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1 Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France, 2 Los Angeles Biomedical

Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America

* mbassila@unice.fr

Abstract

Virulence of the human fungal pathogen Candida albicans depends on the switch from

budding to filamentous growth, which requires sustained membrane traffic and polarized

growth. In many organisms, small GTPases of the Arf (ADP-ribosylation factor) family regu-

late membrane/protein trafficking, yet little is known about their role in fungal filamentous

growth. To investigate these GTPases in C. albicans, we generated loss of function mutants

in all 3 Arf proteins, Arf1-Arf3, and 2 Arf-like proteins, Arl1 and Arl3. Our results indicate that

of these proteins, Arf2 is required for viability and sensitivity to antifungal drugs. Repressible

ARF2 expression results in defects in filamentous growth, cell wall integrity and virulence,

likely due to alteration of the Golgi. Arl1 is also required for invasive filamentous growth and,

although arl1/arl1 cells can initiate hyphal growth, hyphae are substantially shorter than that

of the wild-type, due to the inability of this mutant to maintain hyphal growth at a single site.

We show that this defect does not result from an alteration of phospholipid distribution and is

unlikely to result from the sole Golgin Imh1 mislocalization, as Imh1 is not required for inva-

sive filamentous growth. Rather, our results suggest that the arl1/arl1 hyphal growth defect

results from increased secretion in this mutant. Strikingly, the arl1/arl1 mutant is drastically

reduced in virulence during oropharyngeal candidiasis. Together, our results highlight the

importance of Arl1 and Arf2 as key regulators of hyphal growth and virulence in C. albicans

and identify a unique function of Arl1 in secretion.

Author summary

Virulence of the human fungal pathogen Candida albicans relies on the switch from bud-

ding to highly polarized hyphal growth. Sustained membrane traffic is critical for such

polarized growth and for the secretion of virulence factors. Small G-proteins function as

molecular switches required for a variety of cellular processes and the Arf (ADP-ribosyla-

tion factor) class of proteins, in particular, is critical for membrane traffic. To investigate

the role of this class of proteins in C. albicans, we generated loss of function mutants in all

5 Arf/Arl (Arf like) proteins. Our results reveal that only Arf2 is required for viability and

sensitivity to antifungal drugs. We also show that Arf2 and Arl1 are required for hyphal
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growth, with arl1/arl1 hyphal filaments 2-fold shorter than the wild-type. While repress-

ible ARF2 expression results in pleiotropic defects, deletion of ARL1 results in defects in

restricting the site of growth to a single location. Finally, we show that Δ/pTetARF2 and

arl1/arl1 mutants have drastically reduced virulence, with ARL1 particularly critical for

oropharyngeal candidiasis. Together, our results identify Arf2 and Arl1 as key regulators

of membrane traffic, critical for C. albicans hyphal growth and virulence.

Introduction

Signal-dependent morphology changes are crucial for the virulence of a range of plant and

human fungal pathogens. These dramatic cell shape changes require plasma membrane and

cell wall targeting of a number of proteins, together with the secretion of extracellular hydro-

lytic enzymes, critical for pathogenicity [1–3]. In all eukaryotes, membrane/protein trafficking

to the plasma membrane is mediated by vesicular transport between different cellular com-

partments. Small GTPases of the Arf (ADP-ribosylation factor) and Rab (Ras-related in brain)

families, which are part of the Ras superfamily, regulate each step of these processes [4–9].

These small GTPases cycle between an active GTP bound state and an inactive GDP bound

state, regulated primarily by GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase

Activating Proteins). The importance of Rab GTPases during hyphal growth has been in-

vestigated in filamentous fungi, such as Aspergillus nidulans and Neurospora crassa (recently

reviewed in [10, 11]). On the other hand, while a number of studies in Saccharomyces cerevisiae
have shed light on the roles of Arf GTPases, little is known about their role in hyphal growth, a

process characteristic of filamentous fungi that is absent in this organism.

Fungal infections kill more than a million people every year, with Candida albicans a major

fungal pathogen of humans that accounts for ~10% of hospital-acquired bloodstream infec-

tions, with a mortality rate exceeding 30%. The success of C. albicans as a human fungal patho-

gen results in part from its ability to switch between different morphological states, in order to

adapt to the diverse challenges of the human host [12–15]. The spatio-temporal regulation of

exocytosis and endocytosis is likely to be crucial for growth and morphology changes [16, 17],

and these two processes are critical for hyphal growth (reviewed in [18]). For example in C.

albicans, during filamentous growth, secretory vesicles are clustered at the tip of the filament

[19], at a structure called the Spitzenkörper, and the Golgi apparatus redistributes to the apex

region [20, 21]. Interestingly, it was recently proposed that such Golgi polarization during

hyphal growth is regulated by cAMP-PKA signaling via the Rab GAP Gyp1 [22]. Furthermore,

endocytosis sites form a collar just below the tip of a growing hyphal filament [20, 23].

Mammalian Arf proteins have been divided into three classes based upon amino acid

sequence identity [6, 24]; in S. cerevisiae and C. albicans only homologs of Class I and Class III

members are present. These fungi have 5 Arf/Arl homologs compared to 26 in Human [6]. In

contrast to S. cerevisiae, the role of Arf/Arl proteins is largely unknown in filamentous and

dimorphic fungi. In A. nidulans, ArfB, the S. cerevisiae Arf3 homolog, is involved in polarized

growth and endocytosis [25], as well as its homolog in Magnaporthe oryzae, Arf6, during asex-

ual development [26]. In C. albicans a null mutant of the S. cerevisiae Arf GAP Gcs1 ortholog,

AGE3, was shown to have increased antifungal drug sensitivity, reduced hyphal invasive

growth and attenuated virulence in a mouse model of hematogenously disseminated candidia-

sis (HDC) [27, 28]. Here, we investigate the role of the complete set of Arf/Arl proteins in C.

albicans external-signal mediated induced filamentous growth, cell wall integrity and viru-

lence. Our results show that of the 5 Arf/Arl proteins, only Arf2 is essential for viability and

drug sensitivity. On the other hand, Arl1 is required for hyphal growth maintenance and

Arf proteins in C. albicans morphogenesis and virulence
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virulence during oropharyngeal candidiasis (OPC). Specifically, Arl1 is critical for restricting

hyphal growth to a single site and our results suggest that this function of Arl1 is via regulation

of protein secretion.

Results

Arf2 is required for viability and antifungal drug sensitivity

S1A Fig shows the protein sequence alignment of C. albicans Arf1, Arf2, Arf3 and Arl1. Arl3,

which is less similar to these four small G-proteins, is shown in S1B Fig, aligned with its S. cere-
visiae and Human (ARFRP1) counterparts. Since in S. cerevisiae none of these genes is essential

for viability [29, 30], we attempted to generate C. albicans strains in which both alleles were

deleted. We succeeded in generating homozygous deletion mutants for all ARF/ARL genes

except ARF2. Hence the tetracycline repressible promoter system was used to generate arf2Δ/
pTetARF2 mutants (hereafter referred to as Δ/pTetARF2) in which one copy of the gene was

deleted and the Tetoff promoter was inserted upstream of the remaining copy, as described in

S2A Fig. The Δ/pTetARF2 mutant was verified by PCR of genomic DNA (S2B Fig) and South-

ern analyses (S2C Fig). The deletion mutants were verified by RT-PCR (S2E and S2F Fig). Fig

1A shows that Arf2 is required for viability, as the Δ/pTetARF2 strain did not grow in the pres-

ence of the repressor doxycycline (Dox). Reintegration of a copy of ARF2 into this Δ/pTetARF2
strain restored viability in the presence of Dox (S4A Fig). In the absence of Dox, all arf/arl
mutant strains grew similar to the WT strain, except for the Δ/pTetARF2 strain, which exhib-

ited a dramatic growth defect at 42˚C (S3A Fig).

