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Abstract: Twenty-three wheat genotypes were evaluated for stripe and leaf rusts, caused by Puccinia
striiformis f. sp. tritici and Puccinia triticina f. sp. tritici, respectively, at seedling and adult stages
under greenhouses and field conditions during the 2019/2020 and 2020/2021 growing seasons. The
race analysis revealed that 250E254 and TTTST races for stripe and leaf rusts, respectively were
the most aggressive. Eight wheat genotypes (Misr-3, Misr-4, Giza-171, Gemmeiza-12, Lr34/Yr18,
Lr37/Yr17, Lr46/Yr29, and Lr67/Yr46) were resistant to stripe and leaf rusts at seedling and adult stages.
This result was confirmed by identifying the resistance genes: Lr34/Yr18, Lr37/Yr17, Lr46/Yr29, and
Lr67/Yr46 in these genotypes showing their role in the resistance. Sids-14 and Shandweel-1 genotypes
were susceptible to stripe and leaf rusts. Twelve crosses between the two new susceptible wheat
genotypes and the three slow rusting genes (Lr34/Yr18, Lr37/Yr17, and Lr67/Yr46) were conducted.
The frequency distribution of disease severity (%) in F2 plants of the twelve crosses was ranged from
0 to 80%. Resistant F2 plants were selected and the resistance genes were detected. This study is
important for introducing new active resistance genes into the breeding programs and preserving
diversity among recently released wheat genotypes.
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1. Introduction

Wheat (Triticum aestivum L.) is widely cultivated all over the world as a staple food.
Wheat stripe and leaf rusts are caused by Puccinia striiformis f. sp. tritici and Puccinia
triticina f. sp. tritici, respectively. They are the most common wheat diseases due to high
yield losses and poor grain quality in susceptible wheat cultivars, especially at late growing
dates [1,2].

Breeding programs are one of the most cost-effective strategies to control stripe and
leaf rusts. Wheat breeding programs all over the world are incorporating rust resistance
genes into commercial cultivars [3]. Genetic diversity in crops, especially wheat, is essential
in the breeding program to improve the resistance of genotypes to biotic and abiotic stress
conditions. A successful wheat breeding program depends mainly on the types and genetic
variability available in wheat genotypes. The genetic variability is the most important
natural resource in providing the required traits to develop new cultivars [4].
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Breeders can use genetic diversity within adapted lines to choose parents for hybrid
development with the most heterosis and incorporate the desired genes in a suitable
background. Compared to broad genetic diversity, a limited genetic base is a serious
impediment to breeding for various biotic and abiotic stresses. The limited genetic base
of plant germplasm is a matter of concern for many modern plant breeding programs.
However, wheat cultivars developed with larger genetic bases effectively improve the yield
under several agro-climatic environments and resist the dissemination of diseases in new
released cultivars [5].

To date, over 74 leaf rust resistance genes (Lr,s) have been identified, most of them, are
mapped on different chromosomes [6]. The sudden appearances of new virulent races of
the target pathogen have reduced the effectiveness of a significant number of rust resistance
genes. Thus, stacking different resistant genes for stripe and leaf rusts in a given cultivar,
a process called gene pyramiding, helps avoid the rapid breakdown of resistance and
consequently achieve the durability of such resistance [7].

In Egypt, some newly produced wheat cultivars were quickly discarded after widespread
cultivation due to their susceptibility to rusts under field conditions. While, other cultivars
have been used in agriculture for many years, demonstrating suitable and high rust
resistance. During a disease outbreak, most of these cultivars were known for their ability
to impede rusts epidemics and, therefore, reducing disease epidemic rates.

Several kinds of molecular markers analyses have also been developed for genetic
analysis of wheat populations [8]. The genomic structure composition that identifies
essential genes for particular traits and preserves genetic materials for use in plant breeding
was improved by genetic diversity studies using molecular markers [9]. Molecular markers,
based on simple sequence repeats (SSR), are most frequently used for analyzing genetic
diversity, particularly in cereals. These markers appear to be more informative in wheat
than any other marker techniques since they show high polymorphism, co-dominant
inheritance, and good reproducibility [10].

Using resistant cultivars to manage these serious diseases is the most efficient and en-
vironmentally friendly approach. Incorporating resistance genes into adapted germplasms,
is a major goal in most wheat resistance breeding programs. Therefore, the major objectives
were to study the response of 23 wheat genotypes to stripe and leaf rusts at seedling and
adult stages under greenhouses and field conditions, as well as to produce and identify
three combinations of resistant genes to stripe and leaf rusts on certain wheat genotypes.

2. Materials and Methods

Evaluation of 23 wheat genotypes was conducted: (i) At seedling stage in the green-
house, Wheat Dis. Res. Dep., Plant Pathol. Res. Institute, Agricultural Research Center
(ARC), (ii) at an adult stage in the experimental farm of ARC, Sakha, Kafr El-Sheikh gov-
ernorate, during the 2019/20 and 2020/21 growing seasons. The molecular analysis was
carried out in ICARDA Biotechnology Lab, AGERI, Egypt.

