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Abstract

Accurate inference of relatedness between individuals in breeding population contributes to

the precision of genetic parameter estimates, effectiveness of inbreeding management and

the amount of genetic progress delivered from breeding programs. Pedigree reconstruction

has been proven to be an efficient tool to correct pedigree errors and recover hidden related-

ness in open pollinated progeny tests but the method can be limited by the lack of parental

genotypes and the high proportion of alien pollen from outside the breeding population. Our

study investigates the efficiency of sib-ship reconstruction in an advanced breeding popula-

tion of Eucalyptus nitens with only partially tracked pedigree. The sib-ship reconstruction

allowed the identification of selfs (4% of the sample) and the exploration of their potential

effect on inbreeding depression in the traits studied. We detected signs of inbreeding

depression in diameter at breast height and growth strain while no indications were

observed in wood density, wood stiffness and tangential air-dry shrinkage. After the applica-

tion of a corrected sib-ship relationship matrix, additive genetic variance and heritability

were observed to increase where signs of inbreeding depression were initially detected.

Conversely, the same genetic parameters for traits that appeared to be free of inbreeding

depression decreased in size. It therefore appeared that greater genetic variance may be

due, at least in part, to contributions from inbreeding in these studied populations rather

than a removal of inbreeding as is traditionally thought.

Introduction

Heritability is a measure of the proportion of phenotypic variance explained by genetic factors

and is built on the principle of resemblance between relatives [1]. Narrow-sense heritability is

therefore an important parameter for tree breeding programs as it represents the portion of

variation that can be transmitted to the progeny. Accurate inference of the relationship among

individuals in a breeding population is essential for reliable evaluation of genetic factors con-

tributing to phenotypic variability. Relationship estimates are based on the probability that

alleles from two randomly sampled individuals in the population are identical copies of recent
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single ancestral alleles (i.e. are identical by descent) [2] and estimated through path analysis [3]

based on information from documented pedigrees. The level of relatedness and the connected-

ness through the pedigrees is defined by mating design and dictates the precision and amount

of information which is potentially obtained from genetic tests [4]. This can be particularly rel-

evant within the genus Eucalyptus, where degrees of relatedness can vary widely due to mixed

mating system [5].

It can be difficult to establish test populations with precisely defined mating schemes due to

technical or biological obstacles and instead, open-pollinated experiments are pursued [6].

Such experimental designs usually suffer from hidden (unaccounted for) relatedness [7] which

produces a bias in the genetic parameters estimated in quantitative genetics analysis and mis-

leading ranking of individuals to be selected for the next cycle of breeding [8–10]. Methods

have been proposed to correct for hidden relatedness [11, 12], which are established on breed-

ers’ estimates of selfing or inbreeding proportion based on previous experiences, rather than

reality. Alternatively, it is possible to use a sire probability relationship matrix to define rela-

tionships by most probable mating events, and this has been successfully applied in animal

breeding [13].

There are a number of algorithms developed for use in pedigree reconstruction [14–18]

that have also been successfully applied in breeding [19], genetic conservation [20] or evolu-

tionary studies [21, 22]. Pedigree reconstruction in open pollinated tests has been found to be

a very effective tool for eliminating the adverse effect of hidden relatedness in quantitative

genetics analysis [8–10, 23–27], especially in the initial phase of breeding programs where ped-

igrees are rather simple and lack connectivity. Additionally, the recovery of hidden relatedness

enables the more efficient management of genetic diversity and prevents undesirable build-up

of inbreeding in next generations of breeding populations. The selection of genetic markers,

their type, quality and quantity is, however, crucial to obtain confident inference about related-

ness [24] and improve accuracy in the genetic parameters [8, 28].

Our analysis is focused on evaluation of sib-ship reconstruction in a Eucalyptus nitens
advanced breeding population under only partially tracked pedigree where only offspring

genomic information was available. We investigated the effect of recovered relatedness (and

inbreeding) on the precision of genetic parameter estimates in both univariate and multivari-

ate genetic analysis. We also explored options to include an additional, non-additive (domi-

nance) relationship matrix to improve breeding values accuracy, and to examine the impact of

sib-ship reconstruction on the accuracy of genetic correlations and correspondence in ranking

of breeding values and impact on genetic gain estimation.

