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ABSTRACT

Background. In the last decades, several in vitro studies have tested the effect of plate-
rich plasma (PRP) on the proliferation of human cells in search of a wizard for the
use of PRP in a clinical setting. However, the literature displays striking differences
regarding this question despite the relatively similar experimental design. The aim of
this review is twofold: describe and explain this diversity and suggest basic principles
for further in vitro studies in the field. The optimal platelet concentration in vivo will
also be discussed.

Methods. A search in mainly EMBASE and PubMed was performed to identify in
vitro studies that investigate the effect of different PRP concentrations on human cell
proliferation. The assessment of bias was based on the principles of “Good Cell Culture
Practice” and adapted.

Results. In total, 965 in vitro studies were detected. After the initial screening, 31
studies remained for full-text screening. A total of 16 studies met the criteria of final
inclusion and appeared relatively sound. In general, the studies state consistently that
PRP stimulates the proliferation of the human cell. Two main types of experimental
techniques were detected: 1. The Fixed PRP Concentration Group using a fixed PRP
concentration throughout the experiment, which leads to a substantial decrease in
nutrition available at higher concentrations. 2. The Fixed PRP Volume Group using a
fixed PRP-to-media ratio (Vol/Vol) throughout the experiment. A general tendency
was observed in both groups: when the PRP to media ratio increased (Vol/Vol), the
proliferation rate decreased. Further, The Low Leukocyte group observed a substantial
higher optimal PRP concentration than The High leukocyte group. No prominent
tendencies was seen regarding anticoagulants, activation methods, and blood donor
(age or sex).

Discussion. Two major biases regarding optimal proliferation in vitro is pointed out:
1. Too high PRP volume. It is speculated that the techniques used by some studies led to
an adverse growth condition and even cell starvation at higher concentrations. 2. High
leukocyte levels. Reduced proliferation rate due to proinflammatory substances released
during degranulation of leukocytes.
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Conclusions. The two main biases may explain the bell-shaped effect of PRP and the
detrimental effects at higher platelet concentrations observed in several studies. These
biases may also explain the low optimal PRP concentration observed in some studies.
Even if one universal optimal PRP concentration does not exist, the review indicates
that PRP concentrations in the upper parts of the scale is optimal or at least beneficial.
Finally, following basic experimental principles are suggested. 1: The PRP/media ratio
(Vol/Vol) should be kept as constant. 2: The PRP/media ratio should provide a sufficient
nutrition supply, that is, PRP < 10% (Vol/Vol). 3: The cell density per well (cells/mL)
should be defined. 4: Leukocyte level should be kept low, preferable depleted (< 0.1
PLT/uL).

Subjects Bioengineering, Cell Biology, Dentistry, Hematology, Orthopedics

Keywords Platelet concentrate, Cell proliferation, Platelet-rich plasma, PRP, Proliferation,
Human, In vitro, Growth factor, Platelet lysate

INTRODUCTION

Platelet-rich plasma (PRP) may generally be defined as an autologous concentrate

of platelets in a small volume of plasma obtained by centrifugation of venous

blood (Engebretsen, Steffen ¢~ Alsousou, 2010; Marx, 2004). Originally, PRP was used

for hemostasis during surgery and platelet transfusion for patients with thrombocytopenic
disorders (Gardener, 1974). However, in the last two decades, the application has
expanded to a wide range of medical disciplines, including maxillofacial surgery, dentistry,
dermatology, aesthetic surgery, orthopedics, and sports medicine, among others (Anitua,
Cugat & Sdnchez, 2018; Arshdeep & Kumaran, 2014; Chen et al., 2018; Frautschi et al., 2017;
Lemos et al., 2016).

The biological rationale for the use of PRP is the wound healing and regenerative
properties of the platelets. Platelets hold about 50-80 «-granules that contain hundreds of
bioactive proteins, including a wide range of growth factors (Blair & Flaumenhaft, 2009;
Neumiiller, Ellinger ¢ Wagner, 2015). The most important growth factors in this context
are platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF),
fibroblast growth factor (FGF), transforming growth factor-beta 1 (TGF-f1), epidermal
growth factor (EGF), insulin-like growth factor (IGF), connecting tissue growth factor
(CTGF), and hepatocyte growth factor (HGF) (Dhurat ¢ Sukesh, 2014)

During platelet activation, the a-granules are fused with the membrane of the
open canalicular system (OCS) inside the platelet (Blair & Flaumenhaft, 2009). Here,
the growth factors are processed to the bioactive form before exocytosed through the
platelet membrane. In connection with and parallel to exocytosis, the platelet undergoes
dramatic morphological changes seen in the microscope as increased hyalomere and a
centralized and constricted granulomere, which give the activated platelets the characteristic
pseudopodic/filopodic shape (Twomey et al., 2018). The active growth factors are secreted
and bind to the transmembrane receptors in the cells in the actual tissue area (Antoniades
& Williams, 1983; Schliephake, 2002). This stimulates cell growth, mitogenesis, and
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chemotaxis, which leads to proliferation and extracellular matrix formation, and thus
tissue repair and tissue regeneration. Cells in the mesenchymal linage like osteoblasts,
fibroblasts, endothelial cells, and epidermal cells are particularly responsive to these
growth factors (Blair ¢ Flaumenhaft, 2009; Van der Heiden, Cantley & Thompson, 2009).
The whole process requires a dramatic increase in cellular nutrition uptake (Thompson ¢
Bielska, 2019; Van der Heiden, Cantley ¢ Thompson, 2009). The basic idea of PRP treatment
is to enhance this natural regeneration process through a concentrated dosage of platelets
and increased levels of growth factors compared to peripheral blood levels.
Duringactivation, platelets also release platelet-derived microparticle (PDM) (Neumiiller,
Ellinger &> Wagner, 2015). These membrane generated vesicles, which range from 0.1-
1 pm in diameter, may play a role regarding the generative effect of PRP. Research
indicates that PDM may “stimulate the release of cytokines, activate intracellular signaling
pathways, promote angiogenesis, and are involved in tissue regeneration and cancer
metastasis” (Varon et al., 2012). However, this aspect has not been thematized in the
included studies and will not be investigated further.

The aim
In the last two decades, several in vitro studies have been performed to study the regenerative
effect of PRP on different types of cells in culture and to establish an optimal platelet
concentration in PRP for tissue regeneration. Cell proliferation has been the focus, but
other important aspects in the regenerative process have also been investigated, such as the
effect of PRP on cell migration, gene expression, and exocytosis of extracellular substances,
for example, collagen type I and III, and glycosaminoglycan, among others. However, the
literature displays striking differences regarding the most effective platelet concentration
for proliferation, and other regenerative aspects despite their relatively similar experimental
design. This has led to different clinical recommendations and treatment regimes. Some
consider a high or very high concentration as most beneficial ( Jo et al., 2012), while others
advocate low or moderate platelet concentrations and consider very high concentrations of
PRP to be counterproductive with a potential risk of cell death (Giusti et al., 2014, Kakudo
et al., 2008, Zhou et al., 2016). Both positions refer to different in vitro studies, and the
question of which perspective on PRP concentration is valid is still open (Smith et al., 2019).
Also the PRP production methods and thus the biological and biochemical characteristic
of PRP is varying. Several reviews have incorporated the question regarding the optimal
platelet concentration, but not in a comprehensive way (Liu et al., 2008; Setayesh et al.,
2018; Smith et al., 2019).

Therefore, the aim of this review is twofold:
1. Clarify and explain the inconsistency among in vitro studies regarding the optimal

platelet concentration for proliferation of human cells

2. Suggest basic principles for further in vitro studies

The author will also discuss possible implications for the most effective PRP
concentration in vivo.
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Clarification of concepts

Although the studies often apply the term “PRP concentration” or “platelet concentration,”
PRP was infrequently added directly to the culture wells. After the PRP was processed,
almost all research groups activated, incubated, and centrifuged the PRP to obtain a
supernatant rich in growth factors. This supernatant has been given different names in
platelet
platelet-rich clot releasate,” among others.

2 ¢ 2 ¢

supernatant rich in growth factor,

PRIN{4

the literature, for example, “PRP-releasate,
lysate,” “preparation rich in growth factors,
In this review, “PRP-lysate” will be used in the author’s discussion. The next step in
the experiment was to add the PRP-lysate to the cell culture at various concentrations
corresponding to a given platelet concentration. Thus, the terms “PRP concentration” and
PRP-lysates are used interchangeably in the studies and this review.