2.1. Evaluation of Wheat Genotypes Response to Stripe and Leaf Rusts
2.1.1. At Seedling Stage

The response of 23 wheat genotypes was evaluated against stripe and leaf rusts at
the seedling stage under greenhouse conditions (Table 1). They were evaluated against
the most virulent and frequent races of the stripe and leaf rust pathogens; (6E4, 159E255,
and 250E254) and (STSJT, MTTGT, and TTTST), respectively. Ten seeds from each tested
wheat genotype were grown in plastic pots (6 cm in diameter). Each pot contains a mixture
of soil and peat at a ratio of 1:1 (v:v). Seven-day-old seedlings of the 23 tested wheat
genotypes were inoculated by brushing with urediniospores. Wheat genotypes were
evaluated for stripe rust in the greenhouse of Agric. Res. Station, Sakha. While, they were
evaluated for leaf rust in the greenhouse of Wheat Diseases Res. Dept., Plant Pathol. Res.
Inst., ARC, Giza. The procedures for inoculation were performed following the methods
described by Stakman et al. [11]. Twelve days after planting, a rust reaction was reported.
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The data of stripe rust were scored as an infection type, i.e., 0, 1, 2, 3, 4, 5, and 6 were
considered resistant, while 7, 8, and 9 were susceptible [12]. The data of leaf rust were
scored as an infection type, i.e., 0, 0, 1, and 2 were considered resistant, while 3 and 4 were
susceptible [11].

Table 1. List of the tested wheat genotypes that were used in this study.

No. Genotype Pedigree

1 Misr-1 OASIS/SKAUZ//4*BCN/3/2*PASTOR.CMSSOYO1881T-050M-030Y-
O3OM-30WGY-33M-0Y-0S.

2 Misr-2 SKAUZ/BAV92. CMSS96M0361S-1M-010SY-010M-010SY-8M -0Y-0S.

3 Misr-3 ATTILA*2/PBW65*2//KACHU
CMSS06Y00582T-099TOPM-099Y-099ZTM-099Y-099M-10WGY-0B-0EGY

4 Misr-4 NS-732/HER/3/PRL/SARA//TSI/VEE#5/FRET2/5/WHEAR/SOKOLL

5 Giza-139 HINDI90/KENYA256G.

6 Giza-168 MIL/BUC//Seri CM93046-8M-0Y-0M-2Y-0B

7 Giza-171 Sakha 93/Gemmeiza 9 S.6-1GZ-4GZ-1GZ-2GZ-0S

8 Sakha-61 INIA/RL4220//7CYR”S”. CM15430-2S-2S-0S-0S.

9 Sakha-94 OPATA/RAYON//KAUZ.
CMBW90Y3280-0TOPM-3Y-010M-010M-010Y-10M-015Y-0Y-0AP-0S.

10 Sakha-95
PASTOR//SITE/MO/3/CHEN/AEGILOPS
SQUARROSA(TAUS)//BCN/4/WBLL1CMSA01Y00158S-040P0Y-040M-
030ZTM-040SY-26M-0Y-0SY-0S

