mechanistic insights about apoptosis
execution. Our approach is generalizable to other mass action
kinetics-based networks where signal execution modes play
important roles in cellular outcomes. This work leverages Nested
Sampling algorithm methods to efficiently calculate expected
values on high performance computing (HPC) platforms, both of
which are seldom used in biological applications. In this manner
we are able to carry out the necessary calculations to consider the
entirety of the proposed parameter space and estimate expected
values within the timespan of hours to days.

METHODS

Apoptosis Model and Simulations
The base model used in this work is a modified version of
the Extrinsic Apoptosis Reaction Model (EARM) from Lopez
et al. (2013) (EARM v2.1). The original EARM was simplified
to reduce complexity and lower the number of parameters,
but still retains the key features of the network for apoptosis
execution. Specifically, we reduced the molecular complexity
of mitochondrial outer membrane permeabilization (MOMP)
down to a representative set of Bcl-2 proteins that capture
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BOX 1 | Extrinsic apoptosis execution. Extrinsic apoptosis is a receptor mediated process for programmed cell death. The Type I/II phenotypes for the extrinsic
apoptosis system were first described by Scaffidi et al. (1998). In that work they examined several cell lines and classified them into those that required the
mitochondrial pathway to achieve apoptosis (Type II) and those that do not (Type I). They made several interesting conclusions. They found that Type II cells had
relatively weak DISC formation, that both phenotypes responded equally well to receptor mediated cell death, that there was a delay in caspase activation in Type II
cells, and that caspase activation happened upstream of mitochondrial activation in Type I cells and downstream in Type II. More recently, XIAP has also been put
forth as a critical regulator in the choice of apoptotic phenotype. In Jost et al. (2009) they examined hepatocytes (Type II cells) and lymphocytes (Type I cells) under
different conditions to examine the role XIAP plays in Type I/II determination. They made several observations upon Fas ligand or Fas-antibody induced apoptosis
such as higher levels of XIAP in Type II cells and higher caspase effector activity in XIAP/Bid deficient mice versus apoptosis resistant Bid-only knockouts. In all, they
concluded that XIAP is the key regulator that determines the choice of pathway. Extrinsic apoptosis is initiated when a death inducing member of the tumor necrosis
factor (TNF) superfamily of receptors (FasR, TNFR1, etc.) is bound by its respective ligand (FasL, TNF-α, etc.), setting off a sequence biochemical events that result in
the orderly deconstruction of the cell (Ashkenazi and Dixit, 1998). The first stage of this sequence is the assembly of the DISC at the cell membrane ¬ and the
subsequent activation of Caspase-8. Upon ligand binding and oligomerization of a receptor such as FasR or TRAIL, an adapter protein, like FADD (Fas-associated
protein with death domain), is recruited to the receptors cytoplasmic tail (Boldin et al., 1995; Kischkel et al., 2000; Sprick et al., 2000). FADD, in turn, recruits
Caspase-8 via their respective death effector domains (DEDs), thus completing DISC formation (Kischkel et al., 2000; Sprick et al., 2000). Other DISC components
could also be included here, such as the regulator cFlip (Krueger et al., 2001). Once recruited, proximal Procaspase-8 monomers dimerize, inducing their
autoproteolytic activity and producing active Caspase-8 (Martin et al., 1998; Salvesen and Dixit, 1999; Boatright and Salvesen, 2003). After Caspase-8 activation the
apoptotic signal can progress down two distinct pathways that both lead to the activation of Caspase-3 and the ensuing proteolysis of downstream targets. One
pathway consists of a caspase cascade in which active Caspase-8 directly cleaves and activates Caspase-3  (Stennicke et al., 1998), while another, more complex
pathway is routed through the mitochondria. In the mitochondrial pathway Caspase-8 cleaves the pro-apoptotic Bcl-2 family protein Bid in the cytosol, which then
migrates to the mitochondria ® where it initiates mitochondrial outer membrane permeabilization (MOMP) and the release of pro-apoptotic factors that lead to

(Continued)
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BOX 1 | Continued
Caspase-3 activation (Li et al., 1998; Luo et al., 1998). MOMP has its own set of regulators that govern the strength of apoptotic signaling through the mitochondria
¯. After Caspase-8 activated Bid, (tBid), migrates to the mitochondria it activates proteins in the outer mitochondrial membrane, such as Bax, that subsequently
self-aggregate into membrane pores and allow exportation of Cytochrome-c and Smac/DIABLO to the cytosol (Desagher et al., 1999). Bid and Bax are examples of
pro-apoptotic proteins from the Bcl-2 family, all of which share BH domain homology (Kelekar and Thompson, 1998). Other members of this family act as MOMP
regulators; the anti-apoptotic Bcl-2, for example, binds and inhibits both Bid and Bax while the pro-apoptotic Bad similarly binds and inhibits its target, Bcl-2 (Oltval
et al., 1993; Yang et al., 1995; Letai et al., 2002; Leber et al., 2007). Many other pro- and anti-apoptotic members of the Bcl-2 family have been discovered and
together regulate MOMP (Kale et al., 2018). Regardless of which pathway is chosen, the intermediate results are Caspase-3 activation and subsequent cleavage of
PARP ³, a proxy for cell death in the analyses here (Nicholson et al., 1995; Tewari et al., 1995). XIAP (X-linked inhibitor of apoptosis protein) is an inhibitor of
Caspase-3 and has been proposed to be a key regulator in determining the Type I/II apoptotic phenotype of a cell (Jost et al., 2009). XIAP sequesters Caspase-3 but
also contains a ubiquitin ligase domain that directly targets Caspase-3 for degradation. The inhibitor also sequesters and inhibits the Caspase-3 activating
Caspase-9 residing within the apoptosome complex (Huang et al., 2001; Suzuki et al., 2001; Shiozaki et al., 2003). Apoptosome formation is initiated by
Cytochrome-c exported from the mitochondria during MOMP °. Cytochrome-c induces the protein APAF-1 to oligomerize and subsequently recruit and activate
Caspase-9, thus forming the complex (Zou et al., 1999). Another MOMP export, the protein Smac/DIABLO ±, binds and inhibits XIAP, working in tandem with
Cytochrome-c to oppose XIAP and carry out the apoptosis inducing activity of the Type II pathway (Adrain et al., 2001). Finally, Procaspase/Caspase-6 constitutes a
feed forward loop between Caspase-3 and Caspase-8 ² (Cowling and Downward, 2002).