Strikingly, the size of the Δ/pTetARF2 mutant cells, grown in the absence of Dox, was

increased, with a ~ 2.5-fold larger volume compared to WT cells (Fig 1B). Addition of ARF2 in

the Δ/pTetARF2 strain restored the cell size to that of the WT. Despite the significant increase

in the Δ/pTetARF2 cell volume, the growth rate of this strain was comparable to that of the WT

strain. Furthermore, Δ/pTetARF2 as well as arf1/arf1, arf3/arf3 and arl1/arl1 cells polarized

their actin cytoskeleton similar to that of WT cells (Fig 1C), suggesting that there was not a

general cell polarity defect in the Δ/pTetARF2 strain. We did not observe a dramatic alteration

in the morphology of the other arf/arl mutants, although the arf3/arf3 cells did appear slightly

rounder (Fig 1C). Together these data indicate that Arf2 is critical for viability and cell size reg-

ulation during budding growth, in contrast to S. cerevisiae. The different importance of ARF1
and ARF2 in C. albicans could result from the difference in the relative expression of each

gene, as ARF2 expression was> 10-fold higher, as determined by RNAseq analysis (S2G Fig).

S3B Fig and S4D Fig show that the Δ/pTetARF2 mutant did not grow in the presence of

fluconazole (Fluco) or caspofungin (Caspo) in the absence of Dox and this defect was com-

plemented by reintroduction of ARF2. Reduced expression of the Golgi PI-4-kinase Pik1

resulted in a similar defect, which was due to an alteration of the distribution of the plasma

membrane ABC multidrug transporter Cdr1 [20], however, this is not the case with the

Δ/pTetARF2 mutant (S3C Fig), similar to the age3/age3 mutant [28]. The Δ/pTetARF2 mutant,

and to a lesser extent arl1/arl1 mutant, also had reduced growth on the cell wall perturbants

congo red (CR) and calcofluor white (CFW) (S3B Fig). In both cases, the defect was comple-

mented by the addition of the respective gene (S4C and S4E Fig). In contrast, deletion of the

other ARF/ARL genes resulted in little to no growth alteration in the presence of cell wall stress

or antifungal drugs (S3B Fig).

Arf2 and Arl1 are critical for invasive filamentous growth and virulence

We next investigated whether Arf/Arl were required for C. albicans filamentous growth and

Fig 1D shows that Δ/pTetARF2, arf3/arf3, arl1/arl1, and to a lesser extent arl3/arl3 mutants

Arf proteins in C. albicans morphogenesis and virulence
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Fig 1. Arf2 and Arl1 are critical for hyphal invasive growth. A) ARF2 is essential for viability. Exponentially

growing cells from indicated strains were spotted on YEPD media with or without 20 μg/ml Dox and incubated for 2

Arf proteins in C. albicans morphogenesis and virulence
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were dramatically reduced in invasive growth in response to fetal calf serum (FCS) or the

carbon source-poor Spider medium. These defects were complemented by reintroduction of

the respective gene (S4B and S4F Fig). We also observed that the Δ/pTetARF2 and arl1/arl1
mutants, but not the arf3/arf3 mutant, had reduced hyphal growth in response to FCS in liquid

media (Fig 1E). After 90 min in the presence of FCS, Δ/pTetARF2 mutant cells formed less

than 30% hyphae, compared to approximately 80% for the WT and complemented strains (Fig

1F). Growth of this strain in low levels of Dox (0.005 μg/ml), a concentration that does not sub-

stantially affect budding growth, further increased the hyphal growth defect, with less than 1%

hyphae formed. We observed substantially less ARF2 mRNA in this growth condition, in con-

trast to the absence of Dox, where ARF2 mRNA transcript levels were similar to that of the

wild-type (S2D Fig). It is likely that there is suboptimal function of Arf2 in the Δ/pTetARF2
strain (in the absence of Dox), as the defect of the Δ/pTetARF2 is complemented by addition

of a copy of ARF2, suggesting that ARF2 regulation via its promoter is critical. On the other

hand, the arl1/arl1 mutant formed filaments that were ~2-fold shorter (Fig 1G), and the arl3/
arl3 mutant filaments were an intermediate length between that of WT and arl1/arl1 strains

(Fig 1H). These defects were all complemented by reintroduction of the respective gene (Fig

1E, 1F, 1G and 1H). Together our results show that both Arf2 and Arl1 are critical for invasive

and filamentous growth.

We then examined the virulence of Δ/pTetARF2 and arl1/arl1 mutants in two murine infec-

tion models, hematogenously disseminated candidiasis (HDC) and oropharyngeal candidiasis

(OPC). In the HDC model, 100% and 75% of mice infected with Δ/pTetARF2 and arl1/arl1,

respectively, survived 3 weeks after injection, while all of the mice infected with the WT strain

died within 11 days (Fig 2A). In the OPC model (Fig 2B), Δ/pTetARF2 and arl1/arl1 mutants

were also substantially less virulent than the WT, with the oral fungal burden of the infected

mice reduced by ~30-fold and greater than 300-fold, respectively. Histological analyses of the

infected tongues (S5A Fig) revealed that the Δ/pTetARF2 mutant nonetheless formed filaments

in vivo. The dramatic reduction of arl1/arl1 cell infection of the oropharyngeal cavity appears

to be niche-specific as the fungal burden in kidney and liver from the HDC mice was similar

between this mutant strain and the WT (S5B Fig). Intriguingly, the fungal burden in the brain

of mice infected with the arl1/arl1 mutant was substantially higher than those infected with the

WT or complemented strain, suggesting a significant increase in tropism for the brain (S5B

Fig). As arf3/arf3 and arl3/arl3 were somewhat defective for invasive growth and/or cell wall

integrity, these strains were also tested for virulence. They were essentially as virulent as the

days at 30˚C. B) Δ/pTetARF2 cells have an increased volume. Indicated strains were grown at 30˚C in the absence

of Dox and cell volume was measured. Error bars indicate the mean +/- the SD of 3 experiments, n = 60 cells each.

C) Δ/pTetARF2 cells have a polarized actin cytoskeleton. Indicated strains were grown in the absence of Dox and

the actin cytoskeleton was visualized using Alexa 568-phalloidin. Note that arf1/arf1, arf3/arf3, arl1/arl1 and arl3/

arl3 deletion strains are indicated in all figures as arf1, arf3, arl1 and arl3. D) The Δ/pTetARF2, arf3/arf3 and arl1/

arl1 mutants are defective in invasive filamentous growth. Indicated strains were grown, in the absence of Dox, on

agar-containing YEPD with FCS or on Spider media and images were taken after 5 days. Similar results were

observed in 2 independent experiments. E) The Δ/pTetARF2 mutant is defective in hyphal growth in response to

serum. Cells from the indicated strains were incubated with FCS for 90 min at 37˚C, in the absence of Dox. F)

Quantification of the Δ/pTetARF2 mutant defect. The graph represents the percentage of hyphae in the indicated

strains (mean 3 experiments, n = 150 cells each) after 90 min exposure to FCS at 37˚C, in the presence or

absence of Dox (0.005 μg/ml). The Δ/pTetARF2 mutant formed 25 ± 1.5% hyphae (compared to 74 ± 2.1% and