REVIEW METHODOLOGY

Search strategy

Initially, a comprehensive search was carried out in EMBASE OvidSP and PubMed.
The search terms used included: “platelet-rich plasma” OR “platelet concentrate*” OR
“thrombocyte concentrate*” AND proliferation AND “in vitro”. Relevant articles found
in references were also added. The search was performed in January 2020 and repeated
in March 2020. The search was limited to peer reviewed literature in English. When the
duplicates in and across the two databases were removed, the records were screened in

accordance with the criteria of inclusion and exclusion.

Criteria of inclusion

The minimum criteria for inclusion were controlled experimental studies testing the effect
of different PRP concentrations on cell proliferation. Nevertheless, several studies also
included other important regenerative parameters such as cell motility and synthesis of
important extracellular substances. These findings are also presented in the review but
are not a main focus. The number of in vitro studies utilizing human cells has grown
substantially in the last two decades. Therefore, only articles based on human cells were
included. Since the effect of different concentrations of platelets is the main focus, only
studies that utilized three different PRP concentrations or more were included.

Criteria of exclusion

A large number studies tested the proliferation effect of PRP in combination or as a
comparison to different types of biomaterials. To achieve a minimum of homogeneity with
respect to experimental design, these studies were excluded. Studies that utilized a low
maximum PRP concentration, here defined as a concentration range lower than threefold
of the baseline of whole blood (WB) or approx. 600 million plt/uL as maximum, were
excluded, for example, De Mos, van der Windt ¢ Jahr, (2008), Atashi et al., (2015), and
partly Cavallo et al., (2014). To be able to make comparisons between the studies, articles
that did not disclose platelet concentrations in plt/nL or fold, but focused solely on the
levels of growth factors (pg/mL) were excluded, for example, Han et al. (2007). The actual
platelet count is also important for the PRP processing in an in vivo setting. Even if cells in
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the mesenchymal line are prioritized, adipocytes were excluded due to a musculoskeletal
focus. However, studies that utilized HUVECs were included since angiogenesis, in general,
is an important aspect of tissue regeneration and because HUVECs often are used as a
laboratory model system for the study of angiogenesis. Some studies included in addition
cell types not directly relevant in a musculoskeletal context. These cell types were included
but not emphasized. Finally, editorials and letters to the editors were also excluded. A
schematic presentation of the search strategy is presented in the PRISMA 2009 Flow
Diagram (Appendix S1).

The included studies will be tabulated and discussed chronologically (by publishing year)
and alphabetically in each year group. A condensed overview of this article is presented in
the PRISMA 2009 Checklist (Appendix S2).

The assessment of risk of biases
For in vitro studies, no standardized international tool of bias assessment exists, although
candidates are developing (Hartung et al., 2019). The author applied as a starting point
the principles of Good Cell Culture Practice (GCCP) (Hartung et al., 2019) and further
developed these principles to the actual field. The principles regarding cell description,
culture media content, and method/reproducibility were especially emphasized. The
following basic parameters were selected as potential areas of biases.

1. Cell type(s)

Cell site origin

Media description

Sample size (number of blood donors)

Number of wells used for testing of each PRP concentration

Duration of PRP exposure

Materials used according to the manufacturers’ instructions

Cell number per well

PRP-to-media ratio
If a study reported or did not report a parameter, a “Yes” or a “No” was noted,

e A A o

respectively. The classification was as follow.

e Studies that reported up to 5 parameters were also classified as “high risk of biases.”
e Studies that reported 6-7 parameters were classified as “moderate risk of biases.”
e Studies that reported 8—9 parameters were classified as “low risk of biases.”

RESULTS

Study selection

In total, 965 records were identified: 426 studies in EMBASE OvidSP, 539 in Pubmed. The
duplicates in the two bases were excluded; the initial number of studies was 525. After the
first screening (title and abstract), 495 studies were excluded, frequently due to the use of
animal cells, no focus on different PRP concentration, or because the design combined PRP
with different types of biomaterials, etc. An additional records were identified in references.
The remaining 31 papers were included for full-text screening, of which 16 papers were
included for the final analysis.
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Risk of bias

In general, the 16 studies appeared relatively sound. Based on the basic bias assessment
criteria mentioned above, no studies were classified as “high risk of biases,” and only 4
studies were classified as “moderate risk of biases” (Haynesworth et al., 2002; Mishra et al.,
2009; Wang et al., 2012; Sadoghi et al., 2013). The remaining 12 studies were classified
as “low risk of biases.” The fifth parameter (Number of wells tested for each PRP
concentration) was the weakest point with a total of 8 negatives (Table 1).

The effects of PRP in vitro: an overview

In general, all the studies consistently report that PRP may increase cell proliferation in
vitro (Table 2). An exception is skin fibroblasts in the study of Anitua et al. (2009). Different
studies assayed different extracellular substances and gene expression, and thus difficult
to compare systematically. Still, three studies observed an increased synthesis of collagen
type I and/or II or HA (Anitua et al., 2009; Jo et al., 2012; Wang et al., 2012). Four studies
observed increased cell motility and invasion at moderate (Berger et al., 2019; Giusti et al.,
20145 Graziani et al., 2006) or relatively high concentration (Rughetti et al., 2008).

Two main types of experimental technique

This review detected two main types of experimental techniques:

1. The Fixed PRP Concentration Group: In six of the studies, a fixed initial PRP
concentration was used. Different concentrations were achieved by varying the PRP-
to-media ratio (Vol/Vol) in which the cells were cultured. Mishra et al. (2009) and Wang
et al. (2019) had similar initial PRP concentration (1.0 and 1.55 x 10° plt/iL, respectively).
They found an increase in proliferation up to 10% PRP and a decrease when a volume of
20% PRP was used. Amable et al. (2014) also observed an increase in cell proliferation up
to 10% PRP and a decline when higher volume concentrations were used. The fixed PRP
concentration was 2.94 & -1.9 x 10°plt/pL. Hsu, Kuo ¢ Tseng (2009), Chen et al. (2018)
and Tavassoli-Hojjati et al. (2016) used an initial PRP concentration of 1.124, 1.0 x 10°
and 1.194 x 10, respectively, and observed a maximal proliferation at 5% PRP. However,
in Hsu, Kuo & Tseng (2009) and Tavassoli-Hojjati et al. (2016), a volume of 10% was not
a part of the coarse test scale, and when the next concentration was tested (15% and 50%
PRP), the proliferation rate declined. Giusti et al. (2014) seem to belong to this group, but
do not clarify the PRP/media ratio (Vol/Vol) and thus difficult to compare to the others
(Valerio et al., 2012). Tt is difficult to compare the studies in an accurate metric manner due
to different initial PRP concentrations and different PRP volume concentrations tested.
Despite heterogeneity, this group loosely indicate that PRP of 5-10% (Vol/Vol) at a platelet
concentration of 1-1.5 x 10° is the most effective in vitro. In general, the technique of this
group leads to a substantial decrease in nutrition available at higher concentrations: when
the PRP concentration (volume) increases, the culture medium (nutrition) will decrease
(Table 3). In the Discussion, I will argue that this experimental technique probably is
encumbered with biases regarding the optimal PRP concentration in vivo.

2. The Fixed PRP Volume Group: The other studies utilized a fixed ratio of PRP to culture
media (Vol/Vol) throughout the experiment, for example, 10%/90% or 20%/80%. Different
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Table 1 Risk of bias assessment.

