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The prevalence of type 2 diabetes in youth has increased
substantially, yet the genetic underpinnings remain largely
unexplored. To identify genetic variants predisposing to
youth-onset type 2 diabetes, we formed ProDiGY, a mul-
tiethnic collaboration of three studies (TODAY, SEARCH,
and T2D-GENES) with 3,006 youth case subjects with
type 2 diabetes (mean age 15.1 = 2.9 years) and 6,061
diabetes-free adult control subjects (mean age 54.2 +
12.4 years). After stratifying by principal component-
clustered ethnicity, we performed association analyses
on ~10 million imputed variants using a generalized lin-
ear mixed model incorporating a genetic relationship
matrix to account for population structure and adjusting
for sex. We identified seven genome-wide significant
loci, including the novel locus rs10992863 in PHF2 (P =
3.2 x 10~%; odds ratio [OR] = 1.23). Known loci identified
in our analysis include rs7903146 in TCF7L2 (P = 8.0 x
10~2% OR 1.58), rs72982988 near MC4R (P = 4.4 x 10~ 1%
OR 1.53), rs200893788 in CDC123 (P = 1.1 x 107 '%; OR
1.32), rs2237892 in KCNQ1 (P = 4.8 x 10~'!; OR 1.59),

rs937589119 in IGF2BP2 (P = 3.1 x 10~°; OR 1.34), and
rs113748381 in SLC16A11 (P = 4.1 x 1075 OR 1.04).
Secondary analysis with 856 diabetes-free youth control
subjects uncovered an additional locus in CPEB2 (P =
3.2 x 10~%; OR 2.1) and consistent direction of effect for
diabetes risk. In conclusion, we identified both known
and novel loci in the first genome-wide association study
of youth-onset type 2 diabetes.

Type 2 diabetes (T2D) is a global epidemic and an ac-
knowledged significant population health issue in adults
(1). However, until recently, T2D was not thought to be
relevant to youth. This paradigm has changed with the rise
in obesity among youth worldwide (2). In the U.S., the
population-based study SEARCH for Diabetes in Youth
showed that the unadjusted incidence rates of T2D in
youth 10-19 years of age increased by 7.1% annually be-
tween 2002 and 2012, with the increase more dramatic in
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minority race and ethnic groups (3). It has become appar-
ent that youth-onset T2D displays an aggressive course
and is associated with greater mortality, earlier complica-
tions, and unfavorable cardiovascular disease risk when
compared with adult-onset T2D or youth-onset type 1 di-
abetes (4-6). These trends, coupled with the limited treat-
ment options for the management of T2D in youth, makes
this an emerging health concern (7).

T2D is a complex disease, influenced by the combina-
tion of genetic, epigenetic, environmental, and behavioral
factors and their interactions (8). The heritability of T2D
in youth is highlighted by the high concordance rates of
T2D in identical twins, the presence of a strong family
history of T2D in affected youth, and the disproportionate
prevalence of T2D in certain racial and ethnic groups, such
as Native American, Hispanic, and African American pop-
ulations (7,9). However, while there have been rapid ad-
vances in the understanding of the genetics of T2D in
adults, our understanding of the genetics underlying youth-
onset T2D has lagged behind (10). While a few studies have
examined candidate genes for T2D in youth, the genetics
of T2D in youth remain largely understudied (11,12).

Progress in Diabetes Genetics in Youth (ProDiGY) is
a collaboration of two pediatric T2D studies, Treatment
Options for Type 2 Diabetes in Adolescents and Youth
(TODAY) and SEARCH for Diabetes in Youth, along
with the Type 2 Diabetes Genetics Exploration by Next-
generation sequencing in multi-Ethnic Samples (T2D-GENES)
consortium, a large collaborative effort to find genetic var-
iants that influence risk of T2D in adults (10). In this
report, we set out to comprehensively examine the genet-
ics of T2D in youth in ProDiGY by comparing subjects from
TODAY and SEARCH with two control cohorts: adults
older than 50 years of age without T2D and youth younger
than 18 years of age without diabetes. We also examined
the effect of known genetic variants associated with T2D
in adults in our youth-onset diabetes cohort.