the behavior of activators, inhibitors, effectors, and sensitizers.
We also eliminated intermediate states for Cytochrome c
and Smac to streamline effector caspase activation, and we
added an explicit FADD molecule, an adapter protein in the
death-inducing signaling complex (DISC), to achieve a more
realistic representation of signal initiation. Overall, EARM
v2.1 is comprised of 16 chemical species at non-zero initial
concentrations, 50 total chemical species, 62 reactions, and 62
kinetic parameters. The modified model was recalibrated to
recapitulate the time-dependent concentration trajectories of
truncated Bid, Smac release from the mitochondria, and cleaved
PARP analogous to the approach reported previously (Spencer
et al., 2009) (Supplementary Figure S1). The modified EARM,
and all derivative models, were encoded in PySB. All simulations
were run using the mass action kinetics formalism as a system
of ordinary differential equations (ODEs) using the VODE
integrator in SciPy within the PySB modeling framework. All data
results, representative models, and software are distributed with
open-source licensing and can be found in the GitHub repository
https://github.com/LoLab-VU/BIND.

Expected Value Estimation
The expected value for a quantifiable outcome is, by definition,
the integral of an objective function that represents that
outcome over the normalized distribution of parameters. This
is analogous to the estimation of Bayesian evidence where a
likelihood function is likewise integrated over a normalized
distribution. We can thus use existing, established, Bayesian
evidence estimation methods and software to estimate expected
values by simply substituting the objective function for the
likelihood function in the integral calculation. The remainder of
this section and the next provide an overview of the evidence
estimation methods and tools that we have repurposed for
expected value calculations.

Bayesian evidence is the normalizing term in a Bayesian
calculation and typically provides a measure for model
comparison with regard to their fit to experimental data. It is
expressed as:

P (D|M) =

∫
L (D|θ, M) P(θ|M)dθ (1)

Where M is the model under consideration, D is the
experimental data, θ is a specific set of parameter values,
L (D|θ, M) is the likelihood function describing the fit of the
data to the model under those parameter values, and P (θ|M)
is the prior distribution of parameters. An efficient method for
evidence calculation is nested sampling (Skilling, 2006). This
method simplifies the evidence calculation by introducing a prior
mass element dX = P(θ|M)dθ that is estimated by (Xi−i − Xi)
where Xi = e−i/N , i is the current iteration of the algorithm, and
N is the total number of live points. The evidence is then written
as:

Z =
1∫

0

LdX ≈
∑
i=1

Li (Xi−1 − Xi) (2)

Initialization of the algorithm is carried out by randomly
selecting an initial population of parameter sets (points in
parameter space) from the prior distribution, scoring each one
with the likelihood function, and ranking them from Lhigh to Llow.
At each iteration of the algorithm a new set of parameter values
is selected and scored. If that score is higher than Llow, then it
is added to the population, at the appropriate rank, and Llow is
removed from the population and added to the evidence sum (2).

Nested Sampling Software
All expected value estimates in this work are calculated with
MultiNest, a nested sampling-based algorithm designed for
efficient evidence calculation on highly multimodel posterior
distributions (Feroz et al., 2009, 2013). MultiNest works by
clustering the live points (population of parameter sets) and
enclosing them in ellipsoids at each iteration. The enclosed space
then constitutes a reduced space of admissible parameter sets.
This lowers the probability of sampling from low likelihood
areas and evaluating points that will only be discarded. The
evidence estimate is accompanied by an estimate of the evidence
error. The algorithm terminates when the presumed contribution
of the highest likelihood member of the current set of live
points, LhighXi is below a threshold. Here, we use a threshold
of 0.0001 and a population size and 16,000 unless otherwise
noted. The population size of 16,000 was found to be an
acceptable compromise between precision and computational
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austerity for the model sizes and in silico experiments performed
in this study. See (Feroz et al., 2009, 2013), for more details
on the MultiNest algorithm. We use MultiNest with the Python
wrapper PyMultiNest (Buchner et al., 2014), which facilitates the
integration with PySB into the parameter sampling pipeline.

Multimodel Exploration Analysis
We carried out an analysis analogous to knockout experiments to
investigate the contribution of different network components to
the overall dynamics of the apoptosis execution network.

We broke down the EARM network into six subnetworks
and compared their likelihood of achieving apoptosis across
increasing concentrations of the regulator XIAP. A standard
proxy for apoptosis execution is cleavage of the protein PARP. We
therefore define the proportion of cleaved PARP, relative to total
PARP, as a metric for effective apoptosis execution. We defined
the objective function that represents the amount of cleaved
PARP as:

Objmultimodel =
cPARP
tPARP

(3)

where cPARP is the amount of PARP that has been cleaved
and tPARP is the total amount of PARP in the system.
When this objective function is substituted into Eq. (1) in
place of the likelihood function, we obtain the expected
value, the average over the chosen prior parameter range, for
the proportion of PARP that has been cleaved at the end
of the in silico experimental simulation. We compare PARP
cleavage for different subnetworks and regulatory conditions
only in qualitative terms and as a relative measure of the
expected outcome.