Study Cell type(s) Cell site Media Number of Number of wells Duration of Materials used Cell number PRP/lysate Risk of bias
tested origin description blood donors tested for each PRP exposure according to per well or cm? to media ratio
PRP concentration manufacturers’
instructions

Haynesworth et al. (2002) Yes Yes Yes No No Yes Yes Yes Yes Moderate
Graziani et al. (2006) Yes Yes Yes Yes 3 Yes Yes Yes Yes Yes Low
Rughetti et al. (2008) Yes Yes Yes Yes 8 Yes 3 Yes Yes Yes No Low
Anitua et al. (2009) Yes Yes Yes Yes 2 No Yes Yes Yes Yes Low

Hsu, Kuo & Tseng (2009) Yes Yes Yes Yes 20 Yes Yes Yes Yes Yes Low
Mishra et al. (2009) Yes No Yes No No Yes Yes Yes Yes Moderate
Chen et al. (2012) Yes Yes Yes Yes 10 Yes Yes Yes Yes Yes Low
Joetal. (2012) Yes Yes Yes Yes 9 Yes Yes Yes Yes Yes Low
Mazzocca et al. (2012) Yes Yes Yes Yes 8 Yes Yes Yes Yes Yes Low
Wang et al. (2012) Yes No Yes Yes 3 No Yes Yes Yes Yes Moderate
Sadoghi et al. (2013) Yes Yes Yes No Yes Yes Yes Yes No Moderate
Amable et al. (2014) Yes Yes Yes Yes 3 pr. pool No Yes Yes Yes Yes Low
Giusti et al. (2014) Yes Yes Yes Yes 3 Yes Yes Yes Yes No Low
Tavassoli-Hojjati et al. (2016) Yes Yes Yes Yes 1 No Yes Yes Yes Yes Low
Berger et al. (2019) Yes Yes Yes Yes 14 No Yes Yes Yes Yes Low
Wang et al. (2019) Yes Yes Yes Yes 8 No Yes Yes Yes Yes Low
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Table 2 Descriptive overview.

Study PRP concentrations tested (plt/ y L or fold of Cell type tested Significant ~ Optimal PRP concentration cell prolif-  Optimal PRP Exocytation and
‘WB) stimulation  eration (Vol/Vol and plt/ it L or fold) concentration cell extracellular matrix
of motility and
cell Invasion (plt/ L L)
prolifera-
tion
HMSC Yes
Haynesworth et al. (2002) 0.625-fold, 1.25-fold, 2.5-fold and 5-fold 10% of 1.6 x 10° (5 folds over baseline)  Not tested Not tested
Fibroblasts Yes
Osteoblasts Yes 33.3% of 2.5 x 2 0.570 x 10°
Lo P I at 2.5x. N TGF- B1
Graziani et al. (2006) 2.5-fold, 3.5-fold and 4.2-5.5-fold (PRP max) 33.3% of 2.5 x Ca 0.570 x 10° 1? rf ‘:farteegdu;t:dz?; SXS)((P%Sm:;;i GF-p
Fibroblasts Yes 33.3% of 2.5 x ~ 0.570 x 106 pres o
Rughetti et al. (2008) 0.3 x10%,0.5 x 10% 0.75 x10%, 1,25 x 10°, Endothelial cells Yes 1.25 x 10° (PRP/media ratio 1.5 x10° (PRP/media ratioun-  Not tested
1.75 x 106, 2.25 x10°, 2.75 x 10°, 3.25 x10°, (umbilical vein) unclear) clear)
4.% 10%,5 x10° and 7 x10°
Fibroblasts (skin) No
o Fibroblasts (synovium) Yes 20% of 0.767 + 95 x 10°and
0-16:£1x10% 0.404 + 39 x 106
Anitua et al. (2009) 0.404 £39x10% and Not tested Significant increase in collagen I and HA
0.767 £95%10°/ L
(2x and 4x of baseline) PRP to media ratio of Fibroblasts (tendon) Yes 20% of 0.767 + 95 x 10%and
20%/80% 0.404 £ 39 x 106
Fibroblasts (PDL)
1 Ko e Tseno 1.124 x 10° plt/p L was added to the wells in con-  Ogteoblast 6 : . .
Hsu, Kuo & Tseng (2009) centrations of 2%, 5%, 15%, and 30% steoblasts Yes 5% of 1.124 x 10° of 5% (Vol/Vol) Not tested (Angiogenesis Inhibitor in PRP)
HUVEC
) , 1 108/ u L(non-activated) added to media at Fibroblasts (skin) Yes . Osteogenic marker RUNx2 doubled. Chondro-
Mishra et al. (2009) ratios of 1%, 5%, 10% and 20% (Vol/Vol) For 10% of 1 x 10 Not tested genic marker Sox-9 mRNA increased tenfold
HMSC only 10% PRP HMSC Yes (HMSC)
Chen et al. (2012) Lysate from PRP of 1.0 x 109 added to media at Dental pulp stem cells Yes 5% of 1.0 x 106 Not tested (Cell differentiation)
ratios of 0%, 1%, 5%, 10% lysate (Vol/Vol)
Joetal. (2012) 0.1,0.2,0.4,0.8,1,2,4, 8 and 16 x10° Tenocytes (rotary cuff) Yes 10% of 4.00 x 108 (CaCly) and Not tested Significant increase in collagen I and III and
10% of 8.00 x 10° (CaCl, + thrombin) glycosamino-glycan
Myocytes Yes 10% of PRPpp: 382.0+/-111.6 x 103
PRPpp: 382.0+/-111.6 x 103/ u L PRPpg: Sient . .
Mazzocca e 3 . Osteoblasts Yes 10% of PRPpg: 472.6+/-224.2 x 103 ignificantly increased growth factors in all three
Mazzocca et al. (2012) 47126§+/.224,z %103/ L PRPyp: 940.1+/-425.8 © DS Not tested PRPs. Highest PRPyp (940.1+/- 425.8 x 103/ 1 L)
X
Tenocytes Yes No significance btw PRPpp, PRPpg and
PRPyp
Wang et al. (2012) 1.2-1.9 x10%/ u L Tenocytes Yes 10% of 1.5-1.9 x 10° (4x) Not tested Significant increased collagen syntesis in 5-1.9
1%, 5% and 10% (Vol/Vol) x10%/ (W L (4x) at 10% PRP2
Sadoghi et al. (2013) 1-, 5-, and 10-fold PRP was obtained by diluting Fibroblasts (rotary cuff) ~ Yes 5-fold ~ 1.25 x 10° Not tested (Cell differentiation)

initial PRP in PPP. The PRP/media ratio is un-
clear.

(PRP/media ratio unclear)

(continued on next page)
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Table 2 (continued)

Study PRP concentrations tested (plt/ (L or fold of Cell type tested Significant  Optimal PRP concentration cell prolif- Optimal PRP Exocytation and
WB) stimulation  eration (Vol/Vol and plt/ L or fold) concentration cell extracellular matrix
of motility and
cell Invasion (plt/ p L)
prolifera-
tion
HMSC (bone marrow)
6 . .
2.941*/-1.9 x10° plt/n L was mlxec_l with culture HMSC (adipose tissue)
Amable et al. (2014) media ( @-MEM) to obtain following PRP con- Yes 10% of 2.94+/-1.9 x 108 Not tested Various reaction to PRP depending on cell type
centrations: 1%, 2.5%, 5%, 10%, 20%, 30%, 40%
and 50% (Vol/Vol) HMSC (Wharton's Jelly)
Giusti et al. (2014) 0.5 x10%, 1 x10%,2 x10%,3 x 10° and 5 x 10/ Tenocytes Yes 0.5 x 10° (PRP/media ratio unclear) 0.5 x10° at 46 h (PRP/media Significant dose-dependent increase in MMP up
ulL ratio unclear) to 5 x10%/ L and collagen I at 1 x 10° and2
%109/ ulL
Tavassoli-Hojjati et al. (2016)  1.194 x10°/ u L diluted in DMEM resulting in Fibroblasts (periodontal ~ Yes 5% of 1.194 x 109 Not tested Not tested
concentration of 0.1%, 5% and 50%. ligament)
6
Berger et al. (2019) Platelet lysate corresponding to platelet levels of Fibroblasts (Achilles, Yes 20% of 0.875 x 10° (Young group) . Not tested
14x, 7x, 3.5, 1.75x and 0.9x of WB patellar, and palmaris) 20% of 3.5 x 105 (OId group) Old group: 3.5 x 10
Wang et al. (2019) Platelet lysate corresponding to 0.2 x 106, 0.5 HMSC (bone marrow) Yes 10% of 1.5 t0 3.0 x 10° Not tested (Cell differentiation)

x10°, 0.8 x105, 1.0 x 106, 1.2 x 105, 1.5 x 10°,
2.0 x10°,2.7 x10°, and 3.0 x 10°
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Table 3 The Fixed PRP Concentration Group.