RESEARCH DESIGN AND METHODS

Description of Participants

ProDiGY is a multiethnic resource that includes data from
>3,000 case subjects with youth-onset T2D and 6,000
diabetes-free adult control subjects with both genome-
wide genotyping and whole-exome sequence data. The
collaboration brings together data from 449 youth with
T2D from the TODAY study as well as data from >2,000
youth with T2D from a TODAY ancillary genetics study.
It also includes data from 468 youth with T2D from
SEARCH for Diabetes in Youth, as well as access to data
from >10,000 adult subjects and 10,000 control subjects
from T2D-GENES (13). The TODAY and SEARCH studies
are described in detail elsewhere (14,15).

Briefly, TODAY was a multicenter randomized con-
trolled trial that enrolled 699 participants (aged 10-17
years) with T2D between 2004 and 2009. Participants
were overweight or had obesity (BMI =85th percentile
for age, sex, and height), with negative pancreatic
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autoantibodies (GAD-65 and tyrosine phosphatase) and
a fasting C-peptide concentration >0.6 ng/mL. Partici-
pants were randomized to one of three arms—metformin
alone, metformin plus rosiglitazone, and metformin plus
lifestyle intervention—and followed on average for 3.86
years. The results of the TODAY clinical trial have been
described elsewhere (7).

TODAY Genetics is an ancillary study of TODAY distinct
from the original clinical trial. To qualify, participants
must have been diagnosed with T2D prior to 18 years of
age and have a documented BMI =85th percentile at the
time of diagnosis. Data and sample collection occurred at
a one-time research visit at 1 of 25 clinical sites. During
this visit, a self-report questionnaire on family and medical
history was administered and blood samples were drawn
for DNA extraction and for analysis of glucose, C-peptide,
and autoantibodies.

SEARCH is a population-based prospective registry
study launched in 2000 that ascertained diabetes in youth
diagnosed at <20 years of age in the U.S. at study centers
located in five states: South Carolina, Ohio, Colorado,
California, and Washington. Youth with T2D were iden-
tified by physician report.

In this study, we examined a total of 3,006 youth from
TODAY, TODAY Genetics, and SEARCH. Additionally, 856
non-Hispanic White and African American youth without
diabetes recruited from Ohio, Colorado, and South Caro-
lina as part of the SEARCH case-control study were used
in this analysis (16). The TODAY and SEARCH protocols
were approved by the institutional review boards of each
participating institution. Participants provided written
informed parental consent and child assent, including
consent and assent specifically for genetic testing.

Samples for the adult control subjects in T2D-GENES
were drawn from 12 studies from T2D-GENES and are
described fully in Supplementary Table 1. T2D status was
determined according to study-specific criteria. A total of
6,061 adult control subjects older than 50 years of age and
free of diabetes were selected from non-Hispanic White,
Hispanic, and African American race/ethnicities to match
the race/ethnicity distribution in the youth subjects. All
individuals provided informed consent, and all samples
were approved for use by their institution’s institutional
review board or ethics committee.

Genotyping, Imputation and Quality Control

Samples for ProDiGY were genotyped on the Infinium
genome-wide association study (GWAS) array, a comple-
ment to the Nexome platform by the Genetic Analysis
Platform at the Broad Institute. The directly genotyped
data were called by using the Autocall algorithm. We im-
puted our genotyped data on the Michigan Imputation
Server against the 1000 Genomes Phase 3 v5 panel as the
reference. All quality control steps were implemented in
PLINK2 and R-3.4. Samples were filtered for sex discrep-
ancies, low sample call rate, and close relatedness; single
nucleotide polymorphisms (SNPs) were filtered for minor
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allele frequency, low SNP call rate, and lack of compliance
with Hardy-Weinberg equilibrium. The imputation thresh-
old (R?) was set at 0.5. Principal component analysis was
performed on the genome-wide identity-by-descent pair-
wise distances in conjunction with complete linkage clus-
tering of individual after merging with 1000 Genomes
data. After cleaning, ~10 million variants were available
for analyses (17).