Materials and methods

Material

The E. nitens population in this study represented the latest generation of the breeding popula-

tion [29]. The material was established as an open-pollinated (OP) test where families were

established from two independently-sourced second generation seed orchards (Waiouru (46

OP families) and Tinkers (25 OP families)). Both seed orchards were established using forward

selections from a progeny trial including material from three sources: Victorian provenances

(showing the best growth [30]); from progeny trials at Rotoaira established in 1977 originating

from two Australian breeding programs and; from progeny trials testing on New South Wales

(NSW) provenances. The Waiouru seed orchard was originally designed as a clonal archive

and included 123 individuals from the same number of families (123) (Fig 1).

Genomic DNA was extracted from the leaf tissue of 691 individual trees using a commercial

NucleoSpin Plant II kit (Machery-Nagel, Duren, Germany) [31] and sent to GeneSeek, Inc. (a
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Neogene company, Lincoln, NE, USA) for genotyping [24] using the Illumina Infinium

EUChip60K SNP chip [32]. SNP calling was performed based on the Maidenaria section refer-

ence. The marker data were filtered for genTrain score > 0.5, GenCall > 0.15, minor allele fre-

quency (MAF) > 0.01, call rate> 0.6. Additionally, we applied the Hardy-Weinberg

equilibrium (HWE) test (p-value> 0.05) to check for selective neutrality of the markers used.

Seven-year-old individuals within the open-pollinated progeny trial were phenotyped for

the growth trait diameter at breast height (DBH [mm]) in winter of 2014. Wood quality was

measured on two different log lengths—log 1 from 1.4-3m and log 2 from 3-6m during winter

of 2015. Wood traits assessed include density (WD [kg/m3]), wood stiffness (log 1:ST1 [km/s];

log 2:ST2 [km/s]) and growth strain (log 1:GS1 [mm]; and log 2:GS2 [mm]) measured as log

split width. Average tangential air-dry shrinkage was assessed only for log 2 (TS [%]). Wood

density was measured as basic wood density through the maximum moisture content method

[33]. Wood stiffness was measured indirectly using acoustic wave velocity [km/s] by using

HITMAN (HM200). Growth strain was assessed by ripping logs with a chainsaw and and mea-

suring the resulting openings at the end of the log (mm). Tangential air-dry shrinkage average

was measured following standard wood quality assessment protocol [34].

Sib-ship reconstruction

The sib-ship inference was obtained by implementing the algorithm described in Wang

(2004). This algorithm assumes markers to be selectively neutral, unlinked between loci and in

linkage equilibrium. Additionally, they should have two or more codominant alleles and meet

the assumption of Mendelian segregation. The sib-ship reconstruction was performed follow-

ing the above described algorithm implemented in the COLONY package [35] using 500 ran-

domly selected markers that pass the filtering criteria. This number of genetic markers should

Fig 1. Breeding program history. History of the E. nitens breeding program established in New Zealand.

The number of selected parents are given in the arrows between the different generations.

https://doi.org/10.1371/journal.pone.0185137.g001
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be sufficient to reach the maximal assignment rate [36]. Markers were pre-checked for any

pairwise linkage disequilibrium at less than 0.2 in terms of its composite estimate [37]. Since

forest trees generally show large reproductive investment (production of both male and female

flowers), the scenario was set under both polygamy and polyandry with the presence of

inbreeding. The prior of maternal family size was set to 5 reflecting structure of pedigree and

paternal family was set to 2 assuming some fathers contributing to more than one individual.

Since both male and female flowers are present on the same individual, species was set as mon-

oecious and diploid. The allele frequencies were updated during the process in order to

account for any changes in inferred sib-ship structure. This avoids collapsing of large families

into several small ones due to ignored relatedness [35]. The genotyping errors in marker array

technologies are generally very low and were set to 0.0001. Three runs were performed.

Statistical analysis

Additive genetic model. The efficiency of relatedness recovery through sib-ship recon-

struction on accuracy of genetic parameters such as additive genetic variance, heritability and

genetic correlation was investigated with respect to their standard errors by implementing a

linear mixed model within the ASReml-R statistical package [38] as follows:

y ¼ Xβþ Zaþ Zr þ ZrðsÞ þ e

where y is vector of measurements, β is vector of fixed effects representing intercept and seed

orchard effects, a is the vector of random breeding values following varðaÞ � Nð0; As2
aÞ,

where A is the average numerator relationship matrix [3] developed either from pedigree or

on the basis of information from sib-ship reconstruction and s2
a is the additive genetic vari-

ance, r is the vector of random replication effect following varðrÞ � Nð0; Is2
aÞ, where I is the

identity matrix and s2
r is the replication variance, r(s) is the vector of random set nested within

replication effects following varðrðsÞÞ � Nð0; IsrðsÞ
2Þ, where srðsÞ

2 is the variance of set nested

within replication effects, e is the vector of random residuals following varðeÞ � Nð0; Is2
aÞ,

where s2
e is the residual variance, X and Z are the incidence matrices assigning fixed and ran-

dom effects to measurements in y.