Study Diluting procedure Fixed PRP concentration Optimal PRP/media
proliferation (plt/ 1 L) ratio (Vol/Vol) for
cell proliferation
Hsu, Kuo & Tseng (2009) PRP of 1.124 x10° plt/u L was added to the wells in concentrations of 2%, 1.124 x10° 5%
5%, 15%, and 30%
Mishra et al. (2009) A standardized PRP containing 1 million plt/ p L was added to the culture at 1.0 x10° 10%
a ratio of 0.1%, 1%, 5%, 10% and 20% (Vol/Vol).
Chen et al. (2012) PRP of 1.0 x 10° plt/u L was added to media («-MEM) at ratios of 0%, 1%, 1.0 x10° 5%
5%, 10% (Vol/Vol)
Wang et al. (2012) 1.25,1.5and 1.9 x10° (mean 1.55 x 10°) was added to the culture at a ratio 1.55 x10° 10%
of 1%, 5% and 10% to media (Vol/Vol)
Tavassoli-Hojjati et al. (2016) Initial PRP contained an average platelet count of 1,194,000/ w L. The 1,194 x10° 5%
concentrations of 0.1%, 5%, and 50% was obtained by diluting initial PRP in
DMEM.
Amable et al. (2014) PRP of 2.94+/-1.9 x 10° plt/p L was mixed with culture media ( «-MEM) to 2.94+/-1.9 x10° 10%
obtain following PRP concentrations: 1%, 2.5%, 5%, 10%, 20%, 30%, 40%
and 50% (Vol/Vol)
Giusti et al. (2014) Initial PRP contained 4.5 x 10° to 6 x 10 plt/ u L. The cells were treated with Appr. 4.5x10° to 6x 10° Not described

PRP-lysate which was diluted in culture medium + 1% FDS to obtain 0.5
x10°, 1 x10°,2 x10°, 3 x10%, and 5 x10° plt/ w L.

PRP concentrations were achieved by diluting the initial PRP-lysate within the chosen
fixed volume of PRP, frequently in MDEM or «-MEM. Variation in PRP-to-media ratio
(Vol/Vol) was limited to the fixed PRP volume. Haynesworth et al. (2002), Jo et al. (2012),
and Wang et al. (2019) used a ratio of 10% PRP (Vol/Vol) and observed an optimal
proliferation rate at 1.6 x10°, 4.0 x10° (fibroblast), and 1.5 x10° plt/pL, respectively.
Similar results found by Rugherti et al. (2008). Anitua et al. (2009) and Berger et al. (2019),
on the other hand, used a PRP volume of 20% and found maximum proliferation rate at
0.767 £ .95 and 0.875 (young group) x 10° plt/uL, respectively—about half of Haynesworth
et al. (2002) and Wang et al. (2019). Graziani et al. (2006) used the highest PRP/media ratio
(33%/67%) and observed maximum proliferation of approx. 0.570 x10° (osteoblast)
and 0.228 x 10° (fibroblast) plt/wL (Tavassoli-Hojjati et al., 2016). Unfortunately, Rughetti
et al. (2008) and Sadoghi et al. (2013) did not clarify the exact ratio, which prevents a full
comparison in the group. Sadoghi et al. found the optimal platelet concentration to be
fivefold, and if we assume an average baseline in WB of 0.25 x10° plt/pL, the maximum
proliferation can be estimated to be 1.25 x 10° plt/pL [45]. When Haynesworth et al. (2002)
increased the PRP-to-media ratio to 20%/80% (Vol/Vol) to obtain a platelet concentration
of 10-fold (3.2 x10° plt/uL), they observed a decrease in the proliferation rate (Hartung
et al., 2019). One trait that emerges in this group is that studies using a fixed volume of PRP
higher than 10% (Vol/Vol) observed lower optimal platelet concentration for proliferation.
Still, Mazzocca et al. (2012) differs from this trait and found that relatively moderate platelet
concentrations as most effective, even if PRP/media ratio of 10%/90% was used (Table 4).

Straum (2020), PeerJ, DOI 10.7717/peerj.10303 10/28


https://peerj.com
http://dx.doi.org/10.7717/peerj.10303

Peer

Table 4 The Fixed PRP Volume Group.

Study

Diluting procedure

Fixed PRP/-
media ratio
(Vol/Vol)

Optimal concentration for prolif-
eration (plt/ n L)

Haynesworth et al. (2002)

Rughetti et al. (2008)

Joetal (2012)

Sadoghi et al. (2013)

Anitua et al. (2009)

Graziani et al. (2006)

Mazzocca et al. (2012)

Berger et al. (2019)

Wang et al. (2019)

The initial PRP contained 1,600 x 10 plt/u L (5fold). PRP-
lysates corresponding to PRP concentrations of 0.625, 1.25, and
2.5 was made by diluting the lysate in MDEM. Each concentra-
tion was added to the media in a ratio of 10%/90% (Vol/Vol)

Initial PRP was activated and diluted in DMEM + 2.5% FCS
(proliferation) or in MDEM only (motility and invasion).
Platelet concentration at 3 x10°, 5 x10°, 7.5 x10°, 1.25 x 10°,
1.75 x10°, 2.25 x 106, 2.75 x 10°, 3.25 x 10, 4 x 10, 5 x 10%
and 7 x 10°plt/ p L was added to the medium

10% activated PRP was added to the culture media (Vol/Vol) at
platelet concentrations of 100, 200, 400, 800, 1000, 2000, 4000,
8000 and 16,000 x10°/ u L.

1-, 5-, and 10-fold PRP was obtained by diluting initial PRP in
PPP. The PRP/media ratio is unclear.

200% and 400% of WB baseline Appr. platelet concentration
of 404 % 39 10° and 767 & 95x 10° added to media ina
20%/80% ratio

Initial PRP contained 800,000-1,37,00 plt/ u L. Maximum PRP-
lysate (PRP-max) was diluted in DMEM to obtain PRP-lysate
containing 250%, 350% over WB baseline

PRP;p (382.0+/-111.6 x 10°plt/ n L)
PRPps (472.6+/-224.2 x10° plt/ p L)
PRPyp (940.1+/-425.8 x10° plt/ p L)

Platelet lysate (PL) was diluted in PPP to obtain lysates corre-
sponding to platelet levels of 14x, 7x, 3.5x, 1.75x and 0.9x of
WB.

Platelet lysate corresponding to 0.2 x10°, 0.5 x10°, 0.8 x 10°,
1.0 x10°, 1.2 x10°, 1.5 x 10%, 2.0 x10°, 2.7 x10°, and 3.0 x10°

10%

Not described
Probably a
constant ratio

10%

Not described

20%

33% (100ul
culture me-
dia and 50ul
PRP-lysate of
any concen-
tration)

10%

20%

10%

1.6 x 10°

1.25 x10°

4.0 x 10°(CaC,)
8.0 x10° (CaC, + trombine)

5-fold

0.767 & .95 x 10°

No sign. difference between PRP
and controls regarding skin fibrob-
lasts

2,5% ca.0.570 x 10° (osteoblast) 1x
ca. 0.228 x 10° (fibroblast)

382.0+/-111.6 x 10° (PRPyp) -
Myocytes

472.6+/-224.2 x 10° ( PRPpg)- Os-
teoblasts

382.0+/-111.6 x 10° (PRPp) -
Tenocytes

Young group: 0.875 x 10°
Old group: 3.5 x 10°
1.5-3.0 x10°

Cell type and cell site origin

This review indicates that the effect of PRP is varying according to cell type. According to
Mishra et al. (2009), HMSC was more responsive to PRP than fibroblasts. Within the frame
of the same experimental design, Graziani et al. (2006) observed that osteoblast was more

receptive to a higher PRP concentration than fibroblasts. According to Jo et al. (2012), the

maximal proliferation rate for fibroblasts and HMSC was 4 x 10® and 8 x 10, respectively.
The cell site origin might also be a factor. Anitua et al. (2009) showed that fibroblasts

from the skin did respond equally to PRP and PPP, while PRP significantly stimulated

the proliferation of fibroblasts from synovium and tendon in a dose-dependent manner.

Regarding tendonal fibroblasts, earlier studies also report that tendons from different sites

have different tissue structures, composition, cell phenotypes, and metabolic characteristics.

Further research is needed to elucidate how different PRP concentrations affect different

types of cells and how the same type of cells harvested from different sites respond.
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PRP preparation method and biological and biochemical
characteristics of PRP

This review clearly states the pronounced heterogeneity regarding PRP preparation
methods. The differences apply to spinning technique, use of anticoagulant, PRP activation
method, and thus biological properties of the final PRP product.