Statistical Analyses

We performed association tests for T2D using a generalized
linear mixed model (GLMM) with a genetic relationship
matrix to account for population substructure. Covariates
included sex and BMI when available. We used the Efficient
and Parallelizable Association Container Toolbox (EPACTS)
to run GLMM tests to obtain P value estimates and Wald
tests to obtain odds ratio (OR) estimates within each racial
or ethnic group. A total of 898 of the ProDiGY participants
had BMI z-score information. For the purpose of our
analyses, BMI z score was calculated in adults according to
BMI-for-age charts at 20 years using LMS parameters from
https://www.cdc.gov/growthcharts/percentile_data_files
.htm/. To account for the putative effect of BMI, a sensi-
tivity analyses was performed adjusting for sex and BMI z
score in the GLMM. A binomial test was performed to
compare effects of known SNPs associated with T2D in
ProDiGY with data previously reported in adults. A GLMM
was applied for P value estimates by using EPACTS in each
race and ethnic group. Meta-analyses were then conducted
by using METAL to combine results from each racial and
ethnic group. A threshold of P < 5 X 10™® was used to
define genome-wide significance. To fine-map the novel
SNP, a credible set analysis was performed using a Bayesian
approach (18). This method is described in further detail in
the Supplementary Material.

Data and Resource Availability

The data sets generated analyzed in the current study are
available in dbGap (dbGaP Study Accession: phs001511.
v1.pl, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs001511.v1.p1). No applicable
resources were generated or analyzed during the current
study.

RESULTS

Baseline demographics of case and control subjects are
summarized in Table 1. The analyses included 3,006 youth
with T2D and 6,061 adult control subjects who were
selected to be older than 50 years old and free of diabetes.
In secondary analyses, we also conducted a GWAS with
856 youth control subjects without diabetes who were
recruited as part of the SEARCH case-control study. Mean
age of the affected youth was 15.1 * 2.8 years compared
with 54.2 = 12.4 years for the adult control subjects. The
majority of participants were female and non-White. As
expected, the youth had high levels of obesity, with a mean
BMI z score of 2.17 = 0.6 compared with 1.08 * 0.8 for
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Table 1—Baseline demographics of ProDiGY participants

Adult Youth
control control
Case subjects subjects subjects
Total, n 3,006 6,061 856
TODAY 449
TODAY Genetics 2,084
SEARCH 468
Age, years 151 =28 542 *+ 124 14523
Female, % 62 57 52
Race/ethnicity, n (%)
Non-Hispanic
White 664 (22) 1,434 (24) 542 (63)
African American 1,068 (36) 1,068 (18) 314 (37)
Hispanic 1,274 (42) 3,559 (59) 0
BMI z score* 217 = 0.6 1.08 = 0.8 0.61*1.03
TODAY 221+ 0.5
TODAY Genetics N/A
SEARCH 212 = 0.7
Fasting glucose 154.36 = 87.93 = 10.61 84.20 =
(mg/dL) 88.99 8.49
Fasting insulin 31.16 = 26.55 N/A N/A
(wU/mL)
HbA; % 6.75 * N/A N/A
1.86

Data are mean + SD unless otherwise indicated. N/A, not
available. *BMI available in 898 TODAY and SEARCH
participants.

the adult control subjects. Matching of youth subjects with
adult control subjects was successful, as evidenced by
little systematic deviation (A\gc = 1.08) of the observed
distribution from the expected distribution under the
null hypothesis of no association in the quantile-quantile
(QQ) plot (Fig. 14); the QQ plot for youth subjects versus
youth control subjects is comparable and shown in Fig. 1B
()\GC = 109)