11 Gemmeiza-5 VEE”S”/SWM6525. GM4017-1GM-6GM-3GM-0GM.

12 Gemmeiza-7 CMH74A.630/SX//SER182/3/AGENT. GM4611-2GM-3GM-1GM -0GM.

13 Gemmeiza-9 ALD”S”/HUAC”S”//CMH74A.630/SX. GM4583-5GM-1GM-0GM.

14 Gemmeiza-10 MAYA74”S”/0N//160-147/3/BB/GLL/4/CHAT”S”/5/CROW”S”.
GM5820-3GM-1GM-2GM-0GM.

15 Gemmeiza-12 OTUS/3/SARA/THB//VEE. CCMSS97Y00227S-5Y-010M-010Y
-010M-2Y-1M-0Y-0GM

16 Sids-12 BUC//7C/ALD/5/MAYA74/ON//1160-
147/3/BB/GLL/4/CHAT”S”/6/MAYA/VUL-4SD-1SD-1SD-0SD.

17 Sids-13 KAUZ “S”//TSI/SNB”S”.
ICW94-0375-4AP-2AP-030AP-0APS-3AP-0APS-050AP-0AP-0SD.

18 Sids-14 SW8488*2/KUKUNACGSS01Y00081T-099M-099Y-099M-099B-9Y-0B-0SD.

19 Shandaweel-1 SITE/MO/4/NAC/TH.AC//3*PVN/3/MIRLO/BUC
CMSS93B00567S-72Y-010M-010Y-010M-3Y-0M-0THY-0SH

20 Lr34/Yr18 TC*6/P158548(RL6058)

21 Lr37/Yr17 TC*6/VPM (RL6081)

22 Lr46/Yr29 Pavon 76

23 Lr67/Yr46 RL6077

2.1.2. At Adult Stage

The same genotypes were evaluated under field conditions during the 2019/20 and
2020/21 growing seasons. A complete randomized block design with three replications
was used. The experimental unit involved three rows (3 m long and 30 cm apart and 5 g
seed rate for each row). The experiment was surrounded by 1 m allay and 1.5 m belts,
served as a spreader of stripe and leaf rusts susceptible entries, i.e., “Morocco and Triticum
spleta saharences”. Artificial inoculation of the spreader was done using a mixture of the
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three physiological races of stripe and leaf rust pathogens (6E4, 159E255, and 250E254) and
(STSJT, MTTGT, and TTTST), respectively during tillering and elongation stages.

During two consecutive seasons, disease severity was rescored four times (at 10-day
intervals) and represented as a percent leaf area covered with rust pustules. Immune (0),
resistant (R), moderately resistant (MR), moderately susceptible (MS), and susceptible (S)
were the five forms of rust reaction [11]. The obtained data served in the determination of
the final rust severity (FRS%), as outlined by Das et al. [13]. The area under disease progress
curve (AUDPC) was calculated for each genotype according to an equation proposed by
Shaner and Finney [14] as follows:

AUDPC = D [1/2 (Y1 + YK) + Y2 + Y3 + . . . Y (K−1)]

where D = time intervals (days between consecutive records), Y1 + Yk = sum of the first
and the last disease scores, and Y2 + Y3 + . . . . + Y (K−1) = sum of all the in between disease
scores.

2.2. Molecular Markers Experiment
2.2.1. DNA Isolation and PCR Protocol

Isolation of DNA and PCR protocol were carried out in ICARDA Biotechnology Lab,
AGERI, Egypt. The procedures described by Rogers and Bendich [15] were used to extract
DNA from green leaves of seedlings (5–7 days old). The PCR reaction mixture (10 µL)
consisted of DNA template (5 ng), forward and reverse primers (10 pmol), and COSMO
PCR Master Mix (Willowfort). PCR conditions were initiated by denaturation for 5 min at
94 ◦C, followed by 35 cycles (denaturation for 30 s at 94 ◦C, annealing for the 30 s at 55 ◦C
for Lr34/Yr18, 51 ◦C for Lr37/Yr17, and 60 ◦C for Lr46/Yr29 and Lr67/Yr46, and extension
at 72 ◦C for 30 s) and final extension at 72 ◦C for 7 min. PCR products of SSR markers
were loaded onto 2.5% agarose gel. Table 2 shows the primer sequences used to define rust
resistance genes.

Table 2. Names, sequences, and references of specific primers linked to the tested genes used in this study.

Gene Marker Sequence of Primers 5′–3′ Fragment Size Reference

Lr34/Yr18
Cslv34 F GTT GGT TAA GAC TGG TGA TGG

220 Lagudah et al. 2006
Cslv34R GTG TTG CGC AAG TTT GTG A

Lr37/Yr17
Ventriup AGGGGCTACTGACCAAGGCT

285 Helguera et al. 2003
LN2 TGCAGCTACAGCAGTATGTACACAAAA

Lr46/Yr29
Xgwm259F AGG GAA AAG ACA TCT TTT TTT TC

105 William et al. 2003Xgwm259R CGA CCG ACT TCG GGT TC

Lr67/Yr46
CFD71F CAA TAA GTA GGC CGG GAC AA

198 Forrest et al. 2014CFD71R TGT GCC AGT TGA GTT TGC TC

2.2.2. Introgression of Resistant Genes for Stripe and Leaf Rusts in Wheat Genotypes

The resistance genes (Lr34/Yr18, Lr37/Yr17, and Lr67/Yr46) were introgressed into
the wheat genotypes (Sids-14 and Shandweel-1) as follows: (Sids-14 × Lr34/Yr18, Sids-
14 × Lr37/Yr17, and Sids-14 × Lr67/Yr46) and (Shandweel-1 × Lr34/Yr18, Shandweel-1
× Lr37/Yr17, and Shandweel-1 × Lr67/Yr46). All of the genotypes were grown in three
different sowing dates. Crosses were carried out using two wheat genotypes as mother
plants. The F1 seeds were harvested and kept for growing F1 plants in the next seasons
(2020/21) in rows of 4 m long and 30 cm apart, and spaced 30 cm in order to allow the
production of F2 seeds.