Spinning techniques

Regarding the spinning technique, that is, g-force, spinning time, and, in some extent,
temperature, the diversity makes it almost impossible to compare the studies. In some of
the studies, an ordinary table centrifuge is utilized; others used advanced plateletpheresis
system, and others a commercial centrifuges specialized for PRP production. More
important, five of the studies did not clarify the g-force utilized during the process or
inform only about the RPM (Hsu, Kuo & Tseng, 2009; Mazzocca et al., 20125 Rughetti et al.,
2008; Tavassoli-Hojjati et al., 20165 Wang et al., 2019). Others used a commercial PRP
centrifuges without clarifying the spinning parameters (Haynesworth et al., 2002; Mishra
et al., 2009).

Leukocyte levels and biochemical components in PRP
The leukocyte levels in PRP are of particular importance, especially in vitro, due to possible
host-donor reactions. The reviewed studies can roughly be divided into two groups:

e The High Leukocyte Group—five studies applied PRP with an increased leukocyte level
compared to WB, often incorporating the buffy coat in the PRP. The PRP product in
this group may be characterized as L-PRP (Table 5)

e The Low Leukocyte Group—seven studies applied PRP with a decreased leukocyte level
compared to WB, often using a leukocyte filter or carefully avoiding the buffy coat. The
PRP product in this group may be characterized as P-PRP (Table 6)

Rughetti et al. (2008), Hsu, Kuo ¢ Tseng (2009), and Chen et al. (2012) are excluded in
this comparison because the author is not able to determine the leukocyte characteristics.
Mazzocca et al. (2012) is also excluded due to the large deviation regarding initial PRP
concentrations. As Tables 5 and 6 demonstrate, several studies did not clarify the leukocyte
level in a metrical manner, and the author had to interpret the described PRP protocol
to determine whether the level was decreased or increased compared to WB baseline. A
crucial point in the interpretation is whether the bufty coat was included after the first spin
or not and/or if the leukocytes were removed during the second or eventually third spin.
The studies that utilized and referred to a specific brand of commercial PRP equipment
are a challenge, and the appraisal was based on the manufacturer’s description.

Interestingly, this review shows that the Low Leukocyte Group observed a substantially
higher mean optimal PRP concentration for cell proliferation than the High Leukocyte
Group, 2.7 X 10°, and 0.81 x 10° plt/uL, respectively (Tables 5 and 6). However, there are
substantial variations within each group. In The Low Leukocyte Group, Haynesworth et al.
(2002) observed a relatively high optimal PRP concentration (10% of 1.6 x10%) (Table
5). In The Low Leukocyte Group, Graziani et al. (2006) and Anitua, Cugat ¢ Sdnchez (2018)
and Anitua et al. (2009) observed only 0.570 x 10 ¢ and0.767 £ 95 x 10 ®plt/uL as the
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Table 5 The High Leukocyte Group.

Study Leukocyte characteristic Anti- coagulant Activation method Optimal PRP concentration
(Vol/Vol and plt/ u L or fold)
Haynesworth et al. (2002) Exact leukocyte levels not clarified. Symphony™™ Platelet Concentration System (DePuy High (?) ACD-A Thrombine + CaCl, 10% of 1.6 x 10° (5 folds over baseline)
AcroMed, Raynham, MA)
Mishra et al. (2009) Exact leukocyte levels not clarified. Medtronic Magellan device (Medtronic, Minneapolis High (2) ACD No activation 10% of 1 x 108
MN)
Sadoghi et al. (2013) Exact leukocyte levels not clarified. “While erythrocytes were discarded, the blood High Sodium citrate Thrombine + CaCl, 5-fold ~ 1.25 x 10° (PRP/media ratio unclear)
plasma and a buffy coat of PRP were harvested to prepare PRP”.
Giusti et al. (2014) Exact leukocyte: 1. 17,010, 2. 8100 and 24,000 WBC/u L (Table 1 in the article) High GPD Thrombin + Calcium 0.5 x 10° (PRP/media ratio unclear)
gluconate
Tavassoli-Hojjati et al. (2016) Exact leukocyte levels not clarified. “The whole blood was initially centrifuged at 2,400 High ACD-A CaCl, 5% of 1.194 x 10°

Mean optial PRP concentration

rpm for 10 min to separate red blood cell (RBC) portion from PRP and platelet-poor
plasma. The upper layer of RBC fraction and PRP portion were removed and centrifuged
again at 3,600 rpm for 15 min, and PRP was extracted in a plain collection tube (BD,
United States)”.

0.81 x 10°
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Table 6 The Low Leukocyte Group.

Study Leucocyte characteristic Anti- coagulant Activation methode Optimal PRP concentration Number used
(Vol/Vol and plt/ i L or fold) for calculation
Graziani et al. (2006) Exact leukocyte levels not clarified. “The platelets were automatically Low ACD-A Autologous throm. 33.3% of 2.5x ~ 0.570 x 10° 0.570 x 10°
leukodepleted by negative charged pall filter.” + Ca. gluc.
Anitua et al. (2009) Leukocyte level: <200 PLT /u L (see Table | in their article) “care was Low Sodium citrat CaCl, 20% of 0.767 + 95 x 10%and 0.767 & 95 x 106
taken to avoid the buffy coat.” 0.404 + 39 x 10°
Leukocyte level: Mean RBC and WBC counts reduced from 4.48 =+ 0.31 10% of 4.00 x 10 (Ca. gluc.) 4.00 x 10°
Joetal. (2012) and 6.1  1.56 in whole blood to 0.15 % 0.06 and 0.01 = 0.01 in PRP, Low ACD Ca. gluc. or Throm.+ Ca. gluc. and 10% of 8.00 x 10 (Ca.gluc. .
respectively (P < 001). + throm.) 8.00 x 10
Wang et al. (2012) Exact leukocyte levels not clarified. “Briefly, whole blood was centrifuged Low (2) Sodium citrate CaCl, 10% of 1.5-1.9 x 10° (4x) 1.7 x 108
at 300g for 10 min and the generated blood monocyte layer was further
centrifuged for 10 min and the supernatant was collected.”
Amable et al. (2014) Exact leukocyte levels not clarified. “Briefly, blood harvested in ACD- Low ACD CaCl, 10% of 2.94+/-1.9 x 10° 2.94+/-1.9 x 10°
containing tubes (BD, #364606) was centrifuged during 5 min at 300 g.
After separating the platelet-containing plasma above the buffy coat,...”
6
Berger et al. (2 3 . - . 20% of 0.875 x 10° (Young 0.875 x 10
Berger et al. (2019) Leukocyte level: mean 0.1 x 10° /w L (SD 0.1) (Supplementary material) Low CPD Freeze-and-thaw group) 20% of 3.5 x 105 (Old .
group) 3.5 x 10
Wang et al. (2012) Leukocyte level: 0.37 & 0.14 x 10°/L Leukocyte concentration in PRP sig- Low EDTA Throm. + CaCl, 10% of 1.5-3.0 x 10° 2.25x10°
nificantly lower than that in whole blood (P < 0.001). ( See article Table 2)
Mean optimal PRP concentration 2.7 x 10°
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optimal concentration, respectively. It is worth pointing out that Graziani et al. (2006)
and Anitua, Cugat ¢ Sdnchez (2018) and Anitua et al. (2009) deviate from the rest in this
group, using a higher PRP-to-media ratio, namely 33.3% and 20% (Vol/Vol), respectively.
A similar result is seen in Berger et al. (2010) in the “young group” (Table 6).

Generally, fibrinogen levels are not clarified in the selected studies. An assessment of the
role of fibrinogen in PRP for proliferation in vitro is, therefore, not included in this review.

Anticoagulants and PRP activations

When it comes to anticoagulants, no tendencies or pattern are seen regarding optimal PRP
concentration and proliferation. Different anticoagulant and activation methods are used
in studies that both advocate lower and higher concentrations (Tables 5 and 6). ACD is the
most widely used anticoagulant for the purpose; next are sodium citrate and GPD. Only

one used EDTA.

The activation methods used are thrombin, calcium compounds (CaCl, or
Ca.glyconate), a combination of thrombin and Ca-compounds, or the freeze-and-thaw
method. Only one study did not activate the PRP but applied the PRP directly to the cell
culture (Tables 5 and 6). Jo ef al. (2012) observed substantial higher proliferation rate when
thrombin and calcium gluconate was combined compared to calcium gluconate alone.
However, no clear tendencies or pattern is seen regarding different activation methods and
the optimal PRP concentration (Tables 5 and 6).