80 ± 5% for the WT and complemented strains, respectively), 56 ± 5.5% pseudohyphae (compared to 18 ± 3% and

13 ± 5% for the WT and complemented strains, respectively) and 19 ± 4% budding cells (compared to 8 ± 1% and

7 ± 1% in the WT and complemented strains, respectively). G and H) The arl1/arl1 and, to a lesser extent, the arl3/

arl3 mutants have shorter hyphae. Filament length was measured in the indicated strains incubated for 90 min in

the presence of FCS at 37˚C. Error bars indicate the mean +/- the SD of 3 experiments, n = 40 cells each (G). The

hyphal filament length distribution is illustrated from a typical experiment with the indicated strains.

doi:10.1371/journal.ppat.1006205.g001
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Fig 2. Arf2 and Arl1 are required for virulence. A) The Δ/pTetARF2 and arl1/arl1 mutants have attenuated virulence in a mouse model of

hematogenously disseminated candidiasis. Balb/C mice (n = 8) were injected with an inoculum (5 x 105 cells) of the indicated strains and the survival

was assessed. Δ/pTetARF2, p < 0.0001 and 0.06 compared to WT and complemented strains, respectively; arl1/arl1, p = 0.0009 and 0.003

Arf proteins in C. albicans morphogenesis and virulence
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WT in the two murine models (i.e, in OPC, the fungal burdens were similar and in HDC,

100% of mice infected with arf3/arf3 and arl3/arl3 died within 8 and 13 days post injection,

respectively, compared to 7 days for WT). All in all these data indicate that both ARF2 and

ARL1 are required for virulence, with ARL1 particularly critical for OPC.

C. albicans responds to cues, such as the presence of FCS, by inducing a number of hyphal

specific genes (HSG), critical for virulence. The induction of all HSGs examined–including the

hypha-specific G1 cyclin encoding gene HGC1 [31] was reduced ~ 4 to 10-fold in Δ/pTetARF2
cells compared to WT (Fig 2C). In contrast, HSG induction was not altered in arl1/arl1, except

SAP6, which was slightly reduced (~ 2-fold). Together these results indicate that Arf2 and Arl1

have distinct roles during hyphal growth and virulence.

Arf2, but not Arl1, is critical for the number of Golgi cisternae

It is possible that the Δ/pTetARF2 and/or arl1/arl1 defects result from an alteration of the

Golgi. In S. cerevisiae, enlarged late Golgi cisternae were observed in an arf1/arf1 mutant [32].

Using the Four-phosphate-adaptor protein PH domain mutated for the Arf binding site,

FAPP1[E50A,H54A]GFP [20], which specifically binds PI(4)P at the late Golgi, we determined

that the number of Golgi cisternae in the Δ/pTetARF2 mutant was substantially reduced com-

pared to that of the WT and the arl1/arl1 strains (Fig 3A), with 3.0 ± 1.3 Golgi cisternae per

cell in Δ/pTetARF2 cells compared to 5.8 ± 2.2 in the WT and 6.6 ± 2.0 in the arl1/arl1 strains

(n = 85–90 cells per strain). In contrast, the distribution and apparent morphology of the

Golgi was similar in WT and arl1/arl1 hyphal filaments (Fig 3B). These results indicate that

Arf2, but not Arl1, is required for maintaining the number of Golgi cisternae.

C. albicans Arl1 is a bona-fide GTP binding protein that localizes to the

late Golgi

To further characterize C. albicans Arl1, we mutated the putative myristoylation site (Arl1

[G2A], [33]) and generated putative GTP binding-defective (Arl1[T34L]) and GTP hydrolysis-

deficient (Arl1[Q74L]) mutants [34]. These mutated forms were fused with yemCherry

(Arl1-mCh) and expressed in the arl1/arl1 mutant as the sole copy. We first determined that

Arl1-mCh complemented the arl1/arl1 hyphal growth defect (S4G Fig) and localized as punc-

tae (Fig 4A–4D). Comparison of the localization of this functional Arl1-mCh to that of the late

Golgi marker Sec7-GFP in WT cells indicates that ~ 80% of Arl1 containing punctae had Sec7

signal (n = 50 cells) with< 15% of Arl1 containing punctae having the secretory vesicle marker

Sec4 (n = 35 cells), indicating that Arl1 is associated with the late Golgi (Fig 4A). Arl1[Q74L]

also localized as punctae, although there was more diffuse signal than with Arl1; both Arl1

[T34L] and Arl1[G2A] were cytosolic (Fig 4B), indicating that the inactive and non-myristoy-

lated GTPase are not targeted to the late Golgi. Arl1[T34L] appeared to be deleterious as only

7.8 ± 1.7% hyphae formed in the presence of FCS, compared to 87.6 ± 1.3%, 78.6 ± 4.4% and

73.8 ± 1.5% for Arl1, Arl1[G2A] and Arl1[Q74L], respectively. Furthermore, Fig 4C shows

that Arl1[Q74L] partially complemented arl1/arl1 hyphal growth defect, in contrast to Arl1

[G2A] that, as expected, did not complement this defect. Together these data establish that

compared to WT and complemented strains, respectively. B) Arl1 is critical for oropharyngeal candidiasis. The oral fungal burden of mice infected with

the indicated strains was measured after 5 days of infection. Results are in the medians ± interquartile ranges of 8 mice per strain. *, p = 0.002 and

0.006 compared to WT for Δ/pTetARF2 and arl1/arl1, respectively, (p = 0.0006 and 0.005 compared to their respective complemented strains). C)

Hyphal specific gene (HSGs) induction is reduced in Δ/pTetARF2, but not in the arl1/arl1 mutant. Transcript levels determined by qRT-PCR of HGC1,

HWP1, ECE1, SAP6 and ALS3 are normalized to the ACT1 transcript level. Fold induction of HSGs after incubation of cells for 120 min in FCS at

37˚C is shown. Fold induction is the normalized transcript level at 120 min divided by the normalized transcript level at time zero. The mean values of

two independent experiments are shown with bars indicating values of each experiment.

doi:10.1371/journal.ppat.1006205.g002

Arf proteins in C. albicans morphogenesis and virulence
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Fig 3. Arf2, but not Arl1, is required for late Golgi. A) The number of Golgi cisternae is altered in the Δ/pTetARF2,

but not in the arl1/arl1 mutant. DIC and maximum projection fluorescence images (21 deconvolved z-sections) of

representative cells of indicated strains expressing FAPP1[E50A,H54A]GFP, are shown with an inverted LUT. The

number of Golgi cisternae per cell was determined from maximum projections of deconvolved images (21 z-sections)

of indicated strains. Error bars, in the graph, indicate the mean +/- the SD of 3 experiments, n = 30 cells and ~300

punctae each. B) The distribution of Golgi cisternae is not altered in the arl1/arl1 hyphal cells. WT and arl1/arl1 cells

expressing FAPP1[E50A,H54A]GFP, were grown in FCS for 45 and 90 min, respectively. DIC and maximum projection

fluorescence images (21 deconvolved z-sections) of representative cells are shown with an inverted LUT.

doi:10.1371/journal.ppat.1006205.g003

Arf proteins in C. albicans morphogenesis and virulence
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Fig 4. The conserved Arl3/Arl1/Imh1 pathway is not required for hyphal growth. A) Arl1 is associated with the late Golgi. Maximum

projections of 21 deconvolved z-sections of representative cells expressing Arl1-mCherry together with Sec7-GFP (top) or GFP-Sec4