Pathway Flux Analysis
We also explored the effect of molecular regulators of Type I vs.
Type II execution relative to the apoptosis signal flux through
the network, as we have done in previous work (Shockley et al.,
2019). Briefly, signal flux is defined as the chemical reaction flux
in units of molecules per unit time, that traverses through a
given pathway. In the apoptosis network there are two potential
pathways that can lead to Caspase-3 activation and subsequently
PARP cleavage. In the direct caspase pathway initiator caspases,
like Caspase-8, directly cleave and activate effector caspases, like
Caspase-3. By contrast, in the mitochondrial pathway, effector
caspases are activated via the apoptosome, and are dependent
on MOMP. Therefore, the dominant pathway responsible for
Caspase-3 activation defines the route of the signal. To estimate
the flux through one of these pathways, we define the objective
function as:

Objpathway =

T∑
t=0

∑t
0 C3pathway∑t

0 C3total
×
(
cParpt − cParpt−1

)
(4)

where t represents time in seconds,
t∑
0

C3pathway is the amount

of Caspase-3 activated via the target pathway up to time

t,
t∑
0

C3total is the total Caspase-3 activated up to time

t, and
t∑
0

C3caspase/
t∑
0

C3total is the proportion of activated

Caspase-3 that was produced via the target pathway up to time
t.
(
cParpt − cParpt−1

)
is the total PARP that has been cleaved,

and activated, by Caspase-3 from time t − 1 to time t.Thus, at
any given time t we can estimate the amount of Caspase-3 that
has been activated through a specific pathway. Multiplication of
these two terms returns an estimate for the amount of PARP
cleaved via the specific pathway at time t. Summing over T then
returns an estimate for the total apoptosis signal flowing through
the target pathway. Like the PARP cleavage objective function,
the signal flux objective substituted into Eq. (1) produces an
estimate of the average flux over a defined prior distribution.
We estimated this quantity over increasing concentrations of the
molecular regulator XIAP, but also at high and low levels of the
DISC components FADD and Caspase-8. The total signal flux
was estimated by summing the flux estimate for both the direct
caspase and mitochondrial pathways.

Parameter Ranges and Initial Conditions
The prior distribution takes the form of a set of parameter ranges,
one for each reaction rate parameter. The ranges used here span
four orders of magnitude around generic reaction rates deemed
plausible (Aldridge et al., 2006) and are specific to the type of
reaction taking place. The ranges of reaction rate parameters, in
Log10 space, are 1st order forward: [−4.0, 0.0], 2nd order forward:
[−8.0, −4.0], 1st order reverse: [−4.0, 0.0], catalysis: [−1.0, 3.0].
These ranges were also used in the calibration of the base model.
Where possible, initial conditions were either collected from the
literature (Eissing et al., 2004; Dai et al., 2018) or taken from
a previous model of extrinsic apoptosis (Aldridge et al., 2011;
Lopez et al., 2013). Because the baseline model was designed to
concur with Type II apoptotic data (see above), literature derived
initial conditions were based on Type II Jurkat or Hela cell lines
(Supplementary Table S1).

Expected Value Ratios
Evidence estimates are often used to select between two
competing models by calculating the Bayes factor (i.e., the ratio
of their evidence values). This provides a measure of confidence
for choosing one model over another. We can likewise use
the ratios of expected values to gain additional insights into
the dynamical relationship between network components. To
facilitate construction of expected value ratios (EVR) with a
continuous and symmetric range, we define them as:

EVR =

{
−

Z2
Z1
+ 1 if Z1 < Z2

Z1
Z2
− 1 if Z1 > Z2

(5)

where Z1 and Z2 are the expected value estimates for two
networks under comparison.

Computational Resources
Because of the high computational workload necessary for
this analysis, a wide range of computational resources were
used. The bulk of the work was done on the ACCRE cluster
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at Vanderbilt University which has more than 600 compute
nodes running Intel Xeon processors and a Linux OS. As
many as 300 evidence estimates were run in parallel on this
system. Additional resources included two local servers, also
running Intel processors and a Linux OS, as well as a small
local four node cluster running Linux and AMD Ryzen 1700
processors. A detailed breakdown of CPU time can be found
in the results section. In all, expected value estimates for
14 different networks/initial conditions were made across the
range of XIAP concentrations. We estimate all 14 runs would
take ∼9 days each on a typical university server with 32
cores/64 threads.

RESULTS

Overview: A Bayesian-Inspired Approach
to Explore Mechanistic Hypotheses
Our overarching goal is to understand the mechanisms and
dynamics of biochemical networks responsible for cellular
commitment to fate, given incomplete or unavailable data.
We take a probabilistic approach, similar to those used
in Bayesian evidence-based model selection and multimodel
inference, to compare model subnetworks and pathways
with respect to apoptotic signal execution under various
in silico experimental conditions and enable the generation
of hypotheses regarding the underlying mechanisms of signal
processing. Using this approach, we’ve employed two distinct
but complimentary strategies as displayed in Figure 1 (Note
that the base network in Figure 1 is a simplified version
of the network used for demonstration in the results. From
top to bottom the four nodes correspond to signal initiation
at the death inducing signaling complex (DISC), export of
proapoptotic factors from the mitochondria, inhibition of the
antiapoptotic protein XIAP, and catalysis/inhibition of PARP.
See Box 1 for a detailed description of the model used in
this work.)