Additive and non-additive genetic model. Since the sib-ship reconstruction produced

full-sib relationships (see Results section), it was then possible to construct a dominance rela-

tionship matrix and further explore genetic architecture of the investigated traits. In this case,

the mixed model was modified as follows:

y ¼ Xβþ Zaþ Zd þ Zr þ ZrðsÞ þ e

where d is the vector of random dominance effects following varðdÞ � Nð0; Ds2
aÞ, where D is

the dominance relationship matrix created by setting the relationship coefficient of 0.25

between individuals belonging to the same full-sib family, diagonal elements were set to 1 for

outbred individuals and 0.5 for selfs [1] and s2
d is dominance variance.

Multivariate additive genetic model. A bivariate mixed linear model was used to esti-

mate genetic correlations and test its benefit on accuracy of breeding values as follows:

Y ¼ Xβþ Zaþ Zr þ ZrðsÞ þ e

where Y is matrix of phenotypic measurements, a is vector of random additive genetic effects

following var(a)*N(0, G1), where G1 is variance-covariance structure of additive genetic

effects following G1 ¼
sa1

2 sa1a2

sa2a1
sa2

2

" #


 A, where
 is the Kronecker product, sa1

2 and sa2

2
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are additive genetic variances of the 1st and 2nd trait, sa1a2
and sa2a1

are additive genetic covari-

ances between the 1st and 2nd trait, r is vector of random replication effects following var(r)

*N(0, G2), where G2 is variance-covariance structure for replication effects following

G2 ¼
sr1

2 0

0 sr2
2

" #


 I, where sr1

2 and sr2

2 are replication variances for the 1st and 2nd trait,

r(s) is vector of random effect of set nested within replication following var(r(s))*N(0, G3),

where G3 is variance-covariance structure of set nested within replication effects following

G3 ¼
srðsÞ1

2 0

0 srðsÞ2
2

" #


 I, where srðsÞ1
2 and srðsÞ2

2 are set within replication variances for the

1st and 2nd trait, e is a vector of random residual effects following var(e)*N(0, R), where R is a

variance-covariance structure for residual effects following R ¼
se1

2 se1e2

se2e1
se2

2

" #


 I, where

se1

2 and sr2

2 are residual variances of the 1st and 2nd trait, se1e2
and se2e1

are residual covari-

ances between the 1st and 2nd trait.

Genetic parameter estimation. Two heritability estimates were obtained. Narrow sense

heritability estimates were obtained using the original pedigree information or information

from sib-ship reconstruction, and was estimated as follows:

ĥ2 ¼
ŝ2

a

ŝ2
a þ ŝ2

e

:

A second estimate was modified to include the estimated dominance variance using the

dominance relationship matrix, and based on the reconstructed sib-ship structure as follows:

ĥ2 ¼
ŝ2

a

ŝ2
a þ ŝ2

d þ ŝ2
e

:

Genetic correlations were estimated as the Pearson-product moment correlation as follows:

r̂ g ¼
ŝx;y
ffiffiffiffiffiffiffiffiffiffi
ŝ2

xŝ2
y

q

where ŝx;y is the estimated genetic covariance between traits x and y, ŝ2
x is the estimated addi-

tive genetic variance for the xth trait and ŝ2
y is the estimated additive genetic variance for the

yth trait. Accuracies of breeding values were estimated as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
PEV

ð1þ FiÞs
2
a

r

where PEV is prediction error variance and Fi is inbreeding coefficient of ith individual [39].

The effect of inbreeding depression on traits’ performance was investigated through compari-

son of phenotype distributions for outbred individuals vs. selfs. The difference between means

was tested with Welch’s t-test [40]. Effective population size of the sample was estimated in

terms of the number of founder genome equivalents [41] as follows:

Nge ¼
1

cTAc

where A is relationship matrix inferred from either the documented pedigree or the sib-ship
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reconstruction, c is vector of contribution where contributions were set equally for each indi-

vidual as 1/n.

Results

The EUChip60k [32] provided 4,315 polymorphic SNPs which passed our proposed filter for

the E. nitens population. From within these, 500 random SNPs were selected for sib-ship analy-

sis. The sib-ship reconstruction was performed in the COLONY package [35] and recovered:

9,932 pairwise half-sib, 334 pairwise full-sib, 368 self half-sib, 81 self full-sib pairs and 27 indi-

viduals derived from selfing. This was then compared with 3,248 pairwise half-sib, 684 pair-

wise first cousins, 959 pairwise second cousins and no selfing based on the documented

pedigree information alone (Fig 2). The effective population size in term of founder genome

equivalents [41] was estimated to be 196.46 based on documented pedigree and 74.46 based on

sib-ship reconstruction information.