Figure 2 shows the Manhattan plot from the trans-
ethnic meta-analysis. We identified seven genome-wide
significant findings, including variants in or near TCF7L2,
MC4R, CDC123, KCNQ1, IGF2BP2, PHF2, and SLC16A11
(Table 2). The association signal in PHF2 is novel, whereas
the remaining six variants have been associated with T2D
in adults; relative effect sizes are compared in Table 2. To
fine-map the region of the novel PHF2 signal, a credible set
analysis was performed (reference). The 99% credible set
contained a total of 38 possible causal variants. The 99%
credible set of variants for this region is summarized in
Supplementary Table 2. In the subset of 898 participants
in whom BMI data were available, signals were attenuated
but remained nominally significant after adjustment for
BMI (Table 3). Association tests for youth subjects versus
youth control subjects identified a novel genome-wide
significant variant, rs2604566 in CPEB2 (P = 3.2 X 1078;
OR 2.1) (Fig. 3). This variant has been shown to be nominally
associated with T2D in adults (OR 1.11; P = 0.014 in Joint
T2D-CHD GWAS) (19).
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Figure 1—A: QQ plot for case subjects with youth-onset T2D vs. adult control subjects without diabetes. The x-axis shows the expected
distribution and the y-axis shows the observed distribution of findings. A\gc = 1.08. B: QQ plot for case subjects with youth-onset T2D vs.
youth control subjects without diabetes. The x-axis shows the expected distribution and the y-axis shows the observed distribution of

findings. A\gc = 1.09.

Our lead SNP rs10992863 in PHF?2 is also associated
with height and BMI (https://t2d.hugeamp.org/variant
html?variant=rs10992863). However, Locus Zoom plots
for height and BMI at this locus demonstrate that
rs10992863 is not the top SNP for height and BMI and
is in modest disequilibrium (** = 0.1282) with rs9650755,
the top SNP for height and BMI in this locus. This suggests
that the youth-onset T2D-associated SNP rs10992863
may also be associated with BMI, but it is not the same
signal. To confirm this, we conducted a colocalization anal-
ysis that shows that rs10992863 (the most significant
SNP for T2D) and rs9650755 (the most significant SNP in
this locus for BMI) are independent of each other

(Supplementary Fig. 1). To test whether the association
of rs10992863 with BMI is primarily driven by the BMI-
associated variant rs9650755, we tested the association of
rs10992863 with BMI in the UK Biobank, conditioning on
rs9650755 (Supplementary Table 3). Our results confirm
that rs10992863 is associated with BMI (P = 5.1 X 10~ %;
B = 0.062), but the association is significantly weakened in
the presence of rs9650755 (P = 2.5 X 1073 B = 0.030).
However, rs9650755 still remained highly significant after
conditioning on rs10992863, with a threefold strength-
ening of the effect size (P = 1.9 X 10~ '*; = 0.090). To
further validate these findings, we performed conditional
analyses of the above SNPs in ProDiGY (Supplementary
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Figure 2—Manhattan plot for youth case subjects with T2D vs. adult control subjects without diabetes. The red horizontal line in the plot
indicates the genome-wide significance P value threshold of 5 X 10~8. The closest genes for the seven genome-wide significant findings are

shown circled in red.
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Table 3—Genome-wide significant findings for subjects with youth-onset T2D vs. adult control subjects with and without adjustment for BMI

Effect Non-effect BMlI-adjusted
SNP Chromosome Position Gene Type allele allele OR P value BMI-adjusted OR P value
rs7903146 10 114758349 TCF7L2 Intron T C 1.52 35x 10" 1.59 2.0 x 10"
rs72982988 18 57802714 MC4R Intron A G 1.55 22 x10°° 1.45 2.9 x10°°
rs200893788 10 12283161 CDC123 Intron T TAGTA 1.35 12 x 1077 1.40 7.6 X 1078
rs2237892 11 2839751 KCNQT1 Intron C T 1.61 3.9x10°° 1.70 54 x10°°
rs10992863 9 185537636 PHF2 Insertion G A 1.33 4.0 x 10°© 1.25 1.2 x 1074
rs937589119 3 96445803 IGF2BP2 Intergenic GT G 1.32 47 x 10°° 1.37 25x10°%
rs113748381 17 6953155 SLC16A11 Intergenic A G 0.99 41 x 1072 0.92 3.6 X 1072