Seeds of F1 plants were sown individually in the subsequent growing seasons (2020/2021),
so that each progeny could be examined to estimate their distribution frequencies. All of
the plots were surrounded by a spreader area using a mixture of two highly susceptible
wheat varieties, i.e., Triticum spelta saharensis and Morocco. The spreader wheat plants were



J. Fungi 2021, 7, 622 5 of 18

moistened and dusted with uredospores-powder mixtures of the most prevalent races
of stripe and leaf rust pathogens (6E4, 159E255, and 250E254) and (STSJT, MTTGT, and
TTTST), respectively for inoculation in the field. Inoculation was performed at tillering
and elongation stages [16]. Stripe and leaf rust severities (%) were recorded for each wheat
plant of F2 generation at the first appearance of pustule. Under field conditions, F2 plants
were divided into eight groups based on the severities of stripe and leaf rusts. Disease
severity classes ranged from 0 to 10, 11 to 20, 21 to 30, 31 to 40, 41 to 50, 51 to 60, 61 to
70, and 71 to 80%. The first three classes were classified as having a low disease severity
(resistant), while other classes (more than 30%) were considered as having a high disease
severity (susceptible).

2.2.3. Molecular Markers of F2 Plants

The resistant F2 plants were chosen for DNA isolation and PCR protocol in order to
ensure that genes, Lr34/Yr18, Lr37/Yr17, and Lr67/Yr46, were transferred to F2 plants. DNA
isolation and PCR protocol were done as mentioned in the previous method. The same
primers of the three genes (Table 1) were used to ensure introgression of these genes into
two wheat genotypes, Sids-14 and Shandweel-1.

2.3. Statistical Analysis

The analysis of variance (ANOVA) of the obtained data was performed with the
software package SPSS18. The least significant difference (LSD) at a 5% level of significance
was used to compare the treatment means.

3. Results
3.1. Evaluation of Genotypes against Stripe and Leaf Rusts at Seedling Stage

Responses of 23 wheat genotypes were evaluated against the most aggressive and
frequent races of stripe rust pathogen (6E4, 159E255, and 250E254) and leaf rust pathogen
(STSJT, MTTGT, and TTTST) (Figure 1A,B). As for the stripe rust, out of the 23 tested wheat
genotypes, only 17 genotypes (Misr-3, Misr-4, Giza-139, Giza-168, Giza-171, Sakha-61,
Sakha-94, Sakha-95, Gemmeiza-10, Gemmeiza-12, Sids-13, Sids-14, Shandweel-1, Lr34/Yr18,
Lr37/Yr17, Lr46/Yr29, and Lr67/Yr46) were resistant to all the tested races and showed
low infection type (Figure 1A). While, two wheat genotypes (Misr-1 and Misr-2) were
susceptible against all the tested races and showed high infection type. This result may be
attributed to the appearance of new virulent races such as 159E255 and 250E254, which
are capable of supplanting the resistance of these genotypes. While, the responses of other
wheat genotypes were different. The most aggressive race in supplanting the resistance
in wheat genotypes (Misr-1, Misr-2, Giza-139, Giza-168, Sakha-94, Sakha-95, Gemmeiza-5,
Gemmeiza-7, Gemmeiza-10, Sids-12, and Sids-13) was 250E254.

As for leaf rust, 23 wheat genotypes were tested against the most aggressive and
frequent races of leaf rust pathogen, STSJT, MTTGT, and TTTST (Figure 1B). Out of the 23
tested, only nine wheat genotypes (Misr-3, Misr-4, Giza-171, Sakha-95, Gemmeiza-12, Sids-
14, Lr34/Yr18, Lr37/Yr17, and Lr67/Yr46) were resistant to all the tested races and showed
low infection type. While, three wheat genotypes (Giza-139, Sakha-61, and Gemmeiza-7)
were susceptible against all the tested races and showed high infection type. On the other
hand, the rest of the wheat genotypes showed different responses to the infection with
the tested races. TTTST was the most aggressive race. It could supplant the resistance in
14 wheat genotypes.
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Figure 1. Seedling response of 23 wheat genotypes against the three races of stripe rust (A) and leaf rust (B) at seedling
stage under greenhouse conditions.

3.2. Evaluation of Genotypes against Stripe and Leaf Rusts under Field Conditions

The final rust severity (FRS%) and AUDPC were studied at the adult stage during
the 2019/20 and 2020/21 growing seasons. Results showed that the wheat genotypes
(Misr-3, Misr-4, Giza-139, Giza-171, Sakha-61, Sakha-94, Gemmeiza-10, Gemmeiza-12,
Lr34/Yr18, Lr37/Yr17, Lr46/Yr29, and Lr67/Yr46) exhibited the lowest final stripe rust severity
and AUDPC values (Figure 2A,B). Misr-1, Misr-2, Gemmeiza-7, and Sids-12 showed the
highest FRS (%) and AUDPC values, during the two seasons. The responses of other
wheat genotypes (Giza-168, Sakha-95, Gemmeiza-7, Gemmeiza-9, Sids-13, Sids-14, and
Shandweel-1) ranged from 17.33–40 for FRS% and 242.65 to 725 for AUDPC.
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Figure 2. Final rust severity (%) (A) and AUDPC (B) of 23 wheat genotypes against stripe rust under
field conditions at Kafr El-Sheikh governorate, during the 2019/20 and 2020/21 growing seasons.