The first is Multimodel Exploration Analysis (Figure 1,
left path), wherein the network model is deconstructed into
biologically relevant subnetworks and the probability of each
subnetwork achieving apoptosis, under various regulatory
conditions, is estimated via the calculation of an expected
value for a quantifiable proxy of apoptosis. This differs
from traditional model selection and multimodel inference
applications where models are typically ranked based on
their fit to experimental data and high-ranking models may
be averaged to obtain a composite model (Burnham and
Anderson, 2002; Xu et al., 2010; Symonds and Moussalli,
2011; Aitken and Akman, 2013; Eydgahi et al., 2013; Pullen
and Morris, 2014). Here, we already have a model that
captures key features of programmed cell death execution.
Instead, we use the differences in expected values for a
quantity that is representative of apoptosis to construct
a composite picture of mechanistic evidence for apoptosis
execution. To achieve this, we first tailor the objective
function to represent signal execution strength, as measured
by cleaved PARP concentration at the end of the simulation.

The expected value derived from this objective function
therefore describes the likelihood that the signal is effectively
transmitted through a given network. It should be noted
that Bayesian evidence, and by extension our expected value
calculation, inherently incorporates model complexity as the
objectives are integrated over normalized prior distributions
(MacKay and Kay, 2003; Feroz et al., 2009). As we will see,
comparison of changes in signal strength through relevant
subnetworks allows inferences to be made on the effect of
the perturbed network regulator as well as various network
components on the overall dynamics of the system. We focus
primarily on understanding how Bayesian evidence for the
caspase pathway compares to that of the complete network
as these are most relevant for the analysis of Type I/II
execution modes. This analysis will inform on how network
components contribute to overall signal execution and provide
mechanistic insights about the sensitivity of PARP cleavage to
subnetwork components.

The second strategy is Pathway Flux Analysis (Figure 1,
right path), where we retain the complete network structure but
instead tailor the objective functions to measure biochemical
reaction flux through either the direct caspase or mitochondrial
pathways. We primarily consider the influence of the apoptosis
inhibitor XIAP on regulatory dynamics and phenotypic fate
but also consider the regulatory effect of the death inducing
signaling complex (DISC) and the anti-apoptotic protein Bcl-
2, all of which have been found to be relevant to Type I vs.
Type II execution in different cell types (Scaffidi et al., 1998;
Jost et al., 2009). This analysis will inform on how molecular
regulators modulate biochemical flux through the network
and their influence on apoptosis completion as measured
by PARP cleavage.

Decomposition of the Extrinsic
Apoptosis Network and Reductive
Analysis of the Effects of XIAP
To investigate the effect of network substructures on apoptosis
signaling, we build a composite description of system dynamics
by observing variations in signal throughput, represented
by expected values of PARP cleavage, between subnetworks
(Figures 2A–F) relative to changes in regulatory conditions.
We consider relative changes in expected PARP cleavage
as the number of XIAP molecules is increased where a
higher value indicates a stronger average signal over the
prior range of parameter values. XIAP was varied from 0 to
200,000 molecules per cell in increments of 250 to explore
how changes in XIAP affect the likelihood of apoptosis
execution. For subnetworks that include the mitochondrial
pathway, Bcl-2 (an anti-apoptotic protein) was eliminated,
to explore Type I vs. Type II activity independent of
inhibitors that could confound signal throughput, and more
closely simulate a cell that is “primed” for death (Certo
et al., 2006). All other initial values were fixed at the
levels shown in Supplementary Table S1. In the absence
of XIAP all six subnetworks have PARP cleavage estimates
greater than 0.98 (Figure 2A: 0.993, Figure 2B: 0.998,
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Figure 1 | General workflow for the analysis of network dynamics using trends in expected values. The target network is first deconstructed into subnetworks that
effectively represent in silico knockouts (Note that the base network here is a simplified version of the network used for demonstration of the methodology. Briefly, the
four nodes from top to bottom represent the death inducing signaling complex, the mitochondria, XIAP and PARP.) A model for each subnetwork and each
incremental set of regulatory conditions is then created and passed to an algorithm for estimation of the expected value for an aspect of signal transduction. The
expected value is calculated via integration of a user-defined objective function that quantifies that aspect of signal transduction over a range of parameter values
(the prior). The trends in the expected values over changing regulatory conditions are then compared to make qualitative inferences regarding network dynamics. In a
complimentary method, the full model is retained but the objective function is targeted to different pathways. Inferences on network dynamics can again be made via
comparison of the trends in the expected values.
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Figure 2C: 0.992, Figure 2D: 0.981, Figure 2E: 0.998, Figure 2F:
0.981, Supplementary Table S2) indicating a robust apoptotic
signal for each across the allowed range of parameters.
The log-expected value version of Figure 2G along with
estimated errors generated by MultiNest are displayed in
Supplementary Figure S2.

The results in Jost et al. (2009) imply that the cellular
level of XIAP determines the preferred apoptosis pathway with
higher levels specific to Type II cells and lower levels specific
to Type I. To hypothesize a possible mechanistic explanation
for this behavior we compared the expected PARP cleavage,
over increasing concentrations of XIAP, for the direct caspase
activation network against both the complete network and the
isolated mitochondrial pathway network (Figures 2A,G green;
Figures 2E,G orange; Figures 2F,G blue, respectively). This
mimics reported experimental strategies to study Type I/II
phenotypes and allows us to gauge the effect of XIAP on networks
with and without a mitochondrial component (Scaffidi et al.,
1998; Jost et al., 2009).