Variation due to blood donors (age and gender)
Berger et al. (2019) divided the blood donors in a “young group” (mean age 27 £5) and
an “old group” (mean age of 63 +11) and observed an age-dependent optimal PRP
concentration, 20% of 0.875 x10° and 3.5 x 10 # plt/nL, respectively. These findings
are comparable with Anitua et al. (2009) who used the same PRP volume (20%), cell
type (fibroblasts), and blood donors characterized as “young” (Table 7). The six studies
that involved blood donors with similar age as the “young group” in Berger et al. (2019)
(approx. 25-35 y/o), had a mean optimal PRP concentration of 0.88 x10° plt/pL (Table
7, bold&italic). However, this age-dependence is weakly indicated in the included studies,
because the studies that involved “young” donors applied different PRP-to-media ratio.
Besides, Wang et al. (2019) observed optimal concentration in the range of 1.5-3.0 x 10°
plt/nL with a mean donor age of 39.2 5.8. Also Jo et al. (2012) observed a high optimal
concentration with blood donors of 52.7 £19.2-just slightly over the age limit (50y/o) of
Berger et al. (2019) (Table 7).

Possible differences due to gender cannot be assessed since most of the studies do not
state gender.

DISCUSSION
PRP-to-culture-media ratio: a probable bias

The author hypothesizes that the main course of this difference is due to variations in the
PRP-to-culture-media ratio (Vol/Vol). As seen in The Fixed PRP Concentration Group, the
highest PRP concentrations implied significant lower nutrition levels in the culture wells
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Table 7 Age of blood donors and proliferative response.

Study Number of Age (y.) Gender Cell type Optimal PRP concentration cell proliferation
blood donors blood donor (Vol/Vol and plt/ i L or fold)
Haynesworth et al. (2002) No information No information No information Fibroblasts 10% of 1.6 x 10° (5 folds over baseline)
Graziani et al. (2006) 3 24-29 Yes Fibroblasts 33.3% of 2.5x ~ 0.570 x 10°
Rughetti et al. (2008) 8 No information No information Endothelial cells 1.25 x 106 (PRP/media ratio unclear)
Anitua et al. (2009) 2 “Young” No information Fibroblasts (skin 20% of 0.767 = 95 x 10®and 0.404 + 39 x 10°
and synovium)
Hsu, Kuo & Tseng (2009) 20 29.3+6.5 No information Fibroblasts 5% of 1.124 x 10° of 5% (Vol/Vol)
(PDL)
Mishra et al. (2009) No No information No information Fibroblasts 10% of 1 x 106
(skin)
Joetal. (2012) 9 52.7+£19.2 No information Tenocytes 10% of 4.00 x 10° (CaCl,) and

10% of 8.00 x 108 (CaCl, + thrombin)

Mazzocca et al. (2012) 8 31.6 £ 10.9 No information Tenocytes 10% of PRPy p: 382.0+/-111.6 x 10°
10% of PRPpg: 472.6+/-224.2 X 103

Chen et al. (2012) 10 Pooled No information No information Dental pulp 5% of 1.0 x 10° 5% of 1.124 x 10° of 5%
stem cells (Vol/Vol)
Wang et al. (2012) 3 (24, 26, 41) No information Tenocytes 10% of 1.5-1.9 x 10° (4x)
Mean: 28.3
Sadoghi et al. (2013) No No information No information Unclear 5-fold ~ 1.25 x 10% (PRP/media ratio unclear)
Amable et al. (2014) 3 pr. pool No information No information HMSC 10% of 1 x 10°
Giusti et al. (2014) 3 (52, 30, 50) M:2 Tenocytes 0.5 x 10% (PRP/media ratio unclear)
Mean: 44 E: 1
Tavassoli-Hojjati et al. (2016) 1 No information No information Fibroblasts (pe- 5% of 1.194 x 10°
riodontal liga-
ment)
27+ 5 (Young
. group) M:4, F:2 M: 2 Fibroblasts 20% of 0.875 x 105(Young group)
Berger et al. (2019, , , )
Berger et al. (2019) 14 Pooled ] E6 (Achilles, patel- 20% of 3.5 x 105(01d group)
63411 (Old lar, and pal-
group) maris)
Wang et al. (2012) 8 Individual 39.3+5.8 M: 4 HMSC (bone 10% of 1.5 to 3.0 x 10°
F: 4 marrow)

because of the diluting technique. This point is seen in Hsu, Kuo ¢ Tseng (2009), Amable
et al. (2014) and is particularly obvious in the study of Tavassoli-Hojjati et al. (2016). In the
latter case, PRP (not lysate) corresponding to a platelet concentration of 1,194,000/ L was
mixed with MDEM to process PRP concentrations of 0.1%, 5%, and 50% in which the cells
were cultured. The optimal concentration of 5% contained 45% more nutrition than the
PRP of 50%. A comparable pattern is seen in Giusti et al. (2014), who initially produced
a PRP that contained 4.5 x10° to 6 x10° plt/uL. To make different concentrations of
PRP-lysate, the initial PRP-lysate was diluted in DMEM + 1% FBS. Then, starved cells
were exposed to (i.e., cultured in) the different PRP concentrations. Although a statistical
assessment is not possible, the optimal PRP-lysate of 0.5 x 10 ®plt/pL had significantly
more nutrition than the highest concentration (5 x 10° plt/pL).

The comparable finding is revealed in The Fixed PRP Volume Group. The studies that
advocate moderate platelet concentrations as most effective in inducing cell proliferation
tended to have a higher fixed volume of PRP and, thus, a lower volume of culture media
throughout the experiment. Graziani et al. (2006) used 100 pl media and 50 pl PRP of any
concentrations, which mean a PRP part of 33.3% (Vol/Vol). The PRP-lysate containing
2.5x and 3.5x was diluted in extra DMEM to obtain the appropriate concentration.
The highest concentration—PRP-max (4.2-5.5x )—received no extra MDEM. The cell
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cultures treated with lower platelet concentrations (2.5x and 3.5x) received substantially
more nutrition than the group of PRP-max. This point is also seen in Anitua et al. (2009)
and Berger et al. (2019) who kept the PRP-to-media ratio constant at 20% over 80% and
observed a platelet concentration of 0.767 % .95 and 0.875 (young group) x 10° plt/pL
as most effective—approximately half of what is described in Haynesworth et al. (2002),
Rughetti et al. (2008) and Sadoghi et al. (2013). Compared to Haynesworth et al. (2002), Jo
etal. (2012) and Wang et al. (2019) who utilized a 10/90 ratio (Vol/Vol), Graziani et al.
(2006) and Anitua et al. (2009) used about 23% and 10% less nutrition, respectively.

A tipping point at 10% PRP?
PRP volume over 10% might be critical in vitro. We have already seen that optimal platelet
concentration in both Graziani et al. (2006) and Anitua et al. (2009) was significantly lower
than in those who utilized a PRP concentration of 10% (Vol/Vol). Mishra et al. (2009)
diluted PRP-lysates of 1 million plt/ nL to MDEM at concentrations of 0.1%, 1% 5%, 10%,
and 20% (Vol/Vol) and observed the highest cell proliferation in the 10% PRP media. When
20% of PRP was used, they observed a significant decline in proliferation in the fibroblast
culture. Comparable results were seen in Amable et al. (2014) and Haynesworth et al. (2002)
when 20% PRP was used and Hsu, Kuo ¢ Tseng (2009) when the PRP concentration was
increased from 5% to 15%.However, (Chen et al., 2012) deviates from this prominent
tendency and observed maximal proliferation when 5%, not 10%, PRP was applied
culturing dental pulp stem cells.

These findings are of importance, taking into consideration the dramatic increase
in nutrition requirement that happens when a cell undergoes growth and proliferation
compared to its quiescent state (Palim & Thompson, 2017). A large quantity of nucleotides,
amino acids, and lipids are required when a cell goes from the Sy state into the anabolic
phases and proliferates into two viable daughter cells (Van der Heiden, Cantley &
Thompson, 2009). Therefore, there is reason to speculate that the PRP-to-media ratio
in the studies that advocated a low or moderate platelet concentration resulted in a lack of
cellular nutrition and possible starvation.