(bottom). GFP and mCherry signals were acquired simultaneously. B-C) Arl1 behaves as a GTPase. Maximum projections of 21

deconvolved z-sections of representative arl1/arl1 cells expressing Arl1-mCherry and the mutated versions [G2A], [Q74L] and [T34L]

during budding (B) and FCS-induced hyphal growth (C). Arl1[Q74L] can partially rescue the arl1/arl1 hyphal growth defect. Error bars, in

the graph right panel, indicate the mean +/- the SD of the average filament lengths of ~ 25 cells for each strain. *, p < 0.0001. D-E) Arl3

affects Arl1 and Imh1 distribution. Maximum projections of 21 deconvolved z-sections of representative indicated cells expressing Arl1-

mCherry (D) or the GRIP domain of Imh1 fused to GFP (E), after 90 min FCS incubation. F) Imh1 is not required for hyphal invasive

growth. Cells from the indicated strains were incubated with FCS for 90 min (left panel) or on agar-containing YEPD with FCS and

images were taken after 5 days (right panel). Note that the imh1/imh1 deletion strain is indicated as imh1. Similar results were observed

in 2 independent experiments.

doi:10.1371/journal.ppat.1006205.g004

Arf proteins in C. albicans morphogenesis and virulence
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C. albicans Arl1 is a bona-fide GTP binding protein, localized to the late Golgi, similar to Arl1

in other organisms [35, 36].

Arl1-dependent Golgin recruitment is not required for invasive

filamentous growth

In S. cerevisiae, it was proposed that Arl3 recruits Arl1, which in turn recruits the sole yeast

GRIP-domain golgin Imh1, a coiled-coil tethering protein [36, 37], raising the question of

whether such a pathway exists in C. albicans. Using Arl1-mCh, little to no Arl1 punctae were

observed in arl3/arl3 cells compared to the WT (Fig 4D), indicating that Arl3 also facilitates

Arl1 recruitment to the Golgi and/or stability at this organelle in C. albicans. Nonetheless,

compared to Arl1, Arl3 appears less important for hyphal growth and virulence, suggesting

that Arl1 has additional functions. To test genetically whether these two Arl proteins function

in different pathways, we generated a double deletion mutant (S2F Fig) that is viable and does

not exhibit additional hyphal growth defects compared to arl1/arl1 alone (hyphal length of

12.8 ± 0.3 μm, compared to 12.4 ± 0.7 μm for the arl1/arl1 mutant, determined as in Fig 1G),

indicating that arl1/arl1 and arl3/arl3 do not exhibit a synthetic phenotype. We next generated

a fusion between the GRIP domain of Imh1 (171 aa) and GFP, as previously described [36].

While this fusion protein localized as punctae both in WT budding and hyphal cells, little to

no punctae were observed in arl1/arl1 and arl3/arl3 budding and hyphal cells (Fig 4E). These

data suggest that the Arl3, Arl1, Imh1 pathway exists in C. albicans and raises the possibility

that hyphal growth is partly regulated via this pathway. To test this, we generated an IMH1
deletion mutant (S6A Fig). Fig 4F and S6B Fig show that hyphal invasive growth and sensitiv-

ity to cell wall perturbants were identical in imh1/imh1 and WT cells, suggesting that the arl1/
arl1 defects are unlikely to result from misregulation via Imh1.

Arl1 is required for polarized growth

We postulated that the shorter arl1/arl1 hyphae were either due to a reduced growth rate or a

delay in germ tube initiation. First, we verified that actin was correctly polarized in the shorter

arl1/arl1 filaments (Fig 5A). Quantitation also revealed that in addition to forming shorter fila-

ments, an increased number of arl1/arl1 cells had multiple germ tubes (Fig 5B). Strikingly, we

observed 14.1 ± 2.8% of arl1/arl1 cells with two or more germ tubes, compared to 2.2 ± 0.4%

for the WT, after 90 min in FCS. Given that in S. cerevisiae and A. nidulans the Arf3 homolog

regulates polarized growth [25, 38, 39], we also analyzed this mutant and found that the per-

centage of cells with two germ tubes was identical to the WT, suggesting that this phenotype is

Arl1 specific. In the arl1/arl1 cells with multiple germ tubes, the actin cytoskeleton was only

observed in one germ tube, indicating that they form sequentially (Fig 5C). Together these

results suggest that Arl1 is important for restricting the growth to a single site.

To directly visualize sites of ongoing growth in arl1/arl1 we used a CRIB-GFP reporter [40]

to follow the distribution of active Cdc42 in cells with multiple germ tubes. As observed with

F-actin, active Cdc42 was only associated with one germ tube at a time in the arl1/arl1 mutant

(Fig 5D) and time-lapse microscopy revealed that it was recruited sequentially to different sites

(Fig 5E) in all of the cells with multiple germ tubes (~ 20% of the cells). In contrast to this

sequential recruitment of active Cdc42, we observed that active Rho1 [40] appeared to linger at

a growth site after it was abandoned and, in many instances, this active GTPase localizes to

more than one site (Fig 5D and 5E). These results indicate that reduced germ tube length

results in part from an inability to restrict growth to a single site in arl1/arl1 cells. Consistent

with this proposal, the filament extension rate in this mutant was only slightly reduced com-

pared to that of WT (14 ± 2 μm/h in arl1/arl1 compared to 18 ± 2 μm/h in WT). Together
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these results indicate a unique role for Arl1 in C. albicans; it is critical for restricting polarized

growth to a single site.

Phosphatidylserine distribution is not altered in the arl1/arl1 mutant

Cdc42 distribution, hence polarized growth, requires phospholipids. For example, in S. cerevi-
siae, phosphatidylserine (PS) is required for the correct localization of Cdc42 [41]. In this

organism, Arl1 regulates the activity of the PS flippase Drs2 [42], and to investigate the possi-

bility that the arl1/arl1 defect results from PS misregulation, we generated a Lact-C2 reporter

similar to that described in S. cerevisiae [41, 43], to visualize PS in an arl1 mutant. Fig 6A shows

that PS was distributed similarly at the plasma membrane and enriched in the filament in WT

and arl1/arl1 cells. In contrast, PS distribution was altered in a drs2/drs2 deletion mutant, i.e the

PS reporter was less associated with the plasma membrane and appeared as internal punctae,

enriched at the germ tube apex of these cells (Fig 6A and 6B). This drs2/drs2 mutant was unaf-

fected for budding growth, but showed a defect in FCS-dependent hyphal growth, with only

3.2 ± 2.6% of hyphae generated compared to 84.2 ± 0.9% in the WT strain. This drs2/drs2
mutant (S6C Fig) was also hypersensitive to fluconazole, but not to CFW or CR, compared

to the arl1/arl1 mutant (S6D Fig). Time-lapse microscopy revealed that the drs2/drs2 mutant

could initiate germ tube formation but was unable to maintain hyphal growth (Fig 6B) and,

unlike the arl1/arl1 mutant, did not form an increased number of cells with multiple germ tubes

(3.7 ± 0.4%, compared to 2.8 ± 0.7% and 16.4 ± 0.7%, for the WT and the arl1/arl1 mutant,

respectively, determined as in Fig 5B). In addition, overexpression of DRS2 (S6C Fig) did not

complement the filamentous growth defect in the arl1/arl1 mutant (hyphal length of 11.5 ±
0.5 μm, compared to 11.4 ± 0.6 μm for the arl1/arl1 mutant, determined as in Fig 1G). Together

these results indicate that Drs2 is critical for hyphal growth and PS distribution, and suggest

that the arl1/arl1 polarized growth defect is not due to an altered PS distribution.