As XIAP levels increase we see differential effects on all
subnetworks in the form of diverging expected value estimates,
indicating differences in the efficacy of XIAP induced apoptotic
inhibition. PARP cleavage values for the isolated caspase pathway
(Figure 2G green) diverge from the complete network (Figure 2G
orange) and mitochondrial pathway (Figure 2 blue) showing
a steeper initial decline that diminishes as XIAP continues to
increase. PARP cleavage values for the caspase pathway falls to
0.5 at an XIAP level of roughly 32,000. However, the complete
network and mitochondrial pathways require XIAP levels nearly
threefold higher with PARP cleavage reaching 0.5 at around
92,000 and 95,000, respectively.

Because the direct caspase activation pathway (Figure 2G
green) is representative of the Type I phenotype, the
disproportionate drop in its expected PARP cleavage as
XIAP concentration increases is consistent with experimental
evidence showing XIAP-induced transition from a Type I to
a Type II execution mode (Jost et al., 2009). The complete
network, containing the full mitochondrial subnetwork, and
mitochondrial only pathway are also affected by XIAP but
exhibit resistance to its anti-apoptotic effects, a difference that
is most prominent at moderate levels of the inhibitor. This
suggests a dependence on mitochondrial amplification for
effective apoptosis as XIAP increases from low to moderate
levels. At higher levels of XIAP the PARP cleavage for
the caspase pathway level off and the gaps between it and
the two mitochondrial containing networks narrow. The
disproportionate effect of XIAP inhibition of apoptosis
on the caspase pathway suggests that the mechanism for
XIAP induced transition to a Type II pathway can be
attributed to differential inhibition of the apoptotic signal
through the isolated caspase pathway vs. a network with
mitochondrial involvement.

The next two highest trends in expected values after that of
the direct caspase network belong to the networks representing
direct caspase activation plus mitochondrial activation and
mitochondrial activation alone (Figure 2G purple and brown).
For most of the range with XIAP below 100,000 these two

networks have largely overlapping PARP cleavage trajectories,
despite the fact that the former has twice as many paths
carrying the apoptotic signal. Near an XIAP level of 100,000
the two trends diverge as the decrease in PARP cleavage for the
mitochondrial activation only network accelerates. This could
be explained by XIAP overwhelming the apoptosome at these
higher levels. The apoptosome is an apoptosis inducing complex
(via Caspase-3 cleavage) consisting of Cytochrome c, APAF-
1, and Caspase-9, and is an inhibitory target of XIAP. As
XIAP increases past 125,000 the mitochondrial activation only
PARP cleavage values fall below even the solo direct caspase
values, possibly due to the two-pronged inhibitory action of
XIAP at both the apoptosome and Caspase-3. An interesting
observation here is that the addition of the direct caspase
pathway to the mitochondrial activation pathway does not
appear to increase the likelihood of achieving apoptosis for
lower values of XIAP.

PARP cleavage values for the network representing direct
caspase activation plus mitochondrial inhibition of XIAP are
in red in Figure 2G. Below an XIAP level of 100,000 these
values are consistently above the PARP cleavage values for
the network representing direct caspase plus mitochondrial
activation. Note that while direct caspase activation does not
appear to increase the likelihood of achieving apoptosis when
added to the mitochondrial activation pathway (Figure 2G
purple) the amplification of the direct caspase activation via
mitochondrial inhibition of XIAP leads to a higher likelihood
than solo activation through the mitochondria. This suggests
the possibility that the primary mechanism for mitochondrial
apoptotic signal amplification, under some conditions, may
be inhibition of XIAP, with direct signal transduction a
secondary mechanism. Above an XIAP level of 100,000, the
direct caspase with XIAP inhibition PARP cleavage values drop
to levels roughly in line with the values for direct caspase
activation plus mitochondrial activation, possibly due to the
fact that Smac, the mitochondrial export that inhibits XIAP,
is also set to 100,000 molecules per cell. Both, however,
remain more likely to attain apoptosis than direct caspase
activation alone.

The two subnetworks with the highest expected values
for apoptotic signal execution are the complete network and
the isolated mitochondrial pathway (Figure 2E orange and
Figure 2F blue). As previously mentioned, both of these networks
contain the full mitochondrial pathway implying that this
pathway supports resistance to XIAP inhibition of apoptosis.
Between XIAP levels of 0 to 100,000 the two trends track very
closely, with the mitochondrial only pathway showing a slight
but consistent advantage for apoptosis execution. The average
difference between an XIAP level of 20,000 and 80,000 is roughly
0.014, meaning we expect the average PARP cleavage to favor
the mitochondrial only pathway by about 1.4 percentage points,
which may seem unremarkable. Context matters however, and
the context here is that the complete network has potentially
twice the bandwidth for the apoptotic signal, namely the addition
of the more direct caspase pathway. Together, this raises the
possibility that under some conditions the caspase pathway is
not a pathway but a sink for the apoptotic signal. In such
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Figure 2 | Extrinsic apoptosis subnetworks and the likelihood of achieving apoptosis. (A) The direct caspase subnetwork. (B) The direct caspase + mitochondrial
activation subnetwork. (C) The direct caspase + mitochondrial inhibition of XIAP subnetwork network. (D) The mitochondrial activation subnetwork. (E) The
complete network. (F) the mitochondrial subnetwork. (G) Trends in expected values for each of the networks in panels (A–F) over a range of values for the apoptosis
inhibitor XIAP and for an objective function that computes the proportion of PARP cleavage (a proxy for cell death) at the end of the in silico experimental simulation.