Association tests for 898 case subjects with youth-onset T2D in whom BMI information was available were adjusted for sex and genetic relationship matrix and compared before and after

BMI z-score adjustment.
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Figure 3—Manhattan plot for youth case subjects with T2D vs. youth control subjects without diabetes. The red horizontal line in the plot
indicates the genome-wide significance P value threshold of 5 X 1078, The closest gene for the genome-wide significant finding is shown

circled in red.

Table 3). When we conditioned rs10992863 on rs9650755,
the results remained significant (P = 4.4 X 1078 B =
0.319). However, rs9650755 lost the association with T2D
when conditioned on rs10992863 (P = 0.34; 3 = 0.046),
ruling out that its BMI association is driving the observed
effect on T2D. Altogether, our results confirm that the
association of rs10992863 with T2D in ProDiGY is in-
dependent of the association with BMI and that the
association of rs10992863 with BMI is just a shadow of
the association of the main BMI SNP rs9650755 driven by
its moderate linkage disequilibrium with rs10992863.
Finally, we examined whether variants previously as-
sociated with T2D in adults at genome-wide significant
levels were also associated with youth-onset T2D in
ProDiGY. Association results in ProDiGY for 303 published
variants in adults (20) is shown in Supplementary Table 2.
This analysis revealed substantial consistency in direction
of effects, with 86% of the SNPs showing the same di-
rection of effect for the analyses of youth subjects versus
adult control subjects (binomial test P << 2.2 X 10" %) and
71% of the SNPs showing the same direction of effect for
the analyses of youth subjects versus youth control sub-
jects (binomial test P < 1.3 X 1013 despite limited
power to achieve similar levels of statistical significance.
Sensitivity analyses done with non-Hispanic White samples
also showed a consistent direction of effect (binomial test

P < 2.2 X 10 ' for analyses with adult control subjects
and P < 1.2 X 10~ " for analyses with youth control
subjects).

To further explore the relationship of genetic variants
with youth-onset T2D, we constructed polygenic risk scores
in ProDiGY using risk alleles and effect sizes from known
T2D genetic variants previously identified in adults (20)
(Supplementary Fig. 2). We compared associations of the
polygenic risk score between case subjects with youth-
onset T2D and adult control subjects, youth case and youth
control subjects, and adult subjects with T2D from T2D-
GENES with adult control subjects. In all three scenarios,
we found that the polygenic risk score was significantly
associated with T2D with the same direction of effect
(Table 4). Additionally, we found that the OR for T2D was
higher in the youth case subject versus adult control
analyses compared with the all adult analyses, without
overlapping Cls. Altogether, these findings validate our
initial findings related to T2D in youth as well as highlight
the higher aggregate genetic risk burden of diabetes var-
iants in youth when compared with adults with T2D.

DISCUSSION

Our findings in ProDiGY provide the first large-scale eval-
uation of the genetics of T2D in youth. Through GWAS,
we discovered seven genome-wide significant variants

Table 4—Comparison of polygenic diabetes genetic risk z scores in youth case subjects vs. adult control subjects, youth
case vs. youth control subjects, and adult case vs. adult control subjects
Youth case subjects with T2D
vs. adult control subjects

Youth case subjects with T2D
vs. youth control subjects

Adult case subjects with T2D
vs. adult control subjects

EUR AFR AMR EUR AFR EUR AFR AMR

P value 2x10° 1 37x10° " <2x10® <2x10'® 0.0028 <2x107'® 57x10°° <2x10°'®
OR 2.44 1.45 2.49 2.21 1.26 1.73 1.20 1.44
95% Cl 217,275 1.32,1.60 2.28,2.72 1.91, 2.59 1.08, 1.47 1.60,1.89 1.10,1.32  1.36, 1.53