We compared the phenotypic performance of selfs and outbred individuals. Since there is

the assumption that the selfing reduces genetic variance [42], the statistical significance of dif-

ferences between means was tested by a Welch’s t-test [40] which is an appropriate alternative

when the variance equality assumption is not met. Statistically significant differences were

found for DBH, GS1 and GS2 (Fig 3) which indicates that these traits suffer from inbreeding

depression.

Estimated heritabilities were low to moderate, ranging from 0.08 (DBH) to 0.45 (WD) and

from 0.09 (DBH) to 0.34 (WD) in pedigree and sib-ship reconstruction based analyses. The

Fig 2. Relatedness agreement. Agreement in relatedness inferred from the pedigree and from sib-ship

analysis and number of cases detected are given in the lower triangular relationship matrix (including

diagonal) for each scenario.

https://doi.org/10.1371/journal.pone.0185137.g002
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heritability after sib-ship reconstruction decreased in most of the traits with the largest change

from 0.41 to 0.28, observed in TS. By contrast, the heritability of DBH and GS2 increased after

sib-ship reconstruction from 0.08 to 0.09 and from 0.18 to 0.22, respectively (Table 1). Across

all traits, the implementation of information from sib-ship reconstruction improved the preci-

sion of genetic parameters with respect to their standard errors and model fit in terms of AIC.

The accuracy of breeding values increased when recovered relatedness was used to estimate

genetic parameters with the highest effect reached for traits showing an inbreeding depression

effect (DBH, GS1 and GS2 (Fig 3; Table 2)).

When a dominance relationship matrix was included in the model, dominance variance was

uncovered in ST1, ST2, and TS but was only found statistically significant in the last trait

(Table 1). However, the implementation of the dominance matrix did not result in any concur-

rent improvement in genetic parameters, model fit or breeding values accuracy (Tables 1 and 2).

Multivariate analysis based on pedigree information resulted in only a slight improvement

in the accuracy of breeding values compared with results from the univariate analysis (Table 2)

and mostly non-significant genetic correlations with five exceptions between GS1 and GS2;

ST1 and ST2; ST2 and WD; ST1 and WD; TS and GS1 representing high and significant

genetic correlations (Table 3).

The implementation of information from sib-ship reconstruction in multivariate analysis

resulted in mixed results for estimation of genetic correlations, reflecting trends in additive

genetic variance. Traits that showed a decrease in additive genetic variances resulted in

reduced pairwise genetic correlations and vice versa. The highest improvement in genetic cor-

relation estimated using sib-ship information was reached for traits suffering from inbreeding

depression (DBH and GS2) (Table 3). Similarly, the best improvement in breeding values

accuracy when using the multivariate model was achieved when traits suffered from inbreed-

ing depression and traits that had high pairwise genetic correlations.

The effect of sib-ship reconstruction in breeding values ranking was investigated with Pear-

son product moment correlations as well as with comparison of estimated genetic gains. The

correlation between breeding values reached from 0.74 to 0.85 and corresponded to the

changes in estimated genetic gain. The highest impact of sib-ship reconstruction was observed

in DBH where the response to selection increased for 50% compared to pedigree based analysis

Fig 3. Inbreeding depression effect. Comparison of performance between outbred and inbred individuals

after sib-ship reconstruction and Welch t-test p-values; x-axis represents presence (1) or absence (0) of

selfing.

https://doi.org/10.1371/journal.pone.0185137.g003
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(Fig 4). This is most likely the consequence of taking inbreeding depression effect into account

through selfing recognition (Fig 3). Similar pattern was observed also in other traits showing

signs of inbreeding depression but the effect is most obvious under the strongest selection

intensities. The opposite pattern was observed in WD and TS where the reduction in response

to selection is connected to decrease in heritability after sib-ship reconstruction (Table 1).

Discussion

The size, amount and precision of genetic parameter estimates dictates the level of genetic

progress in any breeding activity. Heritability, an essential genetic parameter, is heavily influ-

enced by the principle resemblance between relatives [1] and reliable pedigreed field experi-

ments are crucial to perform an accurate genetic evaluation. In forest trees, however the

flowering seasonality, inequality between genotype contributions to pollination and labor-

intensive nature of performing controlled-pollination at height, prohibits following a pre-

scribed mating design and instead open pollinated experiments are often established [43].