a scenario, the signal through the caspase pathway would get
lost as Caspase-3 is degraded by XIAP. Not until the signal
through the mitochondrial pathway begins inhibiting XIAP
could the signal proceed. Around the 100,000 level of XIAP

the PARP cleavage trend for the mitochondrial pathway crosses
below that for the complete network. This could be due to
the parity with Smac, components of the apoptosome, or a
combination of the two.
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Apoptosis Signal Strength Dictates the
Signal Route Through the Network
The results in Scaffidi et al. (1998) indicate a strong phenotypic
dependence on the strength of the apoptosis signal. Here, we
examine hypotheses made in that work and the interplay between
the DISC and XIAP regulatory axes. We again increase XIAP
from 0 to 200,000 molecules in increments of 250, but this time
at a low number of DISC complexes by lowering the initial values
of both the scaffold protein FADD and the initiator Caspase-
8, from 130,000 to 100 molecules per cell. In addition to the
Multimodel Exploration Analysis approach used in the previous
section, we also use the Pathway Flux Analysis approach using
the signal flux objective function (see section “Methods”). In
this way we attain a holistic view of network dynamics that
incorporates both network structure and signal flux crosstalk
from all possible pathways. Additional analysis of caspase and
mitochondrial pathway signal flux over a range of values for both
XIAP and Bcl-2 is displayed in Supplementary Figure S3 and
interpreted in Supplementary Text S1.

Figure 3A displays the PARP cleavage expected values for the
direct caspase activation pathway and complete network (from
Figure 2G) along with their low DISC counterparts. Two things
are immediately apparent. PARP cleavage for the caspase pathway
with a low number of DISC molecular components is lower
across the entire range of XIAP concentrations. The complete
network, on the other hand, shows almost no difference under
low DISC conditions at lower values of XIAP. This supports
the hypothesis that mitochondrial involvement is necessary to
overcome weak DISC formation and that weak signal initiation
constitutes a Type II trait (Scaffidi et al., 1998).

Figures 3B,C show expected values for signal flux through
the caspase pathway and complete network, for high and low
numbers of DISC components, respectively. At higher DISC
values, signal flux through the caspase pathway is consistently
higher than the flux through the mitochondrial pathway. At
lower DISC values the signal flux through the mitochondrial
pathway exceeds the flux through the caspase pathway. These
results shed interesting mechanistic observations in the context
of a previously proposed hypothesis stating that mitochondrial
activation is downstream of Caspase-8 activation in Type I cells
and upstream in Type II cells. If a weaker initial apoptosis
cue does indeed push the signal through the mitochondrial
pathway the initial activation of Caspase-8 would be weak and the
amplifying activity of the mitochondria would ramp up the signal
before Caspase-8 could directly activate Caspase-3. On the other
hand, strong initial activation that pushes the signal through the
caspase pathway would activate both Caspase-8 and Caspase-3
before MOMP becomes fully active. Also notable is the nearly
identical trajectories of the total signal flux through the low and
high DISC models. The average difference over the range of XIAP
was only 0.011 (Supplementary Table S3). This is consistent with
observations that both Type I and Type II cells respond equally
well to receptor mediated apoptosis (Scaffidi et al., 1998).

Overall these results set up three mechanistic explanations
for apoptosis execution and the signal flux schematic for each
is displayed in Figures 4A–C, respectively. On one end, strong

signal initiation and low XIAP results in the independence of
apoptosis from the mitochondrial pathway. This behavior is
consistent with Type I cells like the SKW6.4 cell lines (Scaffidi
et al., 1998). Under this scenario our results imply that most
of the signal flux is carried through the caspase pathway and
we hypothesize that control of apoptosis is dominated by that
pathway. On the other end of the spectrum weak signal initiation
and moderate to high levels of XIAP result in a dependence
on the mitochondrial pathway. Such behavior is consistent with
Type II cells like Jurkat (Scaffidi et al., 1998). In this case our
results strongly indicate that most of the signal flux is carried
through the mitochondrial pathway and we hypothesize that
apoptosis execution is dominated by that pathway. In between
these two extremes is the case with strong signal initiation, and
moderate to high levels of XIAP levels with increased apoptotic
dependence on mitochondrial activity versus the low XIAP case.
Such a scenario that is consistent with MCF-7 cell that are known
to have traits of both phenotypes (Scaffidi et al., 1998). In this
case, we found that most of the apoptotic signal is carried through
the caspase pathway despite the dependence on the mitochondria
and we hypothesize that the mitochondrial pathway acts to allow
the apoptotic signal through the caspase pathway.