AFR, African American; AMR, Hispanic American; EUR, European.
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associated with T2D in youth, including a novel variant in
PHF2 shown to be nominally associated with T2D in adults
(21). PHF2 encodes histone demethylase plant homeodo-
main finger 2, a transcriptional coactivator of the tran-
scription factor ChREBP. Through mouse and in vitro
studies, PHF2 has been shown to be involved in adipo-
genesis and fat storage through the regulation of CEBPa
and peroxisome proliferator-activated receptor 7y tran-
scriptional activities in adipose tissue (22,23). Addition-
ally, mice with targeted disruption of Arid5b (AT-rich
interactive domain D), a specific PHF2 coactivator partner,
show a reduction in their white adipose tissue mass as
a result of reduced peroxisome proliferator-activated re-
ceptor 7y activity, suggesting that PHF2 could play a role in
the regulation of glucose and lipid homeostasis, potentially
by exerting its effect during adipocyte development. PHF2
overexpression in mouse liver leads to hepatic steatosis via
epigenetic effects on ChREBP that lead to increased mono-
unsaturated fatty acid production (24).

In GTEx (https://gtexportal.org/home), our lead SNP
rs10992863 is also not an expression quantitative trait
locus (eQTL) for PHF2 in any tissue, although a potential
effect on expression of PHF2 at specific developmental
stages has not been ruled out. Interestingly, it is an eQTL
in many tissues, including adipose, for RP11-165J3.6 (all
increased expression per copy of the A allele, the risk allele
for T2D). This region appears to have no coding exons,
a single noncoding transcript, and sits upstream of PHF2.
Also, rs10992675, which is ~482 kb upstream of rs10992863
and not in linkage disequilibrium with rs10992863 in any
population, is an eQTL for RP11-526D8.11, a pseudogene
region near RP11-165J3.6. On chromosome 9, regions are
positioned as RP11-526D8.11—1s10992675—RP11-165J3.6—
PHF2—rs10992863. Taken together, there may be a reg-
ulatory role for rs10992863 of upstream elements,
which in turn may regulate expression of PHF2 in
adipose tissue.

The variants in TCF7L2, MC4R, CDC123, KCNQ1, IGF2BP2,
and SLC16A11 have all been previously associated with
T2D in adults (20,25). In addition, a prior study in SEARCH
reported that genetic variation in TCF7L2 is associated
with an increased risk of T2D in African American youth,
with the OR for diabetes stronger in African American
than in non-Hispanic White youth (12). The divergent
ethnicity-based results did not replicate in ProDiGY, sug-
gesting that the earlier findings in SEARCH might be due
to statistical fluctuations in the context of smaller sample
sizes.

The analyses comparing findings in ProDiGY with
known variants associated with T2D in adults showed that
for the majority of variants, the direction of effect was
consistent between adults and youth with T2D. The fact
that only 6 of the =400 genetic variants that have been
associated with T2D in adults achieved genome-wide sig-
nificance in ProDiGY is likely explained by the rela-
tively small sample size compared with adult cohorts
(20). Overall, these results demonstrate that there is
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significant overlap between the genetics of T2D in adults
and youth.

As obesity is a risk factor for the development of T2D, it
is important to evaluate the role of BMI in genetic asso-
ciations of T2D to assess whether a particular genetic
variant that influences T2D risk is mediated by change in
BMI. We had BMI data available in 898 youth participants
with T2D from TODAY and SEARCH, in addition to the
adult and youth control subjects. BMI attenuated the
T2D association signals in youth, with only rs7903146 in
TCF7L2 remaining genome-wide significant. However, the
direction of effect remained consistent for our top find-
ings, despite the reduction in sample size. One of the top
findings in ProDiGY was rs72982988 in MC4R, a gene well-
known to influence obesity with the effect size for T2D in
youth greater than reported in adults (20). rs72982988 is
associated with T2D in adults at genome-wide level of
significance (OR 1.05; P = 14 X 1019, even after
adjustment for BMI (26). It is possible that the role of
obesity-related genes in youth varies in comparison with
adults and is a topic to be explored further.