These incomplete open-pollinated pedigrees cause bias in genetic parameter estimates and

prohibits full exploration of genetic variance within the selection procedure.

Pedigree reconstruction [19] has been proven as an efficient tool to convert open pollinated

tests with an incomplete pedigree into pseudo-family tests with complete pedigree information

[8, 10, 23, 25, 44]. However, the method suffers when a large proportion of the fathers come

from exogenous resources outside of the parental population (pollen contamination). Pollen

contamination has the potential to reduce the impact of parental reconstruction on the preci-

sion of genetic parameters. Proper pre-selection of candidates for genotyping is required to

Table 1. Variance components, heritability, their standard errors and Akaike Information Criterion (AIC) estimated on the basis of pedigree infor-

mation, sib-ship reconstruction using only additive relationship matrix (Sib-ship A) and sib-ship reconstruction using additive and dominant rela-

tionship matrix (Sib-ship AD).

Trait Model Additive Dominance Replication Rep(Set) Error h2 AIC

WD Pedigree 314.9 (100.9) NA 29.53 (20.08) 38.71 (23.39) 386.4 (88.83) 0.45 (0.133) 5223.1

Sib-ship A 226.4 (42.33) NA 33.81 (17.70) 13.69 (17.58) 447.6 (38.68) 0.34 (0.054) 5174.5

Sib-ship AD 226.4 (42.32) 0.000 (0.000) 33.81 (17.70) 13.69 (17.58) 447.6 (38.68) 0.34 (0.054) 5176.5

GS1 Pedigree 7.156 (3.350) NA 0.243 (0.534) 0.666 (0.829) 21.79 (3.270) 0.25 (0.112) 2845.5

Sib-ship A 6.676 (1.815) NA 0.151 (0.527) 0.943 (0.851) 21.60 (1.921) 0.24 (0.060) 2827.8

Sib-ship AD 6.676 (1.815) 0.000 (0.000) 0.151 (0.527) 0.943 (0.851) 21.60 (1.921) 0.24 (0.060) 2829.8

GS2 Pedigree 6.941 (4.110) NA 2.613 (1.148) 0.000 (0.000) 31.54 (4.199) 0.18 (0.105) 2989.7

Sib-ship A 8.171 (2.283) NA 2.502 (1.097) 0.000 (0.000) 29.46 (2.474) 0.22 (0.057) 2968.2

Sib-ship AD 8.171 (2.492) 0.00 (0.000) 2.502 (1.097) 0.000 (0.000) 29.46 (2.474) 0.22 (0.057) 2970.2

ST1 Pedigree 0.009 (0.004) NA 0.002 (0.001) 0.000 (0.001) 0.025 (0.004) 0.26 (0.111) -1539.0

Sib-ship A 0.007 (0.002) NA 0.001 (0.001) 0.000 (0.001) 0.026 (0.002) 0.23 (0.058) -1554.5

Sib-ship AD 0.007 (0.002) 0.004 (0.007) 0.001 (0.001) 0.000 (0.001) 0.022 (0.007) 0.22 (0.061) -1552.8

ST2 Pedigree 0.006 (0.005) NA 0.003 (0.002) 0.003 (0.002) 0.042 (0.005) 0.13 (0.010) -1263.6

Sib-ship A 0.006 (0.003) NA 0.002 (0.002) 0.004 (0.002) 0.042 (0.003) 0.12 (0.053) -1269.5

Sib-ship AD 0.006 (0.003) 0.005 (0.011) 0.002 (0.002) 0.004 (0.002) 0.037 (0.010) 0.12 (0.055) -1267.8

DBH Pedigree 25.14 (26.17) NA 0.000 (0.000) 9.031 (7.501) 276.7 (29.44) 0.08 (0.086) 4655.3

Sib-ship A 28.02 (15.65) NA 0.000 (0.000) 10.10 (7.61) 271.6 (21.30) 0.09 (0.052) 4652.5

Sib-ship AD 28.02 (15.65) 0.000 (0.000) 0.000 (0.000) 10.10 (7.608) 271.6 (21.30) 0.09 (0.052) 4654.5

TS Pedigree 0.513 (0.174) NA 0.065 (0.036) 0.025 (0.035) 0.739 (0.157) 0.41 (0.130) 871.7

Sib-ship A 0.345 (0.077) NA 0.048 (0.031) 0.032 (0.035) 0.876 (0.076) 0.28 (0.057) 851.8

Sib-ship AD 0.325 (0.079) 0.426 (0.222) 0.051 (0.032) 0.031 (0.034) 0.480 (0.205) 0.27 (0.058) 851.2

https://doi.org/10.1371/journal.pone.0185137.t001
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reduce contamination rate [45, 46]. Alternatively, use of a polycross can be considered a viable

strategy to reduce pollen contamination to a level efficient for pedigree reconstruction [23].