As for leaf rust, 16 wheat genotypes (Misr-1, Misr-2, Misr-3, Misr-4, Giza-168, Giza-
171, Sakha-94, Sakha-95, Gemmeiza-12, Sids-12, Sids-13, Sids-14, Lr34/Yr18, Lr37/Yr17,
Lr46/Yr29, and Lr67/Yr46) showed the lowest final leaf rust severity and AUDPC values
during the two seasons (Figure 3A,B). Giza-139, Sakha-61, Gemmeiza-5, Gemmeiza-7,
Gemmeiza-9, Gemmeiza-10, and Shandweel-1 exhibited the highest final rust severity and
AUDPC values (Figure 3A,B).

It can be concluded that eight wheat genotypes (Misr-3, Misr-4, Giza-171, Gemmeiza-
12, Lr34/Yr18, Lr37/Yr17, Lr46/Yr29, and Lr67/Yr46) were resistant to stripe and leaf rusts
at seedling and adult stages, during the 2019/20 and 2020/21 growing seasons. Sakha-94
was resistant at the adult stage only during the two seasons.
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3.3. Identification of Resistance Genes of Stripe and Leaf Rusts in Wheat Genotypes Using
Molecular Markers

Resistance genes play an important role in wheat resistance to stripe and leaf rusts.
Results of the present investigation clearly show the advantage of molecular markers for
evaluating resistance genes in wheat genotypes compared to pedigree data.

Nineteen wheat genotypes (Misr-1, Misr-2, Misr-3, Misr-4, Giza-139, Giza-168, Giza-
171, Sakha-61, Sakha-94, Sakha-95, Gemmeiza-5, Gemmeiza-7, Gemmeiza-9, Gemmeiza-
10, Gemmeiza-12, Sids-12, Sids-13, Sids-14, and Shandweel-1) were used for detection
of Lr34/Yr18, Lr37/Yr18, Lr46/Yr29, and Lr67/Yr46 genes using molecular markers. The
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polymorphic survey revealed that out of the 19 wheat genotypes, the marker for Lr34/Yr18
was identified as a fragment of 220 bp in 10 genotypes (Misr-3, Misr-4, Misr-2, Misr-1,
Sids-13, Gemmeiza-12, Sakha-94, Giza-168, Gia-171, and Giza-139), while Lr34/Yr18 was not
found in nine genotypes (Sids-12, Sids-14, Sakha-61, Sakha-95, Gemmeiza-5, Gemmeiza-
7, Gemmeiza-9, Gemmeiza-10, and Shandweel-1) (Figure 4). The Lr34/Yr18 gene was
characterized as a slow rusting resistance gene.
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Figure 4. Electrophoretic amplified pattern of DNA extracted from 19 wheat genotypes using the
specific primer for Lr34/Yr18. Lane 1 = Misr-3, Lane 2 = Misr-4, Lane 3 = Misr-2, Lane 4 = Misr-1, Lane
5 = Sids-13, Lane 6 = Gemmeiza-9, Lane 7 = Gemmeiza-12, Lane 8 = Sakha-94, Lane 9 = Sakha-95,
Lane 10 = Giza-168, Lane 11 = Gia-171, Lane 12 = Giza-139, Lane 13 = Sids-12, Lane 14 = Sakha-61,
Lane 15 = Sids-14, Lane 16 = Gemmeiza-5, Lane 17 = Gemmeiza-7, Lane 18 = Gemmeiza-10, and Lane
19 = Shandweel-1.