Expected Value Ratios and XIAP
Influence on Type I/II Apoptosis
Phenotype
Model selection methods typically calculate the evidence ratios,
or Bayes factors, to choose a preferred model and estimate
the confidence of that choice (Burnham and Anderson, 2002;
Symonds and Moussalli, 2011). When comparing changes in
likelihood of an outcome as regulatory conditions are altered
we can similarly use ratios of expected values to provide
additional information about evolving network dynamics under
regulatory perturbations. To characterize the effect of XIAP on
the choice of Type I or II apoptotic phenotype we calculated
the expected value ratios (Figure 5A), for each value of
XIAP between the caspase pathway and both the complete
network and mitochondrial pathway (from Figure 2G). In these
calculations, the denominator represents the caspase pathway so
that higher values favor a need for mitochondrial involvement.
An interesting feature of both the complete and mitochondrial
expected value ratios is the peak and reversal at a moderate level
XIAP (Figure 5B). This reflects the initially successful inhibition
of the caspase pathway that decelerates relatively quickly as
XIAP increases, and a steadier rate of increased inhibition on
networks that incorporate the mitochondrial pathway. The ratios
peak between 45,000 and 50,000 molecules of XIAP (more than
double the value of its target molecule Caspase-3 at 21,000) and
represent the optimal level of XIAP for the requirement of the
mitochondrial pathway and attainment of a Type II execution.
Given the near monotonic decline of the expected values for both
pathways, representing increasing suppression of apoptosis, the
peak and decline in the expected value ratios could represent a
shift toward complete apoptotic resistance. Our results therefore
complement the observations in Aldridge et al. (2011) where a
similar outcome was observed experimentally.
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Figure 3 | Expected values for PARP cleavage and pathway flux at low and high DISC component values. (A) Expected values for PARP cleavage for the caspase
pathway and complete network under both low and high (from Figure 2G) DISC conditions (100 and 130,000 molecules per cell of FADD and Caspase-8,
respectively), over a range of XIAP values. (B) Expected values for signal flux through both pathways as well as the total signal flux under high DISC conditions.
(C) Expected values for signal flux through both pathways as well as the total signal flux under low DISC conditions.

A common technique to study apoptosis is to knockdown
Bid, overexpress Bcl-2, or otherwise shut down MOMP induced
apoptosis through mitochondrial regulation. This strategy was
used in Ashkenazi and Dixit (1998), Jost et al. (2009), to
study the role of XIAP in apoptosis and in the work of
Aldridge et al. (2011) to explore Type I vs. Type II execution
in different cell lines. Taking a similar approach, we set Bcl-2
levels to 328,000 molecules per cell, in line with experimental
findings (Dai et al., 2018), to suppress MOMP activity and
recalculated the PARP cleavage expected values and their
ratios (Figures 5C,D, Supplementary Table S5). Under these
conditions PARP cleavage for the mitochondrial pathway drop

well below that of the direct caspase pathway, which is reflected
in the expected value ratios trend as a shift into negative territory
and indicate that the caspase pathway is favored. PARP cleavage
for the complete network under MOMP inhibition is shifted
closer to that for the caspase pathway at higher concentrations
of XIAP but is still higher throughout the full range of XIAP.
The peak in the associated expected value ratios is flattened
as the level of XIAP increases from low levels, suggesting that
increasing XIAP is less likely to induce a transition to a Type II
phenotype in a system with an already hampered mitochondrial
pathway. We note that complete inhibition of MOMP would
result in uninformative mitochondrial pathway results. PARP
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Figure 4 | Signal flux schematics. (A–C) Schematic of signal flux, through the network under high DISC/low XIAP (A), high DISC/moderate XIAP (B), and low
DISC/moderate XIAP conditions (C). *Note that although the signal flux under high DISC/low XIAP conditions favors the direct caspase pathway, the independence
of apoptosis on the mitochondria (see Figure 3A) under these conditions implies that the signal is easily shifted to the caspase pathway in the absence of
mitochondrial involvement.

cleavage expected values for the complete network would be
indistinguishable from those for the direct caspase pathway
and the complete/caspase ratios would simply flatline. However,
our analysis shows that isolation of active biologically relevant
subnetworks and direct comparison under changing molecular
regulatory conditions, using trends in expected values, enables
the extraction of information regarding pathway interactions and
differential network dynamics.

Precision vs. Computational Cost
Increasing the precision of the expected value estimates and
tightening their trendlines, is accomplished by increasing the
number of live points in the nested sampling algorithm. The
trade-off is an increase in the number of evaluations required
to reach the termination of the algorithm and an accompanying
increase in total computation time. Figures 6A,B display the
required number of evaluations for the direct caspase and
complete network at population sizes of 500, 1000, 2000, 4000,
8000, and 16,000, when run with the PARP cleavage objective
function. For both models the number of evaluations roughly
doubles for every doubling in population size. Figures 6C,D
are the average estimated errors calculated by the MultiNest
algorithm over each population size for the direct caspase and
complete networks, respectively. As expected, error estimates
fall roughly as n−1/2 (Handley et al., 2015), signifying clear
diminishing returns as the number of live points is increased. The
average CPU process times, as estimated by Python’s time.clock()
method, are given in Figures 6E,F for the direct caspase and
complete networks, respectively. Despite the greater number of

required evaluations for the direct caspase network the average
clock times for the complete network is significantly higher. At
a population of 16,000 the caspase network had an average clock
time of 11,964 s compared to 76,981 for the complete network.
Data for Figure 6 can be found in Supplementary Table S6.

Ultimately, the choice of population size for the methods we
have laid out here will depend on the networks to be compared,
the objective function, and how well the trends in the expected
values must be resolved in order to make inferences about
network dynamics. For example, at a population size of 500 the
trend in the PARP cleavage expected values for the direct caspase
pathway is clearly discernable from that for the mitochondrial
pathway and the complete network, but the latter two are largely
overlapping (Supplementary Figure S4A). At higher population
levels, however, two distinct mitochondrial and complete PARP
cleavage trends become apparent (Supplementary Figure S4K).
If expected value ratio trends are desired then the choice of
population size must take into consideration the amplification of
the noise from both expected value estimates (see Supplementary
Figures S4B,D,F,H,J,L) for complete/caspase PARP cleavage
expected value trends).