Cell density per well

The cell density per well (volume) may also be a bias factor, since an initial higher number
of cells will require more nutrition for a prolonged proliferation and viability. Amable et al.
(2014) and Tavassoli-Hojjati et al. (2016) utilized a 24-wells plate in their experiments,
but seeded 1 x10° and 50 x 10* cells/well, respectively. This may partly explain that the
optimal platelet concentration according to Amable et al. (2014) is 5-6 times higher than
according to Tavassoli-Hojjati et al. (2016) (10% of 2.94 + —1.9 x10° plt/nL versus 5% of
1.194 x10° plt/pL, respectively). With the exception of Amable et al. (2014) and Graziani
et al. (2006), the included studies give no exact information about the cell density per well.
In general, information about type of culture plate (most often “96-wells plate”) and the
number of cells/well or cells/cm? is provided. However, the working volume inside each
well is stretchable and allows for nutrition variation in each experiment. Therefore, the
studies do not allow statistical analysis of this issue (Table 8).
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Table 8 Cell density in culture. The values in al the studies are given in x10°.

Haynesworth et al. (2002)
Graziani et al. (2006)

Rughetti et al. (2008)
Anitua et al. (2009)

Hsu, Kuo & Tseng (2009)
Mishra et al. (2009)
Chen et al. (2012)

Joetal (2012)

Mazzocca et al. (2012)

Wang et al. (2012)

Sadoghi et al. (2013)

Amable et al. (2014)

Giusti et al. (2014)
Tavassoli-Hojjati et al. (2016)
Berger et al. (2019)

Wang et al. (2019)

3 x 10%cells/cm?

1 x10° cells/well into 96-well plates 100ul DMEM + 50
PRP+DMEM/well

1.5 x 10° cells/well into 96-well plates

9.5 x 10 cells/well into 24-well plates (Briefly)
1 x10° cells/well

5 x10° cells/well into 96-wells plate.

2 x10° cells/well into 96-well plates (normal medium)
5 x 10 cells/well into 96-well plates cells/well
(odonto/osteogenic differentiation medium)

1 x10° cells/cm?

2,5 x10° cells/cm?

4 x 10%cells/cm2 into 96-well plates

500 x 10> cells into 6-well plates

6 x 10° cells/mL into 24-well plates

1 x 10°cells/well into a 96-well plate (Briefly)
50x 107 cells/well into five 24-well plates

1 x10? cells/cm? within collagen-coated, multi-well plates
(Corning), using expansion medium

10 x 10%/well into 96-well plates (five wells in each group)

PRP processing method and biases

As often pointed out in the literature, there is no standardized PRP processing protocol.
This heterogeneity in PRP protocol has led to a diversity of PRP products with different
biological and biochemical characteristics. (Dohan Ehrenfest, Rasmusson ¢ Albrektsson,
2009) have systematized different PRP products in four main categories: Pure platelet-rich
plasma (P-PRP), Leukocyte- and platelet-rich plasma (L-PRP), Pure platelet-rich fibrin
(P-PRF), and Leukocyte- and platelet-rich fibrin (L-PRF).

Spinning techniques as a source of bias
As previously said, the studies do not allow a systematic comparison when it comes to
spinning force and time. A main focus regarding g-force and spinning time is to optimize
the platelet yield (concentration) and to achieve high platelet viability. A protocol leading
to a low or moderate PRP concentration may, in vitro, indirectly cause a bias later in the
experiment: A too low or moderate final PRP concentration will force the researchers
into the design of The Fixed PRP Concentration Group if higher concentrations should be
tested—an experimental design that the author considers encumbered with biases. This
seems to be the case in several of the studies in The Fixed PRP Concentration Group.
Amable et al. (2014) and Giusti et al. (2014 ) are exceptions (Table 3). This is also the case in
some of the studies within The Fixed PRP Volume Group when higher PRP concentration
had to be obtained by increasing the PRP volume at the expense of the media volume
(Haynesworth et al., 2002).

Regarding platelet viability, research shows that a too rough spin may activate the
platelets during the process and lead to an early exocytosis of growth factors into the
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plasma, and thus undermine the regenerative effect of the PRP. A centrifuge spin lower

that 3000 g is consider as a soft spin, and most of the studies seemed to utilize a spinning
technique in the soft range. Two studies state a g-force higher than 3000 g (Anitua et al.,
2009; Giusti et al., 2014).

Several studies have addressed the issue of the optimal spinning technique for high
platelet yield, and there seem to be several paths to the goal (Amable et al., 2014; Araki et al.,
20125 Perez et al., 2014). Because of deficient information about the spinning technique in
several of the studies and the limitation of the paper, this subject will not be further treated.

Leukocytes —A deceitful biological component in vitro

The use of autologous leukocyte enriched PRP (L-PRP) for cell proliferation in vivo
has both advocates and opponents (Brubaker et al., 2011; Dohan et al., 2006b; Hsu, Kuo
& Tseng, 2009). In vitro, which generally is heterologous, the presence of leukocytes
seems to represent a bias that prohibits proliferation at higher concentrations. The review
demonstrates that The Low Leukocyte Group observed a substantially higher mean optimal
PRP concentration for cell proliferation than The High Leukocyte Group. However,
Graziani et al. (2007) observed a very low PRP concentration as optimal (0.570 x 10°
plt/uL), and Anitua et al. (2009) found no significant difference between PRP2x (0.404
+ 39 x 10° plt/uL) and PRPmax (0.767 4= 95 x 10° plt/wL). As mentioned previously,
these research teams used a substantially higher PRP-to-media ratio compared to the rest
of the Low Leukocyte Group, 33.3/66.6, and 20/80 (Vol/Vol), respectively. This seems to
underline the importance of a low PRP-to-media ratio to avoid a lack of nutrition and,
thus, best mimic the in vivo condition.

A possible explanation for the difference between The Low Leukocyte Group and The
High Leukocyte Group is that degranulation of the leukocytes induces several substances
that may prohibit proliferation and stimulate apoptosis—especially substances such as
TNF-« and IL-1p, but also proteases and hydrolases, among others (Hsu, Kuo & Tseng,
2009; Jia et al., 2018). Also, Jo et al. (2012), with reference to Zimmermann et al. (2008),
advocate leukocyte-reduced PRP products as most adequate when studying the leukocyte-
independent effects of PRP. The upper leukocyte limit for in vitro studies is difficult to
determine. Pillitteri et al. (2007) found that thrombin-induced IL-1 production could be
detected at as low a level as 1 leukocyte per 5 x 10° platelets, which indicates that leukocyte
depletion is preferable. Unfortunately, the included studies do not allow assessing an exact
upper limit of the leukocyte level for in vitro experiments.

Anticoagulants and activation method

Also, the choice of anticoagulant (Do Amaral et al., 2016), different activation methods
(Berger et al., 2019; Jo et al., 2012; Tavassoli-Hojjati et al., 2016), pH condition (Mishra

et al., 2009), have been thematized in the literature as co-elements that can increase or
decrease the effect of PRP. This review does not illustrate any pattern or tendencies. Tables
5 and 6 show that different activation methods and anticoagulants have been applied in
the studies that measured both a high and low optimal PRP concentration. However, this
review does not exclude these aspects as possible factors.
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Experimental critics and further research
As shown, two main types of experimental technique are utilized: The Fixed PRP
Concentration Group leads to severe variation in nutrition availability in the culture.
On the other side, The Fixed PRP Volume Group kept the nutrition level relatively constant
throughout the experiment by limiting the variation within a smaller ratio. The latter group
should be considered as the most accurate for in vivo conditions. The exact number of cells
per well and the volume of the well are factors that should be appreciated since an initial
smaller number of cells/mL would require less nutrition to proliferate compared to a high
number. Despite the possible benefits in vivo, the author considers leukocytes present in
PRP as a bias in vitro—especially when the PRP is leukocyte enriched (L-PRP). To evaluate
the leukocyte-independent effect of PRP in vitro, the leukocyte levels should be reduced,
preferably depleted.

Based on the above discussion, the following basic experimental principles for further

in vitro studies are recommended.

e The PRP/media ratio should be kept fixed throughout the experiment to minimize
nutritional variations at different PRP concentrations.

e The PRP/media ratio should provide a sufficient nutrition supply to prevent cellular
starvation, that is, PRP < 10% (Vol/Vol). This implies that the initial PRP concentration
should be high since an increase of concentration by increased volume is not
recommended.

e The cell density (cells/mL) should be defined, that is, both the number of cells per well
and nutrition volume should be clarified.

e Leukocyte level should be kept low, preferable depleted (<0.1 plt/pL).