The arl1/arl1 mutant polarized growth defect results from altered

secretion

A balance between exocytosis and endocytosis is likely to be important for sustained polarized

growth and very recent work in S. cerevisiae, in particular, shows that the late stage of exocyto-

sis is important for regulating endocytosis [16, 17]. In C. albicans, a exocyst subunit mutant

(SEC3 deletion) is viable yet it has shorter hyphae that bulge at the apex [44] and, similarly,

expression of a phosphomimetic version of Sla1, a key component of the endocytic machinery,

results in impaired endocytosis and defective hyphal growth [45]. Arf proteins have been

implicated in endocytosis, both in S. cerevisiae [46] and A. nidulans [25]. In C. albicans, an

age3/age3 mutant is defective in endocytosis of the lipophilic dye FM4-64 [28]. We examined

endocytosis in arl1/arl1 cells by following FM4-64 uptake and observed that over 80% of the

Fig 5. Arl1 is required for restricted polarized growth in hyphae. A) Actin cytoskeleton is polarized in arl1/arl1 hyphae. WT and

arl1/arl1 cells were incubated in the presence of FCS for 90 min, prior to Alexa 568-phalloidin staining. B) The arl1/arl1 mutant has

an increased proportion of cells with 2 or more germ tubes. WT, arl1/arl1 and arf3/arf3 cells were incubated for 90 min in the

presence of FCS and cells with 2 or more germ tubes were counted. Error bars indicate the mean +/- the SD of 4 experiments,

n = 500 cells. C) Actin is polarized in only one of the germ tubes in arl1/arl1 mutant. Cells were incubated for 90 min in the presence

of FCS and the actin cytoskeleton was visualized using Alexa568-phalloidin. DIC and maximum projections (21 deconvolved z-

sections) of representative cells are shown. D) Active Cdc42 is associated with only one of the germ tubes in the arl1/arl1 mutant.

arl1/arl1 cells expressing a reporter for active Cdc42 or active Rho1, i.e CRIB-GFP or GFP-RID, respectively, were incubated for 45

min in the presence of FCS. DIC and sum projections (21 deconvolved z-sections) of representative cells are shown. E) Active

Cdc42 is recruited sequentially to multiple sites. Time lapse of arl1/arl1 cells expressing reporters for active Cdc42 and active Rho1,

incubated in the presence of FCS. Images, taken every 5 min, are sum projections (21 deconvolved z-sections) and arrows indicate

the sites of active Cdc42 or active Rho1 recruitment.

doi:10.1371/journal.ppat.1006205.g005
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vacuoles were labeled in both arl1/arl1 and WT cells after 30 min incubation (Fig 6C), indicat-

ing that Arl1 is not critical for endocytosis. We next investigated the exocytosis capacity in

arl1/arl1 cells by examining the distribution of Phr2, a GPI-anchored cell wall protein homolo-

gous to S. cerevisiae Gas1p, which is mislocalized in a S. cerevisiae arl1 mutant [47]. As shown

in Fig 6D, Phr2 distribution was similar at the plasma membrane in C. albicans hyphal WT

and arl1/arl1 cells. Nonetheless 79 ± 10% of arl1/arl1 cells also had internal signal, compared

to 7 ± 5% of WT cells (n = 40–50 cells), indicative of some mistargeting of Phr2 in the absence

of Arl1. In contrast, the distribution of Cdr1, a 12 TMD multidrug transporter of the ABC

superfamily, was not altered in arl1/arl1, compared to WT cells (S3C Fig). Using as a reporter

a protein consisting of the Hwp1 signal sequence fused to GFP (Hwp1ss-GFP) [20], we investi-

gated secretion in arl1/arl1 cells. Fig 6E shows an immunoblot of the culture supernatants of

WT and arl1/arl1 cells expressing Hwp1ss-GFP. Strikingly, secretion of Hwp1ss-GFP, normal-

ized for the total cellular GFP and Cdc11, was increased by 7.4 ± 1.3-fold in arl1/arl1 cells

compared to the WT (n = 3), suggesting that Arl1 is important for regulation of secretion.

Together, these results suggest that the polarized growth defect in the arl1/arl1 mutant results

from unregulated secretion.

Discussion

To determine the role of the Arf proteins in C. albicans development and virulence, we gener-

ated loss of function mutants in the 5 Arf/Arl proteins. Our results show that of these proteins,

only Arf2 was required for viability and antifungal drug sensitivity. Furthermore, we demon-

strated that Arf2 and Arl1 are required for invasive hyphal growth and critical for virulence

using different infection assays. Our data also indicate that of the 5 Arf/Arl proteins, Arl1 has a

unique function in secretion, which would impact hyphal growth maintenance.

The functions of Arf proteins are largely unknown in filamentous fungi and fission yeast, in

contrast to the budding yeast S. cerevisiae and our results show that the relative importance of

the conserved Arf proteins differ in fungi, highlighting the importance of such a study. As an

example, in S. cerevisiae, Arf3, the homolog of human Arf6, is required for polarized growth

[38] and actin cytoskeleton organization [48, 49], as well as endocytosis via modulation of

plasma membrane PI(4,5)P2 levels [50]. Similarly in A. nidulans, the Arf3 homolog, ArfB, is

involved in polarized growth and endocytosis [25]. Here we show that in the absence of ARF3
C. albicans cells still polarize their actin cytoskeleton and are able to form hyphae similar to the

WT strain. In addition, while arf3/arf3 cells exhibited reduced invasive growth, as reported for

S. cerevisiae [51], there was little to no difference in virulence of this mutant compared to the

WT strain in two different murine candidiasis models, indicating that Arf3 plays a minor role

in this human fungal pathogen.

Fig 6. Arl1 regulates secretion. A) Distribution of PS is not altered in arl1/arl1 mutant during hyphal growth. WT, arl1/arl1 and

drs2/drs2 cells expressing the PS reporter (GFP-LactC2) were induced in the presence of FCS for 45 and 90 min, respectively and

sum projections of representative images are shown. A false color look up table (LUT) is used to highlight signal intensity. Note that

the drs2/drs2 deletion strain is indicated as drs2. B) Distribution of PS and hyphal growth is altered in the drs2/drs2 mutant. Time

course of indicated strains expressing GFP-LactC2, incubated in the presence of FCS. Images, taken every 5 min, are sum

projections (21 z-sections). C) FM4-64 endocytosis is not altered in the arl1/arl1 mutant. WT and arl1/arl1 cells were incubated with

FM4-64 on ice for 40 min (time 0:00), and subsequently transferred to 30˚C to initiate endocytosis, for the indicated times. Cells

were visualized by fluorescence microscopy with the respective DIC images shown. D) Distribution of Phr2 is altered in the arl1/arl1

mutant. WT and arl1/arl1 cells, expressing yemCherry-Phr2 were grown in the presence of FCS for 45 and 90 min, respectively.

Central Z sections of representative images are shown. E) The arl1/arl1 mutant has increased secretion. WT and arl1/arl1 cells,

expressing HWPss-GFP, were pelleted and BSA (100 μg/mL) was added to the supernatant prior to TCA (10%) precipitation.