Our study investigates a third generation of breeding population within the New Zealand

E. nitens breeding program, where only the maternal side of the pedigree was tracked across all

generations. Sib-ship reconstruction recovered the main portion of the pedigree-based half-sib

relationships and also identified pedigree errors. Nevertheless, the methodology can only rec-

ognize major classes of relatedness such as unrelated, half-sib and full-sib pairs [35], which is

not always the case in advanced generation breeding populations. This resulted in the disap-

pearance of the low level relatedness class of first and second cousins and moved them to unre-

lated (in most cases) or to the greater degree of relatedness such as half- and full-sibs (Fig 2).

Table 2. Accuracy of breeding values estimated in single trait model, multi-trait model based on documented pedigree and multi-trait model based

on information from sib-ship reconstruction.

Single trait analyses

Model WD GS1 GS2 ST1 ST2 DBH TS

Pedigree 0.67 0.53 0.44 0.55 0.39 0.33 0.65

Sibship—A 0.70 0.61 0.59 0.60 0.48 0.44 0.66

Sibship—AD 0.70 0.61 0.59 0.59 0.46 0.44 0.64

Multi trait analyses—Pedigree

Model WD GS1 GS2 ST1 ST2 DBH TS

WD X 0.68 0.68 0.69 0.69 0.69 0.68

GS1 0.52 X 0.55 0.57 0.52 0.52 0.60

GS2 0.45 0.54 X NA 0.46 0.47 0.54

ST1 0.62 0.59 NA X 0.55 0.56 0.53

ST2 0.42 0.41 0.40 0.52 X 0.41 0.39

DBH 0.51 0.33 0.33 0.40 0.37 X 0.34

TS 0.66 0.69 0.68 0.65 0.65 0.66 X

Multi trait analyses—Sib-ship reconstruction

Model WD GS1 GS2 ST1 ST2 DBH TS

WD X 0.69 0.70 0.70 0.70 0.70 0.70

GS1 0.60 X 0.62 0.61 0.61 0.61 0.65

GS2 0.59 0.61 X 0.60 0.59 0.59 0.58

ST1 0.63 0.60 0.61 X 0.62 0.62 0.60

ST2 0.51 0.50 0.48 0.60 X 0.50 0.48

DBH 0.46 0.45 0.48 0.49 0.47 X 0.45

TS 0.66 0.69 0.66 0.66 0.66 0.66 X

https://doi.org/10.1371/journal.pone.0185137.t002

Table 3. Pairwise genetic correlations and their standard errors estimated based on information from pedigree (above diagonal) and from sib-ship

reconstruction (below diagonal).

Trait WD GS1 GS2 ST1 ST2 DBH TS

WD 1 0.14 (0.271) -0.12 (0.308) 0.79 (0.170) 0.45 (0.306) 0.63 (0.464) -0.30 (0.216)

GS1 0.00 (0.159) 1 0.97 (0.128) 0.66 (0.272) 0.27 (0.420) -0.20 (0.464) 0.56 (0.265)

GS2 -0.06 (0.164) 0.86 (0.089) 1 NA 0.32 (0.456) -0.21 (0.508) 0.50 (0.308)

ST1 0.63 (0.114) 0.20 (0.189) -0.07 (0.197) 1 0.92 (0.250) 0.39 (0.534) -0.19 (0.265)

ST2 0.55 (0.177) 0.42 (0.234) -0.03 (0.248) 0.95 (0.125) 1 -0.53 (0.659) -0.09 (0.360)

DBH 0.26 (0.230) -0.29 (0.248) -0.53 (0.221) 0.32 (0.290) 0.38 (0.377) 1 -0.08 (0.424)

TS -0.28 (0.137) 0.43 (0.159) 0.24 (0.176) -0.14 (0.174) -0.19 (0.232) -0.05 (0.251) 1

https://doi.org/10.1371/journal.pone.0185137.t003
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Therefore, either scenario does not provide the true relatedness but the sib-ship reconstruction

creates the most likely case. When genetic markers are available for both parental and offspring

population, the parentage rather than sib-ship reconstruction should be considered in the pop-

ulation with a complex pattern of relatedness. In addition, the number of markers used in ped-

igree reconstruction effects the efficiency of the assignment rate. Huisman [36] found at least