In vivo appraisal

In vitro studies should always be utilized with care. However, since the studies reviewed
above aimed to point out or suggest an ideal platelet concentration in PRP treatment, the
optimal platelet concentration in vivo should be discussed.

According to Van der Heiden, Cantley ¢ Thompson (2009), the cells in multicellular
organisms, including mammals, are normally exposed to a constant flow of nutrition
supply. When PRP is injected in a tissue site and growth factors released, the arterial
and capillary system will provide a constant flow of nutrition. The in vivo situation are,
therefore, markedly different from the in vitro condition in which the nutrition supply is
fixed and limited. In vivo, the growth factors will also gradually be diffused and transported
out of the target area relatively quickly, which leads to a decline in levels of growth factors
within hours, even if the molecular weight of the growth factors is high (6150 kDa)
(Kiritsy, Lynch ¢ Lynch, 1993). Based on these perspectives, The fixed PRP Volume Group
that uses 10% PRP volume at all concentrations, seems to best mimic the conditions in
vivo.

If we pick out the five studies that combined low leukocyte levels with a fixed 10% PRP
volume, the mean optimal PRP concentration for cell proliferation is 3.7 x10° plt/pL.
The median is 2.94 x10° plt/uL (Table 9). Of course, no general or final conclusion can
be drawn from these numbers regarding optimal PRP concentration in vivo. The table
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Table 9 The mean optimal PRP concentration of selected studies. The selection of the studies is based on the two of the four criterias above: PRP
volume <10% and low leukocyte levels.

Study Leucocyte characteristic PRP to media ratio (Vol/Vol) Number used for calculation
Optimal concentration
(plt/ n L or fold)
10% of 4.00 x 10° (Ca. gluc.) and 4.00 x 108
Joetal (2012) Low 10% of 8.00 x 10° (Ca.gluc. + throm.) 8.00 x 10°
Wang et al. (2012) Low (?) 10% of 1.5-1.9 x 10° (4x) 1.7 x 10°
Amable et al. (2014) Low (?) 10% of 2.94+/-1.9 x 10° 2.94+/-1.9 x 10°
Wang et al. (2019) Low 10% of 1.5-3.0 x 10° 2.25x 106
Mean/median platelet concentration for cell proliferation 3.7/2.94 x 10°

is statistically limited, and, as the review has shown, different cell types and tissue sites
respond very differently regarding optimal PRP concentration. However, based on the
above bias considerations, Table 9 might point against higher PRP levels than some of the
“low” and “moderate” studies do.

Still, extremely high platelet concentrations could be inadequate in injection sites where
capillary density is low. Dernek et al. (2017) tested the effect of PRP clinically on knee
osteoarthritis at 1 million plt/ uL (group 1) and 3 million plt/ pL (group 2). Regarding
Western Ontario and McMaster University’s Osteoarthritis Index (WOMAC) scores, both
groups improved significantly, but no significant difference was seen between the groups.
Even if this study is based on a low volume of patients and is not randomized, it indicates
that PRP of 1 million plt/ pL could be sufficient in intra-articular injections due to the low
capillary density in these sites.

In vivo, on the other hand, the ideal leukocyte level is more complicated, and seems
to be both cell-, tissue site-, and disease-dependent. Zhou et al. (2015) argues that L-PRP
might be more beneficial for acute tendon injury, while P-PRP with a moderate leukocyte
level is better suited in tendinopathic situations. However, this issue exceeding the limit of
this paper.

Further research, cell type by cell type, tissue site by tissue site, in vitro and in vivo, is
required to conclude on these questions.

Limitations of this review
This review has several limitations that may pose a risk of possible biases:

Research in the last two decades strongly suggests that not only platelet concentration
but also other biological qualities are crucial in regard to the effect of PRP in vivo (Dohan
et al., 2006a). Especially the role of fibrinogen/fibrin (Dohan et al., 2006a; Dohan et al.,
2006b) and number of monocytes (Dohan et al., 2006¢) have been highlighted as important
co-elements. This review has not incorporated these aspects since several studies have not
metrically clarified other biological properties of the PRP than platelet concentration.

CONCLUSIONS

The in vitro studies here reviewed states almost consistently that PRP stimulates the
proliferation of the human cell. This observation is also the case regarding cell motility and
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exocytosis of several important regenerative extracellular ground substances, for example,
collagen type I and III, HA, and so forth.

The studies diverge severely regarding the optimal PRP concentration for cell
proliferation in vitro, due to different PRP production methods, PRP product
characteristics, culture techniques and cell types and tissue sites. However, two main
biases are pointed out in this review that might explain the detrimental effects at higher

platelet concentrations in some of the studies:

Bias regarding culturing technique

The review reveals two main types of culture techniques utilized: The Fixed PRP
Concentration Group used a fixed PRP concentration and altered the platelet concentration
by adding the different volumes of this PRP-lysate to the culture. The Fixed PRP Volume
Group used a fixed PRP-to-media ratio (Vol/Vol) throughout the experiment and altered
the PRP concentration in the PRP volume. An overall trait is seen: When the PRP
concentration increases, the volume of culture media (nutrition) decreases, and lower
optimal concentration for cell proliferation is observed. This is particularly prominent in
group 1, The Fixed PRP Concentration Group, due to the diluting technique. We hypothesize
that the techniques used by some studies led to adverse growth conditions and even cell
starvation when high platelet concentrations were tested. Due to the constant nutrition
supply and rapid diffusion of growth factors that normally occur in mammal tissue, the
author considers the studies that used a fixed PRP-to-media ratio of 10%/90% (Vol/Vol)
to best mimic the situation in vivo.

Bias regarding The PRP processing method (leukocyte levels)

The review shows that researchers that used a protocol that provided PRP containing low
levels of leukocytes observed a substantial higher optimal mean PRP concentration than
teams in The High Leukocyte Group, possibly due to degranulation of substances in the
leukocytes that prohibiting proliferation and promoting apoptosis.

These two biases may explain the bell-shaped effect of PRP with an optimal concentration
of approx. 1 x10° plt/uL and the detrimental effects at higher platelet concentrations
observed in several studies. The high PRP to media ratio (Vol/Vol) and/or high leukocyte
levels may also explain the relatively low optimal PRP concentration observed in some
studies, for example, Graziani et al. (2006) and Giusti et al. (2014).

No prominent tendencies were seen regarding the use of anticoagulant, activation
method, and blood donor (age and sex) in the studies. However, these aspects should not
be excluded.

If in vitro studies should be a wizard for developing PRP treatment in the future, the

following basic experimental principles are recommended.

e The PRP/media ratio should be kept fixed throughout the experiment to minimize
nutritional variations at different PRP concentrations.

e The PRP/media ratio should provide a sufficient nutrition supply to prevent cellular
starvation, that is, PRP < 10% (Vol/Vol). This implies an initial high PRP concentration
since an increase of concentration by increased PRP volume is not recommended.
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e The cell density (cells/mL) should be defined.
e Leukocyte level should be kept low, preferable depleted (<0.1 plt/pL).

An appraisal of the optimal PRP concentration in vivo is challenging, and the
heterogeneity among the studies do not allow any strong suggestions. If we pick out
the five studies that combined low leukocyte levels with a fixed 10% PRP volume (the
two main biases), the mean optimal PRP concentration for cell proliferation is 3.7 x 10°
plt/iL. The median is 2.94 x 10° plt/pL (Table 9). Of course, no general or final conclusion
can be drawn from this number(s). The table is statistically limited and, as the review
has showed, different cell types and tissue sites might respond different to PRP regarding
optimal concentration. However, based on the above bias considerations and the abundant
nutrition supply in vivo, this review indicates that PRP concentrations in the upper parts
of the scale might be optimal or at least beneficial.

As mentioned in the introduction, several scientists advocate a moderate PRP
concentration in vivo based on a few selected in vitro studies. The author does not
recommend this approach and hope that this review will lead to a more critical and
thorough interpretation of the in vitro studies.

Finally, it is questionable if one single ideal concentration exists. In the future, probably
several optimal PRP concentrations will emerge, based on cell type, tissue site, perhaps age
(Berger et al., 2019) and other factors.
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