In secondary analyses, we conducted a separate GWAS
comparing our 3,006 youth subjects with 856 youth con-
trol subjects free of diabetes from non-Hispanic White and
African American ancestries. We identified a genome-wide
significant variant, rs2604566 in CPEB2 on chromosome
4 (P = 3.2 X 108 OR 2.1), that has not been previously
reported in the literature. Given that this finding was only
uncovered in the youth analyses, the likely significance is
that genetic variation in CPEB2 is only active in youth and
displays an age-dependent phenomenon that occurs early
in development. CPEB2 encodes cytoplasmic polyadenyla-
tion element binding protein 2, an mRNA binding pro-
tein that regulates cytoplasmic polyadenylation of mRNA.
CPEB2-knockout mice show reduced uncoupling protein
1 level and impaired thermogenesis in brown adipose
tissue (27). Functional studies are needed to further ex-
plore the role of this gene on T2D risk in youth.

Clinically, youth-onset T2D displays a more aggressive
disease course than adult-onset diabetes, with more rapid
B-cell decline (4-6). We therefore hypothesized that there
might be significant genetic differences between youth and
adult-onset diabetes or that genetic effects might be more
prominent in youth. Our results suggest that there is
significant overlap in the genetic architecture of T2D in
youth and adults. In our cohort, genetic effect sizes are
stronger in youth for some of our top findings; however,
CIs around the ORs in youth and adults largely overlap
due to the smaller sample size of the youth GWAS. An-
other potential difference compared with adults is that
several of the top findings in our analysis seem to in-
fluence T2D risk through obesity, potentially suggestive
of the stronger impact that obesity-mediated genetic ef-
fects have on diabetes risk in the younger population.
This also supports the potential of these variants influ-
encing obesity and accelerating T2D onset at a younger
age in these youth.
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Further work is needed to understand the genetic de-
terminants of T2D in youth and to explore reasons for
differences compared with adults. In addition, the genetic
determinants of medication response in the TODAY study
could be examined. All ProDiGY samples have also un-
dergone whole-exome sequencing to enable the analysis of
rare variants, which is a planned next step. However, large-
scale studies in adults have shown that rare variants only
explain a small fraction of the heritability of T2D and that
extremely large sample sizes are needed to uncover exome-
wide significant findings, which presents a challenge con-
sidering our sample size (13). In addition, other potential
modulators, such as gene X environment interactions and
epigenetic modifiers, remain to be explored.

The biggest strength of our study is that it brings
together two large available youth-onset T2D studies,
TODAY and SEARCH, along with the TODAY Genetics
ancillary study and the large adult T2D consortium T2D-
GENES, compiling the largest collection of subjects with
youth-onset T2D and adult control subjects known to us.
While previous smaller scale genetic studies of youth-onset
T2D have been limited in their genetic diversity, our study
is multiethnic, a key advantage considering that the dis-
ease predominantly affects non-White youth. A weakness
of the study is the limited BMI data because BMI was not
collected in the TODAY Genetics cohort. Additionally,
whereas our sample size is large compared with other
pediatric studies, it is still limited from a GWAS stand-
point, and further collaborations are needed to increase
our sample size for more effective genetic exploration.
Another limitation is that in line with the usual practice
in GWAS for T2D in adults, case subjects with monogenic
diabetes were not screened out. As part of a separate
ongoing project, we have estimated that the prevalence of
these subjects is only 2% in ProDiGY, and thus, it is
unlikely that removal of such a small number of subjects
would drastically influence results.

In conclusion, in ProDiGY, we have discovered seven
genome-wide significant associations with T2D in youth,
one novel and the remaining known, providing initial in-
sight into the genetic architecture of T2D in youth. Im-
portantly, ProDiGY has established a cohort of subjects
with youth-onset T2D who serve as a valuable resource for
future genetic investigation.
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