Following centrifugation, precipitated proteins were washed twice with ice-cold acetone, then analyzed by SDS/PAGE and

immunoblotting. The amount of secreted Hwp1ss-GFP in the WT and arl1/arl1 mutant strains was normalized using Cdc11 and the

total cellular GFP signal, quantified from the cell pellet. The equivalents (Equiv.) of cells and culture supernatants are indicated; 7

times more culture supernatant was analyzed compared to cells.

doi:10.1371/journal.ppat.1006205.g006
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We show that Arf2 and Arl1 are important for invasive filamentous growth and virulence. In

particular, the arl1/arl1 mutant exhibits shorter hyphae, and attenuated virulence. Unfortu-

nately, we could not assess if arl1/arl1 hyphae were also significantly shorter than those of the

WT in vivo. The histopathology images of the tongues, however, showed that both arl1/arl1 and

Δ/pTetARF2 mutants were able to form hyphae to some extent, consistent with our in vitro data.

The virulence of the age3/age3 mutant was reduced in a HDC murine model and histopathology

images of the kidneys showed that this mutant was also able to form hyphae in vivo [27]. Hence,

age3/age3, Δ/pTetARF2 and arl1/arl1 mutants all showed reduced virulence, yet were able to

form hyphae, suggesting hyphal formation per se is not the basis for the virulence defect in these

mutants, yet some aspect of hyphal growth maintenance may be important.

Our data indicate that the integrity of the Golgi in arl1/arl1 does not appear to be affected,

in contrast to Δ/pTetARF2 or the PI-4-kinase mutant pik1 [20], suggesting that the late Golgi

associated protein Arl1 is not critical for the maintenance of Golgi cisternae number or size. In

S. cerevisiae, Arl1 was shown to interact with a number of proteins involved in membrane

recycling, including Arl3 [36, 37] and the Golgin Imh1 [52], which were reported to function

upstream and downstream of Arl1, respectively. Very recently, the protein kinase Env7 was

shown to functionally interact with Imh1, and potentially Arl1, in C. albicans [53]. Although

we show that an Arl3-Arl1-Imh1 pathway is likely conserved in C. albicans, our results also

show that this pathway is not critical during filamentous growth and virulence. Indeed, Arl3 is

not required for C. albicans virulence and the arl3/arl3 filamentous growth defect is marginal

compared to that of arl1/arl1. In addition, deletion of IMH1 does not alter filamentous growth.

Arl1 was also shown to interact with Vps53/Vps54, components of the Golgi associated retro-

grade protein (GARP) complex [54]. Interestingly, C. albicans vps51 and vps53 deletion strains

had attenuated virulence in a mouse model of HDC and increased brain tropism [55], similar

to arl1/arl1, suggesting that Arl1 may interact with the GARP complex. Whether the increased

tropism for the brain of the arl1/arl1 mutant is due to increased trafficking to the brain or

enhanced growth within the brain remains to be determined.

What might be the role of Arl1 during C. albicans hyphal growth? Our results indicate

that Arl1 is critical for cell polarity maintenance. In S. cerevisiae, phosphatidylserine (PS) is

required for the correct localization of Cdc42 [41] and Arl1 regulates the activity of the PS flip-

pase Drs2 [42]. As we show that plasma membrane PS distribution is similar in WT and arl1/
arl1 cells, it is unlikely that arl1/arl1 filamentous growth defect results from an alteration of PS

distribution. Instead, we speculate that the inability of arl1/arl1 to restrict hyphal growth to a

single site is due to altered membrane traffic, as we observed an increase in protein secretion

in this strain. Given that in S. cerevisiae membrane traffic is critical for Cdc42 function, via the

delivery of this GTPase to sites of polarized growth [56–59], the increased membrane traffic in

C. albicans arl1/arl1 may promote competing sites of growth, which ultimately result in an

inability to maintain growth to a single site. This effect may be more pronounced during

hyphal growth due to increased membrane traffic. This work addresses for the first time the

role of the Arf class of proteins in dimorphic fungi and identifies Arl1 and Arf2 as key regula-

tors of C. albicans hyphal growth and virulence. Strikingly, we identify a unique role for Arl1

in the regulation of C. albicans secretion during filamentous growth. Investigating the role of

Arl1 in filamentous fungi would determine if this role in secretion is unique to C. albicans or

to the function in filamentous growth.

How are Arf2 and Arl1 regulated? Arf proteins do not have detectable intrinsic GTPase

activity, hence the conversion of GTP to the GDP bound form requires a GAP (reviewed in

[60]). In S. cerevisiae, Arf1 and Arl1 activities are regulated, in part, by the GAP Gcs1 [34]. In

C. albicans, whether Arf2 and/or Arl1 are targets of the Gcs1 homolog, Age3 [27, 28] remains

to be determined. In S. cerevisiae, as well as in mammals, Arf1 is activated by GEFs of the GBF/
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Gea1/2 and BIG/Sec7 families, at the early and late Golgi, respectively [6]. In A. nidulans, the

Sec7 homolog HypB is critical for hyphal growth [61] and genetic analyses indicate that the

HypB requirement can be bypassed by a single mutation in GeaA, which also results in the

redistribution of GeaA towards the apical plasma membrane [62]. S. cerevisiae Sec7 itself is reg-

ulated by Arf1, via a positive feedback loop, as well as by Arl1 [63] similar to the situation in

mammals, in which BIG1/2 is also regulated by Arf and Arl1 GTPases [64, 65]. Arl1 binds

BIG1 via the N-terminal dimerization and cyclophilin binding (DCB) domain of this GEF in

mammals [66], yet this is not the case for S. cerevisiae Sec7 [67]. In addition to Arf1 and Arl1,

two Rab proteins, Ypt1 and Ypt31/32, the Rab1 and Rab11 homologs, respectively, play a role

in recruiting Sec7 to the Golgi and, at least for Ypt31/32, further stimulating its activity [68].

Furthermore, Arl1 was shown to genetically interact with the Rab GTPase Ypt6 in S. cerevisiae
[69, 70]. These examples highlight the complex crosstalk between Arf and Rab proteins and

their regulators. In C. albicans, 3 out of the 5 S. cerevisiae GEF homologs are present, namely

Sec7, Gea2 and Yel1. Intriguingly Syt1, which promotes Arl1 activation in S. cerevisiae [71, 72],

has no homolog in C. albicans. Non-biaised approaches to identify Arl1 specific interactors

during filamentous growth could lead to the identification of critical factors for C. albicans
niche specific invasion.

Materials and methods

Growth conditions

Yeast extract-peptone dextrose (YEPD) or synthetic complete (SC) medium was used and

strains were grown at 30˚C, unless indicated otherwise. Filamentous growth induction was car-

ried out as described previously either with 50% serum [73] or Spider medium [74]. Growth on

YEPD plates containing Congo red, calcofluor white, caspofungin or fluconazole was examined

as described [75]. Congo red, calcofluor white and Doxycycline were from Fluka, Sigma-

Aldrich, Saint Quentin Fallavier, France. Caspofungin was from Merck Sharp & Dohme Corp.

Strains and plasmids

Strains and oligonucleotides used are listed in S1 Table and S2 Table, respectively. All strains

were derived from BWP17 [76]. The arf1Δ/arf1Δ, arf3Δ/arf3Δ, arl1Δ/arl1Δ, arl3Δ/arl3Δ,

imh1Δ/imh1Δ and drs2Δ/drs2Δ strains were generated by homologous recombination. Each

copy was replaced by either HIS1 or URA3, using knockout cassettes generated by amplifica-

tion of pGemHIS1 and pGemURA3 [76] with primer pairs ARF1.P1/ARF1.P2, ARF3.P1/

ARF3.P2, ARL1.P1/ARL1.P2, ARL3.P1/ARL3.P2, IMH1.P1/IMH1.P2 and DRS2.P1/DRS2.P2.