200 SNPs should be used in parentage analysis to reach over 99% of assignment rate. However,

the inability to recover the low level relatedness classes did not appear to harm downstream

analyses and the scenarios based on information from sib-ship reconstruction resulted in an

improved model fit in terms of AIC (Table 1). Any of the above mentioned procedure does

not allow the effective tracking of Mendelian sampling to get closer to true relatedness. Many

genetic markers would be needed to make reliable inferences about the Mendelian segregation

[47, 48]. Cappa et al [28] tested different types of molecular markers to construct relatedness

and found the advantage of co-dominant (SSR, SNP) over dominant (DArT) markers in ability

to capture Mendelian segregation. Bush et al [49] proposed family-wise correction to reflect

differences in genetic similarities within each family in mixed mating system based on sparse

set of genetic markers. However, we found this procedure difficult to apply in advanced breed-

ing populations through more complex relatedness which could result in loss of semi-positive

definity of the resulting relationship matrix, a requirement of mixed linear models.

Open pollination lacks inbreeding control and our sib-ship reconstruction recovered 27

individuals (4%) derived from selfing events, which largely contributed to a decrease in effec-

tive population size from 196.46 to 74.46. Selection of such individuals for the next generation

of the breeding population would result in an undesirable increase in inbreeding level when

no control over the paternal contribution is performed. This could potentially result in a con-

siderable decrease of effective population size, needed for the long-term sustainability in

genetic progress. Additionally, higher inbreeding levels may cause inbreeding depression,

which in some populations/traits causes inferior phenotypic expression [50–53].

We investigated the phenotypic performance of individuals derived from selfing compared

with individuals derived from outcrossing (Fig 3). The average performance of selfs compared

with outcrossed progeny was inferior in DBH, GS1 and GS2, but did not affect the

Fig 4. Correspondence of estimated genetic gain and breeding values. Correspondence of genetic gain

and breeding values estimated on the basis of information from pedigree (dashed line) or from sib-ship

reconstruction (solid line); a) Wood density [kg/m3], b) Growth strain 1.4-3 m log [mm], c) Growth strain 3-6 m

log [mm], d) Stiffness 1.4-3 m log [km/s], e) Stiffness 3-6 m log [km/s], f) Diameter at breast height [mm], g)

Tangential air-dry shrinkage average 3-6 m log [%].

https://doi.org/10.1371/journal.pone.0185137.g004
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performance in WD and TS. These results are consistent with a previous study in E. nitens [54]

which found the effect of inbreeding depression present in growth traits but not in wood den-

sity. The presence of inbreeding depression in growth traits was observed even in other Euca-
lyptus species [49]. However the effect of inbreeding depression is issue not only in term of

inferior productivity but also aborted embryos and the survival rate of seedlings [55] which

makes nursery operation less effective. Therefore, the recognition of selfs can be especially

important in multi-trait selection when both types of traits are considered in construction of

selection indexes.

Most of the traits showed a reduction or no change in heritability estimates and no change

in accuracy of breeding values when sib-ship was used, which corresponds with findings in

Vidal et al. [23]. Other studies [8, 9, 27] found a large reduction in additive genetic variance

and heritability after partial pedigree reconstruction but considerable improvement in model

fit. They attributed those results to better dissection of genetic and micro-site environmental

variance when multiple trees are tested at each plot [56]. The opposite pattern was observed in

DBH, GS1 and GS2 where heritability and breeding values accuracy (Tables 1 and 2) as well as

expected response to selection (Fig 4) increased considerably. These three traits highlight the

inferior performance of selfs compared with outbred individuals (Fig 3), which indicates a del-

eterious effect of inbreeding depression. Doerksen and Herbinger [10] found a decrease in

genetic parameters as additive genetic variance and heritability in population showing 3% of

selfs, but they did not find any evidence for the presence of inbreeding depression in their

traits. Therefore, the unrecognized selfing in documented pedigree analysis appears to down-

wardly bias additive genetic variance and heritability estimates in traits showing signs of

inbreeding depression.