The marker of Lr37/Yr17 was identified as a fragment of 285 bp in four genotypes,
Misr-4, Misr-3, Gemmeiza-12, and Giza-171. This result explains the reason for resistance
in these genotypes at seedling and adult stages for stripe and leaf rusts. Lr37/Yr17 was not
found in 15 genotypes, i.e., Misr-1, Misr-2, Giza-139, Giza-168, Sakha-61, Sakha-94, Sakha-
95, Gemmeiza-5, Gemmeiza-7, Gemmeiza-9, Gemmeiza-10, Sids-12, Sids-13, Sids-14, and
Shandweel-1 (Figure 5). Likewise, Lr46/Yr29 was detected in all the tested genotypes except
Gemmeiza-7 (Figure 6). Therefore, the 18 tested genotypes are carrying the resistance gene
Lr46/Yr29. This gene was considered a slow rusting, which explains why certain genotypes
are vulnerable to infection while still producing a high yield.
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Figure 5. Electrophoretic amplified pattern of DNA extracted from 19 wheat genotypes using the
specific primer of Lr37/Yr17. Lane 1 = Misr-3, Lane 2 = Misr-4, Lane 3 = Misr-2, Lane 4 = Misr-1, Lane
5 = Sids-13, Lane 6 = Gemmeiza-9, Lane 7 = Gemmeiza-12, Lane 8 = Sakha-94, Lane 9 = Sakha-95,
Lane 10 = Giza-168, Lane 11 = Gia-171, Lane 12 = Giza-139, Lane 13 = Sids-12, Lane 14 = Sakha-61,
Lane 15 = Sids-14, Lane 16 = Gemmeiza-5, Lane 17 = Gemmeiza-7, Lane 18 = Gemmeiza-10, and Lane
19 = Shandweel-1.
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Figure 6. Electrophoretic amplified pattern of DNA extracted from 19 wheat genotypes using the
specific primer of Lr46/Yr29. Lane 1 = Misr-3, Lane 2 = Misr-4, Lane 3 = Misr-2, Lane 4 = Misr-1, Lane
5 = Sids-13, Lane 6 = Gemmeiza-9, Lane 7 = Gemmeiza-12, Lane 8 = Sakha-94, Lane 9 = Sakha-95,
Lane 10 = Giza-168, Lane 11 = Gia-171, Lane 12 = Giza-139, Lane 13 = Sids-12, Lane 14 = Sakha-61,
Lane 15 = Sids-14, Lane 16 = Gemmeiza-5, Lane 17 = Gemmeiza-7, Lane 18 = Gemmeiza-10, and Lane
19 = Shandweel-1.
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The marker for Lr67/Yr46 was detected as a fragment of 198 bp in 16 genotypes (Misr-3,
Misr-4, Misr-2, Misr-1, Gemmeiza-9, Gemmeiza-12, Sakha-94, Sakha-95, Giza-168, Gia-171,
Giza-139, Sids-12, Sids-13, Sakha-61, Gemmeiza-5, and Gemmeiza-7). Lr67/Yr46 was not
found in three genotypes, Sids-14, Gemmeiza-10, and Shandweel-1 (Figure 7). It can be
concluded that there are four genotypes (Misr-3, Misr-4, Giza-171, and Gemmeiza-12)
carrying the four genes under study. They fell into one group through the polygenic tree
(Figure 8). While, the genotypes, Sids-14, Sahndweel-1, and Gemmeiza-7 carry one gene
and fall into another group through the polygenic tree (Figure 8).

These results illustrate the importance of pyramiding genes as a strategy to get longer-
lasting tolerance with low genetic diversity, high gene flow, and asexual mating systems.
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Figure 7. Electrophoretic amplified pattern of DNA extracted from 19 wheat genotypes using the
specific primer of Lr67/Yr46. Lane 1 = Misr-3, Lane 2 = Misr-4, Lane 3 = Misr-2, Lane 4 = Misr-1, Lane
5 = Sids-13, Lane 6 = Gemmeiza-9, Lane 7 = Gemmeiza-12, Lane 8 = Sakha-94, Lane 9 = Sakha-95,
Lane 10 = Giza-168, Lane 11 = Gia-171, Lane 12 = Giza-139, Lane 13 = Sids-12, Lane 14 = Sakha-61,
Lane 15 = Sids-14, Lane 16 = Gemmeiza-5, Lane 17 = Gemmeiza-7, Lane 18 = Gemmeiza-10, and Lane
19 = Shandweel-1.
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3.4. Introgression of Three Slow-Rusting Genes into the Two Wheat Genotypes

The resistance of newly released wheat genotypes such as Sids-14 and Shandweel-1
has rapidly lost its potency and these genotypes become susceptible in a short period due
to the sudden emergency of the new and more aggressive races of the causal pathogens.
Lr46/Yr29, a slow-rusting gene found in these genotypes, may be used in combination with
other slow-rusting genes to produce elevated levels of APR to stripe and leaf rusts in wheat.
Therefore, the wheat genotypes Sids-14 and Shandweel-1 with varying degrees of stripe and
leaf rust severities and six F2 plants for each disease were used in this research. F2 plants
were obtained from half diallel crosses between these genotypes and slow rusting genes
Lr34/Yr18, Lr37/Yr17, and Lr67/Yr46. The obtained data are subjected to qualitative genetic
analysis based on the response of the tested parents and F2 populations to stripe and leaf
rusts at the adult plant stage, under field conditions. Data illustrated in Figures 9 and 10
indicate that the two wheat genotypes, Sids-14 and Shandweel-1, consistently expressed
susceptibility to stripe and leaf rusts. While, the three wheat parents showed varied levels
of resistance to stripe and leaf rusts. For the twelve crosses, the frequency distribution of
disease severity of F2 plants ranged from 0 to 80%. The resistant F2 plants were selected and
the transferred genes were detected. The three genes, Lr34/Yr18, Lr37/Yr17, and Lr67/Yr46,
were identified in F2 plants as fragments 220, 285, and 198 bp, respectively (Figure 11).
Therefore, these results can be used to reduce the resistance breeding period for these
genotypes. Finally, the grain yield of selected plants was evaluated.
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Figure 10. Frequency distribution of stripe and leaf rust severities (%) to Shandweel-1 × Lr34/Yr18 (A), Shandweel-1 ×
Lr37/Yr17 (B), and Shandweel-1 × Lr67/Yr46 (C) for leaf rust and Shandweel-1 × Lr34/Yr18 (D), Shandweel-1 × Lr37/Yr17
(E), and Shandweel-1 × Lr67/Yr46 (F) for stripe rust.
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4. Discussion