The arl1Δ/arl1Δ/arl3Δ/arl3Δ strain was generated from the arl1Δ/arl1Δ, in which each copy of

ARL3 was replaced by either ARG4 or SAT, using knockout cassettes generated by amplifica-

tion of pFAARG4 and pFASAT [77], respectively, with primer pairs ARL3.P5/ARL3.P6. The

Dox repressible arf1Δ/pTetARF1, arf2Δ/pTetARF2 and arf3Δ/pTetARF3 strains were con-

structed from PY173, a derivative of BWP17 containing the tetracycline-regulatable transacti-

vator TetR-ScHAP4AD, as described previously [43]. Specifically, the Tetoff promoter was

inserted 5’ of one copy of ARF1, ARF2 or ARF3 ORF by homologous recombination using

pCAU98 plasmid [78] as a template and either ARF1.P3/ARF1.P4, ARF2.P3/ARF2.P4 or

ARF3.P3/ARF3.P4 primer pairs. The second copy of the respective ORF was then replaced

with HIS1 using a knockout cassette generated by amplification of pGemHIS1 with ARF1.P1/

ARF1.P2, ARF2.P1/ARF2.P2 or ARF3.P1/ARF3.P2 primer pairs. ARF2 and ARL1 plasmids

were constructed by amplification from gDNA. Primers with a unique XhoI (either ARF2.P5,

ARL1.P3 or ARL3.P3) or SalI (DRS2.P3) at the 5’ end and a unique NotI at the 3’ end (either

ARF2.P6, ARL1.P4, ARL3.P4 or DRS2.P4) were used to amplify the ARF2, ARL1, ARL3 or
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DRS2 ORF, together with 1 kb upstream and downstream, and the fragment subsequently

cloned into pExpArg-pDCK1DCK1 [79], yielding to pExpArg-pARF2ARF2, pExpArg-pAR-

L1ARL1 or pExpArg-pARL3ARL3 or pExpArg-pDRS2DRS2, respectively. Primers with a

unique RsrII at the 5’ end (DRS2.P5) and a unique MluI at the 3’ end (DRS2.P6) were used to

amplify the DRS2 ORF, and the fragment subsequently cloned into pExpArgpADH-RAC1

[79], yielding to pExpArg-pADHDRS2.

pExpArg-pACT1GFPRID and pExpArg-pACT1CRIBGFP [40], as well as pExpArg-

pADHDRS2, were used to transform the arl1/arl1 strain. pExpArgpARL1ARL1yemCherry

was constructed by amplification of pARL1ARL1 from gDNA using ARL1.P5 and ARL1.P6,

followed by integration of this fragment into the unique SacI and NotI sites in pExpArg-NotI-

pADH1DCK1-SacI-yemCherry [80]. pExpArgpARL1arl1[G2A]yemCherry, pExpArgpAR-

L1arl1[Q74L]yemCherry and pExpArgpARL1arl1[T34L]yemCherry were generated by site-

directed mutagenesis of pExpArgpARL1ARL1yemCherry, using ARL1.P7/ARL1.P8, ARL1.P9/

ARL1.P10 and ARL1.P11/ARL1.P12 primer pairs, respectively. pExpArgpACT1GFPIMH1GRIP

was constructed by amplification of the 513 bp encoding IMH1GRIP fragment from gDNA

using IMH1GRIP.P1 and IMH1GRIP.P2, followed by integration of this fragment into the

unique RsrII and MluI sites in pExpArg-pACT1GFP-RsrII-RID-MluI [40]. Cdr1-GFP and

FAPP1[E50A,H54A]-GFP expressing strains were generated as described [20] and the GFP-Sec4

and Sec7-GFP expressing strains were generated as described [44]. To visualize the distribu-

tion of phosphatidylserine, a fusion of GFP with the discoidin-like C2 domain of lactadherin

was generated, similar that previously used [41]. Briefly, pExpArgpACT1GFPyeLactC2 was

constructed by subcloning a synthesized 498 bp yeLactC2 DNA fragment, codon optimized

for C. albicans, (Genescript, S2 Table), into the unique RsrII/MluI sites of pExpArgpACT1GFP-

RsrIIRAC1MluI [79]. pDUP3pTEF1Phr2SSyemCherry-PHR2 was constructed similar to that of

S. cerevisiae [81] and will be described elsewhere (P. de Oliveira e Silva, M. Bassilana and R. A.

Arkowitz, in preparation).

All pExpArg plasmids were linearized with StuI and integrated into the RP10 locus. Two

independent clones of each strain were generated, confirmed by PCR as well as immunoblot-

ing, where relevant. All PCR amplified products and site-directed mutagenesis products were

confirmed by sequencing (Eurofins MWG Operon, Ebersberg, Germany).

Microscopy analyses

For colony morphology analyses, plates were incubated for 3–6 days prior to imaging. For cell

morphology studies, cells were imaged by differential interference contrast. Cell viability was

determined using propidium iodide staining [82].

For Arl1-yemCherry, GFP-Sec4 and Sec7-GFP imaging, z-stacks were acquired approxi-

mately every min, as described [20]. For Arl1 and Sec7 co-localization experiments, GFP and

yemCherry signals were acquired simultaneously. The number of Golgi cisternae that had both

GFP and yemCherry signals was quantitated using Volocity. Multiple z-sections were acquired

over 5 times and averages were from the intersection of GFP and yemCherry signals from 10

fields of view (n ~ 5 cells per field of view; ~500 punctae in total). Maximum intensity projec-

tions of 21 z-sections were generated with ImageJ software. GFPRID and CRIBGFP distribution

experiments were carried out as described [40]. Unless indicated otherwise, error bars represent

the standard deviation. Golgi and colocalization analyses were carried out as described [20].

Virulence assays

To induce haematogenously disseminated candidiasis (HDC), 8 Balb/C mice per strain were

injected via the tail vein with an inoculum of 5x105 cells [83]. Oropharyngeal candidiasis
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(OPC) was induced according to established procedure [84]. Results were analyzed using the

Wilcoxon rank sum test.

Ethics statement

All mouse experiments were approved by the Animal Care and Use Committee at the Los

Angeles Biomedical Research Institute and carried out according to the National Institutes of

Health (NIH) guidelines for the ethical treatment of animals (protocols 011000 and 012059;

IACUC # A3330-01).

General techniques

Western blot analyses were carried out as described previously [73]. For visualization, mem-

branes were probed with an Alexa Fluor 800 anti-rabbit IgG (H+L) conjugate (1:10,000;

Molecular Probes, Invitrogen) and visualized using an Odyssey IR imaging system (LI-COR

Biosciences). The actin cytoskeleton was visualized and imaged as described previously [43].

FM4-64 labeling was carried out as in [28]. RT-PCR and qRT-PCR analyses were carried out

as described [80, 85], and the primers used (GENE.pTm and GENE.mTm) are listed in S2

Table or previously described [85]. For transcriptome profiles, RNA extraction was carried out

using a Master Pure Yeast RNA purification kit (Epicentre) and the samples analyzed at the

Genecore facility (EMBL, Heidelberg). Analyses of secreted Hwp1ss-GFP were carried out as

described [20]. Genomic DNA from C. albicans strains was isolated as described in [86]. For

Southern analyses, EcoRI digested gDNA was separated on a 1% agarose gel, transferred onto

a nylon membrane, and fixed by UV crosslinking. Southern hybridization was carried out

with ECL labeled probes (generated by PCR with ARF2.P10 and ARF2.P11 primers), as

described in the Amersham ECL Direct Nucleic Acid Labelling and Detection System kit (GE

Healthcare UK Limited, Little Chalfont Buckinghamshire, UK).
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S2 Fig. Arf/Arl mutant strains verification. A) Diagram of Δ/pTetARF2 strain construction.