DISCUSSION

Characterizing information flow in biological networks, the
interactions between various pathways or network components,
and shifts in phenotype upon regulatory perturbations is a
standing challenge in molecular biology. Although comparative
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Figure 5 | Trends in expected value ratios under increasing levels of the apoptotic inhibitor XIAP for an inhibited and uninhibited mitochondrial pathway. (A) Expected
value trends for the caspase pathway (green), mitochondrial pathway (blue), and complete network (orange) with no MOMP inhibition (from Figure 2G). (B) Trends
for the mitochondria/caspase (blue) and the complete/caspase (orange) expected value ratios from the trends in panel (A). (C) Expected value trends for the
caspase pathway (green), mitochondrial pathway (blue), and complete network (orange) with MOMP inhibitory protein BCL-2 at 328,000 mol. per cell. (D) Trends for
the mitochondria/caspase (blue) and the complete/caspase (orange) evidence ratios from the trends in panel (C).

analysis of signal flow within a network is possible with current
computational methods, the dependence of physicochemical
models on unknown parameters makes the computational
examination of each network component highly dependent on
costly experimentation.

To take advantage of the enormous amount of existing
knowledge encoded in these physicochemical networks without
the dependence on explicit parameter values we take a
probabilistic approach to the exploration of changes in network
dynamics. By integrating an objective function that represents
a simulated outcome over parameter distributions derived from
existing data we obtain the likelihood of attaining that outcome

given the available information about the signaling pathways. The
qualitative exploration of network behavior for various in silico
experimental setups and regulatory conditions is then attainable
without explicit knowledge of the parameter values. Although
this probabilistic modeling approach is Bayesian inspired, it is a
departure from strictly Bayesian methodologies. Evidence values
are a relative measure of how well a model explains the data and
are used as a comparative metric for model selection (Burnham
and Anderson, 2002; Skilling, 2006; Feroz et al., 2009; Symonds
and Moussalli, 2011; Feroz et al., 2013). The expected values
calculated in this work are based solely on a given network and
prior distribution; data does not directly come into play. There
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Figure 6 | Precision vs. computational cost. (A,B) Average number of evaluations before termination of the MultiNest algorithm over a range of population sizes for
the caspase pathway and complete network, respectively. (C,D) Average of error estimates from MultiNest for each population size and the caspase and complete
networks. (E,F) Average estimated CPU clock time over each population size for the caspase and complete networks, respectively. *MultiNest was unable to
estimate the error at XIAP = 0.

is of course a place for data, if it exists, in the estimation of
the prior parameter distributions used to calculate the expected
values. Approximate Bayesian Computation, for example, can

estimate parameter distributions when a given model is too
complex to be analyzed analytically, as is typical for complex
biological systems (Toni et al., 2009; Toni and Stumpf, 2010). We
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demonstrate the utility of the probabilistic modeling approach
when applied to the regulation of extrinsic apoptosis. Networks
that incorporate an active mitochondrial pathway displayed a
higher resistance to apoptotic inhibition from increasing levels of
XIAP, consistent with experimental evidence that XIAP induces
a Type II phenotype (Jost et al., 2009). Also in line with
experimental evidence (Scaffidi et al., 1998) are the results that
suggest low/high signal initiation is consistent with Type II/I
phenotype, respectively, and that both types achieve apoptosis
equally well. The probabilistic methodology presented here has
the potential to predict which proteins are potentially relevant to
phenotypic outcomes and reduce the set of candidates for further
perturbation experiments. Such a workflow would ultimately
result in a mapping of relevant protein concentrations to those
phenotypic outcomes. Moreover, by using objective functions
that represent various quantitative aspects of network dynamics a
more complete picture of the causal mechanisms for phenotypic
outcomes can be hypothesized. For example, combining the end-
product formation of cleaved PARP with the pathway flux of
the apoptotic signal we hypothesized not only the conditions
(regarding DISC component and XIAP concentrations) for
which Type I/II or a combination of phenotypes exist, but also
the roles played by both the proteins and the pathways to elicit
those phenotypic responses.

A potential limitation of this probabilistic approach to the
study network dynamics is the computational cost. Several
factors affect the run time of the algorithm including the
size of the model, the objective function, and the desired
precision. Fortunately, reducing the resolution (the number of
in silico experiments for which an expected value is estimated)
and the precision (the population size) can drastically reduce
the cost and in many cases the method will still be viable.
One aspect of the method that is severely restrictive is the
number of model components that can be varied in the same
run since the computational cost increases exponentially with
each additional variable. Reasonable parameter distributions
must also be chosen, preferably based on existing data.
Here, we were able to use generic but biologically plausible
ranges with uniform distributions to produce results that
were qualitatively consistent with previous experimental results.
These in silico generated qualitative results allow us to make
mechanistic hypotheses from existing data over a period of
weeks rather than the months or years that would be required
to attain this information with experimental approaches. Our
results therefore support probabilistic approaches as a suitable
complement to experimentation and a shift from purely
deterministic models with a single optimum parameter set
to a probabilistic understanding of mechanistic models of
cellular processes.

CONCLUSION

In this paper, we have developed a probabilistic approach to the
qualitative analysis of the network dynamics of physicochemical

models. It is designed to incorporate all available knowledge
of the reaction topology, and the parameters on that topology,
and calculate the likelihood of achieving an outcome of interest.
Inferences on network dynamics are then made by repeating this
calculation under changing regulatory conditions and various
in silico experiments. We tested the method against a model of the
extrinsic apoptosis system and produced qualitative results that
were consistent with several lines of experimental research. To
our knowledge this is the first attempt at a probabilistic analysis
of network dynamics for physicochemical models and we believe
this method will prove valuable for the large-scale exploration
of those dynamics, particularly when parameter knowledge and
data are scarce.
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