Breeding programs are one of the most cost-effective strategies to control stripe and
leaf rusts. Wheat breeding programs all over the world are incorporating rust resistance
genes into commercial cultivars [3]. A successful wheat breeding program depends mainly
on the types and genetic variability available in wheat genotypes. The genetic variability
is the most important natural resource in providing the required traits to develop new
cultivars [4]. Genetic analysis has been extensively used to determine the gene action and
system controlling the quantitatively inherited characters [17,18]. Qualitative resistance
mediated by a single resistant gene, also known as major gene resistance (MGR), and race
specific resistance are the two main types of host-genetic resistance. Quantitative resistance
is controlled by a large number of minor genes for resistance, which have an additive
impact. Adult plant resistance (APR), race non-specific, slow-rusting resistance, and partial
resistance (PR) are all synonyms [19].

Responses of 23 wheat genotypes were evaluated against the most aggressive and
frequent races of stripe rust (6E4, 159E255, and 250E254) and leaf rust (STSJT, MTTGT, and
TTTST) at seedling and adult stages. At seedling stage, six wheat genotypes (Misr-3, Misr-4,
Giza-171, Sakha-95, Gemmeiza-12, and Sids-14) were resistant to all the tested races and
showed low infection type for the two diseases. While, two wheat genotypes (Misr-1 and
Misr-2) were susceptible against all the tested races and showed high infection type of stripe
rust. These results differed from Abdelaal et al. [20], who showed that Misr-1 and Misr-2
were resistant at seedling stage during the 2012/13 and 2013/14 seasons. This result may
be attributed to the appearance of new virulent races such as 159E255 and 250E254, which
were capable of supplanting the resistance of these genotypes. The most aggressive races
in breaking the resistance in wheat genotypes (Misr-1, Misr-2, Gemmeiza-5, Gemmeiza-7,
Gemmeiza-9, and Sids-12) were 250E254 and 159E255. Moreover, race TTTST of leaf rust
was the most aggressive race. It was able to break the resistance in 14 wheat genotypes.
Since rust inoculum comes in Egypt each year from outside sources and is moved from
one region to another in the same year, this work should be continued [21].
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Under field conditions, the four wheat genotypes Misr-3, Misr-4, Gemmeiza-12, and
Gia-171 displayed strong and high levels of adult plant resistance of the two diseases under
study. Misr-1, Misr-2, Gemmeiza-7, and Sids-12 showed the highest FRS (%) and AUDPC
values of stripe rust. This result was inconsistent with Abdelaal et al. [20] who showed
that Misr-1 and Misr-2 were resistant at adult stage during the 2012/13 and 2013/14
seasons. Moreover, Esmail et al. [22] reported that Misr-1 and Misr-2 were resistant at
Nubaria and Kafrelsheikha locations during the 2017/18 season. The reason for supplanting
the resistance could be attributed to the appearance of new races of the pathogen [23].
Additionally, Gemmeiza-9 and Gemmeiza-10 exhibited the highest FRS and AUDPC
values of leaf rust. In contrast, Abdelbacki et al. [24,25] mentioned that Gemmeiza-9 and
Gemmeiza-10 were resistant at adult stage, during the 2010/2011 and 2011/2012 seasons.
This is due to the dynamic nature of the pathogen that led to continuous emergence of
new aggressive races, such as 250E254 and TTTST of stripe and leaf rusts, respectively,
which were able to overcome the newly deployed resistance genes in the released wheat
genotypes: Sakha-95, Sids-14, and Shandweel-1 [26,27].

It was necessary to explain the resistance of the genotypes under study as a result of
the resistance genes which play an important role in the durability of stripe and leaf rusts
resistance in the most cultivated wheat. The findings of the current study specifically show
that molecular markers outperform pedigree data in determining the role of resistance
genes in wheat genotypes, which is consistent with numerous research and reviews [28].
Slow rusting or partial resistance has been shown to last longer than single seedling
resistance [29]. The use of molecular markers established for most genes of stripe and leaf
rusts resistance simplifies the pyramiding of these genes. Future host selection pressure
on the pathogen might be reduced further by rotating genes across time and geography
or by deploying cultivars with different effective resistance genes in various regions.
However, traditional genetic and molecular marker studies will be required to confirm and
extend the current results about the Yr and Lr genes, which are important for stripe and
leaf rusts resistance in wheat genotypes in both seedlings and adults. As a result, using
resistant genotypes to manage this serious disease is the most effective and environmentally
sustainable approach. Therefore, incorporating pathogen resistance genes into adapted
genotypes is a key aim in most wheat resistance breeding programs.