Primers used to verify the Δ/pTetARF2 strain by PCR are indicated, as well as the EcoRI

sites used for the Southern analyses. B) PCR analyses of Δ/pTetARF2 mutant. The absence of

pARF2ARF2, in the Δ/pTetARF2 strain, was verified using primer 2 in the ORF (ARF2.P7) and

primer 1 in pARF2 (ARF2.P9), which amplifies a 670 bp fragment from the endogenous copy

in WT and complemented strains. The knock-in of the URA3-pTet cassette was verified using

two primer pairs: primers 1 (ARF2.P9) and 6 in URA3 (URA3.P1) and primers 2 (ARF2.P7)

and 7 in pTet (TET.P1), to generate DNA fragments each of 450 bp. The replacement of one

copy of ARF2 by HIS1 was verified using two primer pairs: primers 1 (ARF2.P9) and 3 in HIS1
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(HIS1.P1) and primers 4 in ARF2 terminator region (ARF2.P8) and 5 in HIS1 (HIS1.P2), to

generate DNA fragments of 650 bp and 1060 bp, respectively. C) Southern blot. The EcoRI

digested gDNA from the indicated strains was separated on a 1% agarose gel. Southern hybrid-

ization, visualized with a ECL labeled probe (generated by PCR with ARF2.P10 and ARF2.P11),

revealed in the Δ/pTetARF2 strain the presence of the expected 2.9 kb and 5.9 kb fragments

and the absence of the endogenous 3.7 kb fragment (present in the WT strain); an additional

fragment corresponding to the integrated copy of ARF2 at the RP10 locus is observed in

the Δ/pTetARF2 complemented strain. D) ARF2 transcript levels. Transcript levels of ARF2
were determined by qRT-PCR in the indicated strains, using ARF2.pTm/ARF2.mTm primer

pair and normalized to the ACT1 transcript level. The mean values of two independent experi-

ments are shown with bars indicating values of each experiment. E) ARF1, ARF3 and ARL1
transcript levels. mRNA and cDNA were prepared from the indicated strains. ARF1, ARF3
and ARL1 transcripts were determined by RT-PCR, using ARF1.pTm/ARF1.mTm (82 bp),

ARF3.pTm/ARF3.mTm (99 bp) and ARL1.pTm/ARL1.mTm (99 bp) primer pairs, respectively.

Actin (ACT1) transcript levels (ACT1.pTm/ACT1.mTm primer pair) were used for normali-

zation. F) ARL3 transcript levels. ARL3 expression was assessed in the indicated strains, as

described in E, using ARL3.pTm/ARL3.mTm primer pair to generate a 116 bp fragment. G)

ARF2 expression is higher than that of the other ARF/ARL genes. The relative gene expression

of two biological samples of the WT strain, grown in the absence of FCS induction, is the read

counts per gene normalized by the ORF size, determined by RNAseq.

(PDF)

S3 Fig. Arf2 is critical for antifungal sensitivity. A) Repressible expression of ARF2 confers

thermosensitivity. Serial dilutions of cells from the indicated strains were spotted on YEPD

media. Images were taken after 2 days growth at the indicated temperature. B) The Δ/pTe-
tARF2 mutant has increased susceptibility to a variety of stresses, including antifungal drugs.

Serial dilutions of indicated strains were spotted on YEPD media containing 400 μg/ml Congo

red (CR), 25 μg/ml calcofluor white (CFW), 5 μg/ml fluconazole (Fluco) or 125 ng/ml caspo-

fungin (Caspo). Images were taken after 2 days. Similar results were observed in 2 experiments.

C) Distribution of the multidrug ABC transporter Cdr1 is not altered in Δ/pTetARF2 and arl1/
arl1 cells. DIC and deconvolved central z-section of representative WT, Δ/pTetARF2 and arl1/
arl1 cells expressing Cdr1-GFP grown in the absence of Dox.

(PDF)

S4 Fig. Reintroduction of ARF2 and ARL1 complements Δ/pTetARF2 and arl1/arl1 mutants,

respectively. A) Reintroduction of ARF2 restores Δ/pTetARF2 viability. Serial dilutions of indi-

cated strains were spotted on YEPD media with or without 20 μg/ml Dox. B) Reintroduction of

ARF2 complements for Δ/pTetARF2 invasive growth defect. Cells from the indicated strains

were incubated, in the absence of Dox, on agar-containing Spider media (top) or YEPD media

containing FCS (bottom) and images were taken after 5 days. C) Reintroduction of ARF2 com-

plements for Δ/pTetARF2 cell wall integrity defect. Serial dilutions of the indicated strains were

spotted on YEPD media containing 400 μg/ml Congo red (CR) or 25 μg/ml calcofluor white

(CFW). Images were taken after 2 days. D) Reintroduction of ARF2 complements for Δ/pTe-
tARF2 antifungal hypersensitivity. Serial dilutions of the indicated strains were spotted on

YEPD media containing the indicated concentrations of caspofungin or fluconazole and images

were taken after 2 days; Δ/pTetARF2 has a MIC of 30 ng/ml and 600 ng/ml for caspofungin and

fluconazole, respectively. E) Reintroduction of ARL1 complements arl1/arl1 cell wall integrity

defect. Serial dilutions of the indicated strains were spotted on YEPD media containing CR or

CFW, as in S4C Fig. F) Reintroduction of ARL1 complements the arl1/arl1 invasive growth

defect. Cells from the indicated strains were incubated as in S4B Fig and images were taken
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after 5 days. G) The Arl1-yemCherry fusion is functional. Cells from the indicated strains were

incubated on Spider media and images were taken after 5 days. Similar results were observed in

2 independent experiments.

(PDF)

S5 Fig. Arl1 is required for site-specific infection. A) The arl1/arl1 mutant has a decreased

virulence in OPC. Histopathology images of the tongues, stained with periodic acid-Schiff

(PAS), of the mice infected with the indicated strains as in 2B. B) The arl1/arl1 mutant has an

increased tropism for the brain. In the HDC assay, the fungal burden of lateral tail vein

infected Balb/C mice, with the WT and arl1/arl1 strains, was measured in the indicated organs

after 2 days of infection. Results are expressed as in Fig 2B.

(PDF)

S6 Fig. Drs2, but not Imh1 is required for cell wall integrity. A) IMH1 transcript levels.

IMH1 expression was assessed in the indicated strains, as described in S2E Fig, using

IMH1.pTm/IMH1.mTm primer pair to generate a 144 bp fragment. B) Imh1 is not required

for cell wall integrity. Serial dilutions of the indicated strains were spotted on YEPD media

containing CR or CFW, as in S4C Fig. C) DRS2 transcript levels. DRS2 expression was assessed

in the indicated strains, as in S2E Fig, using DRS2.pTm/DRS2.mTm primer pair to generate a

65 bp fragment. D). The drs2/drs2 mutant is hypersensitive to fluconazole. Serial dilutions of

indicated strains were spotted on YEPD media containing or lacking CR, CFW or Fluco, as in

S3B Fig. The drs2/drs2 mutant has a MIC of 300 ng/ml for fluconazole, as estimated using con-

ditions in S4D Fig.

(PDF)
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