The recovery of full-sib families allowed us to construct a dominance relationship matrix,

which was implemented in the mixed model to investigate non-additive genetic variance. Our

analysis identified dominance variance in ST1, ST2, and TS but it was significant only in the

last trait. The implementation of non-additive relationship matrices, especially dominance,

improved the accuracy of genetic parameters in previous studies [57–59]. However, we did not

find any concurrent improvement in model fit or precision of genetic parameters when the

dominance relationship matrix was included in the model. The lack of observable improve-

ment when implementing a dominance matrix is likely caused by the absence of functional

dominance in the genetic architecture of the studied trait [57] or by the lack of higher class of

relatedness in the population needed for reliable exploration of non-additive genetic compo-

nent. The fitting of a non-additive effect through the specific relationship matrices allows the

estimation of genotypic values commonly used in clonal forestry [56, 60, 61]. Along the addi-

tive and dominance relationship matrix, the epistatic relationship matrices can be estimated as

their Hadamard products [62]. However, they were ignored in this study due to lack of related-

ness in the population and small sample size. Additionally, the information from non-additive

genetic components can be useful in decision about mating allocation to increase frequency in

favorite alleles [59].

Multivariate analyses can further improve the precision of genetic parameters through

genetic correlations [63, 64]. Our results showed only small improvements in the accuracy of

breeding values in multivariate analysis which was probably connected to the mostly non-sig-

nificant estimates of genetic correlations and lack of data. The substantial increase in the accu-

racy of breeding values was achieved with ST2 and GS2 likely due to high and significant

genetic correlations with ST1 and GS1, respectively. Therefore, the genetic correlation between

traits must be strong in order to achieve any substantial improvement, otherwise the multivari-

ate analysis can reduce accuracies [64].
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The precision of genetic correlations and the accuracy of breeding value estimates showed

large improvement when information from sib-ship reconstruction was implemented. How-

ever, many genetic correlation estimates decreased and thus remained non-significant. Gener-

ally, about 100 families should be tested to obtain reliable and significant genetic correlations

[65]. The genetic correlation between DBH and GS2 where intermediate, not significant nega-

tive correlation became after sib-ship reconstruction, high negative and significant is the

exception. Therefore, the pattern in estimated genetic correlations reflects the pattern in addi-

tive genetic variances (Tables 1 and 3), and we observed the benefit of sib-ship reconstruction

only in traits showing signs of inbreeding depression (Fig 3).

Overall, the correspondence between breeding values produced in pedigree based and sib-

ship reconstruction based model were between 0.74 and 0.85 (Fig 4) which is rather low com-

pared with the 0.96–0.97 range reported in Vidal et al. [23]. Such discrepancy between breed-

ing values results in changes in individual’s ranking and sib-ship reconstruction provides tool

to achieve improved identification of the genetically superior individuals. Additionally, obtain-

ing more accurate relatedness structure in the population enables more efficient management

of genetic diversity. Hidden relatedness and pedigree errors also have the potential to down-

wardly bias the predictive accuracy in genomic selection evaluation based on the correlation of

estimated breeding values and genomic breeding values when pedigree reconstruction is not

performed before genomic evaluation.

In addition, the estimated response to selection rapidly changed with change in heritability

between investigated strategies. For traits suffering from inbreeding depression such as DBH,

GS1 and GS2, the estimated genetic gain based on the original pedigree was largely underesti-

mated. This was especially the case for DBH where the genetic gain when using sib-ship recon-

struction increased for 50% compared with the scenario based on the original pedigree (Fig 4).

In contrast, the traits showing a decrease in heritability due to hidden relatedness (WD, ST1,

TS), showed an upwardly biased estimate of genetic gain. Such bias in estimated genetic gain

can produce misleading information about the performance of breeding program and mis-

management of selection strategies.

Conclusion

Our analyses showed benefits from sib-ship reconstruction by identification of selfs to investi-

gate the possible detrimental effect of inbreeding depression found in three studied traits. This

allowed us to understand different patterns in genetic parameter changes when information

from sib-ship reconstruction was implemented. Despite only rough inference about related-

ness in advanced breeding populations due to an inability to recover the low classes of related-

ness, sib-ship reconstruction provides a useful tool to recover major categories of relatedness

where parental genomic information is missing. The technique will enable more effective man-

agement of genetic diversity and provide more precise estimates of genetic parameters com-

pared with the previously incomplete documented pedigree.

We found the implementation of sib-ship reconstruction resulted in higher heritability and

genetic correlation estimates and improved accuracy of breeding values in traits showing signs

of inbreeding depression. In traits free of inbreeding depression, the impact of sib-ship recon-

struction was a decrease in heritability and only a negligible improvement in breeding values

accuracy. We found lower correspondence between breeding values estimated from pedigree

and sib-ship reconstruction, which can potentially bias the predictive ability in a genomic eval-

uation and prior pedigree reconstruction is recommended. Sib-ship reconstruction will be very

useful implementation tool for breeders to ensure sufficient genetic diversity is present through

inbreeding identification and eliminate selfs from selection in open-pollinated programs.
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