The marker for Lr34/Yr18 was identified as a fragment of 220 bp in 10 genotypes
(Misr-3, Misr-4, Misr-2, Misr-1, Sids-13, Gemmeiza-12, Sakha-94, Giza-168, Gia-171, and
Giza-139), whereas it was not detected in nine genotypes (Sids-12, Sids-14, Sakha-61,
Sakha-95, Gemmeiza-5, Gemmeiza-7, Gemmeiza-9, Gemmeiza-10, and Shandweel-1). This
gene was characterized as a slow rusting resistance gene and reported to induce durable
resistance than the single seedling resistance [29]. The leaf rust resistance genes (Lr13
and Lr34) were identified in three wheat genotypes (Tijereta, E. Halco, and E. Calandria),
according to German and Kolmer [30]. Likewise, Lr46/Yr29 was considered as slow rusting,
which explains why certain genotypes are vulnerable to infection while still producing a
high yield [31]. Lr46/Yr29 was detected in all the tested genotypes except Gemmeiza-7. The
leaf rust resistance gene Lr37 is closely linked with Yr17 and Sr38 [32]. It was identified
as a fragment of 285 bp in four genotypes (Misr-4, Misr-3, Gemmeiza-12, and Giza-171).
The marker for Lr67/Yr46 was detected in 16 genotypes. Herrera-Foessel et al. [33] had
previously discovered slow rusting resistance genes for leaf and stripe rusts in wheat, Lr67,
and Yr46.

It can be concluded that genotypes Misr-3, Misr-4, Giza-171, and Gemmeiza-12 carry
the four genes under study. They fall into one group through the polygenic tree. This
result explains the reason for resistance in these genotypes for stripe and leaf rusts and
recommended the use of these genotypes as a parental in stripe and leaf rusts resistance
breeding programs. These findings further highlight the significance of pyramiding genes
as a method for achieving long-term tolerance in low genetic diversity, high gene flow, and
asexual mating systems [34]. Therefore, combining multiple successful resistance genes
into a single genotype could help increase the resistance duration.
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The resistance of newly released wheat genotypes such as Sids-14 and Shandweel-1
has rapidly lost its potency and these genotypes become susceptible in a short period due
to the sudden emergency of the new and more aggressive races of P. striiformis f. sp. tritici
and P. triticina f. sp. tritici [35]. Therefore, Sids-14 and Shandweel-1 wheat genotypes
with varying degrees of stripe and leaf rusts severity and six F2 plants obtained from
half diallel crosses between these genotypes and slow rusting genes Lr34/Yr18, Lr37/Yr17,
and Lr67/Yr46 for each disease were used in this research. The resistant F2 plants were
selected and the transferred genes were detected. The three genes: Lr34/Yr18, Lr37/Yr17,
and Lr67/Yr46 were identified in F2 plants as fragments 220, 285, and 198 bp. Thus, these
results can be used to reduce the resistance breeding period for these genotypes.

All of the tested genotypes had similarity between their pedigrees. Therefore, the
identity of the rust resistance genes is essential for the incorporation of new effective
resistance genes into wheat breeding programs and maintenance diversity of resistance
genes in new released wheat genotypes. As a result, plant breeders should not only depend
on the host pedigree, but also consider the pathogen genotype and environment as two
key factors for disease development. Genetic resistance is the most cost-efficient and
successful strategy for minimizing yearly production losses and preventing catastrophic
epidemics. Due to the obvious dynamic nature of rust pathogens, which allows it to
develop new virulent races that may disintegrate or surpass the host genetic resistance,
plant breeders must continually introduce new effective resistance genes to their breeding
materials. Therefore, having more knowledge about the genetic nature and inheritance of
rust resistance is critical for establishing an important first step towards fully using and
exploiting this resistance in wheat breeding programs and making the right decisions.

5. Conclusions

Under field conditions, the four wheat genotypes, Misr-3, Misr-4, Gemmeiza-12,
and Gia-171 displayed strong and high levels of adult plant resistance. This result was
confirmed by detecting more than one gene of resistance to stripe and leaf rusts to achieve
high levels of resistance in these genotypes. Moreover, the resistance was improved in two
new wheat genotypes, Sids-14 and Shandweel-1, by introgression of more than one gene.
This information will be used to make an adequate decision in the future and to plan ahead
for a rust-resistant wheat breeding program.
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