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Background: This study aimed to construct a prognostic stratification system for gastric
cancer (GC) using tumour invasion-related genes to more accurately predict the clinical
prognosis of GC.

Methodology: Tumour invasion-related genes were downloaded from CancerSEA, and
their expression data in the TCGA-STAD dataset were used to cluster samples via non-
negative matrix factorisation (NMF). Differentially expressed genes (DEGs) between
subtypes were identified using the limma package. KEGG pathway and GO functional
enrichment analyses were conducted using the WebGestaltR package (v0.4.2). The
immune scores of molecular subtypes were evaluated using the R package ESTIMATE,
MCPcounter and the ssGSEA function of the GSVA package. Univariate, multivariate and
lasso regression analyses of DEGs were performed using the coxph function of the
survival package and the glmnet package to construct a RiskScore model. The
robustness of the model was validated using internal and external datasets, and a
nomogram was constructed based on the model.

Results: Based on 97 tumour invasion-related genes, 353 GC samples from TCGA were
categorised into two subtypes, thereby indicating the presence of inter-subtype
differences in prognosis. A total of 569 DEGs were identified between the two
subtypes; of which, four genes were selected to construct the risk model. This four-
gene signature was robust and exhibited stable predictive performance in different
platform datasets (GSE26942 and GSE66229), indicating that the established model
performed better than other existing models.

Conclusion: A prognostic stratification system based on a four-gene signature was
developed with a desirable area under the curve in the training and independent validation
sets. Therefore, the use of this system as a molecular diagnostic test is recommended to
assess the prognostic risk of patients with GC.
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BACKGROUND

Gastric cancer (GC) is considered themost commonmalignancy of
the digestive system and the third leading cause of cancer-related
deaths worldwide (1). It is considered a public health concern
worldwide, especially in developing countries, owing to its high
incidence and mortality rates (2). The National Cancer Center of
China show that GC ranked second in terms of the incidence of
malignant tumours in 2015, with approximately 403,000 cases and
291,000 deaths (3). Although the development of integrated
treatment modalities, including surgery, radiotherapy and
immunotherapy, has improved the survival of patients with GC
in recent years, the 5-year survival rate remains <30% (4).
Moreover, these patients are susceptible to multiple forms and
different degrees of invasion and metastasis after treatment,
primarily blood, lymphatic and peritoneal dissemination
metastases (5). Therefore, exploratory studies aimed at optimising
the prognostic predictors of GC are warranted.

Invasion and metastasis constitute two important features of
malignancy and are the leading causes of cancer-related deaths.
Despite the genetic heterogeneity of GC, several biological factors
affecting GC invasion have been identified in recent years, such as
ADAMTS5(6),HOXD9(7),MTMR2(8) andSIRT2(9),whichcanbe
used as indicators of patient prognosis. However, because individual
clinical biomarkers may be influenced by multiple factors, predictive
accuracy can be improved by establishing a combination signature
comprising the most ideal candidate biomarkers.

Reanalysis of global cancer data resources, aided by the
development of high-throughput sequencing and public
databases, has reduced economic expenditure and any bias
introduced by sample, geographical and ethnic factors. The
seven-gene signature constructed by Xu et al. (10) based on
immune-related genes can be used to predict the overall survival
of men with GC. The five-gene signature constructed by Zhao et al.
(11) basedongenes related to the cell cycle canbeused topredict the
prognosis of patients with GC. The prognostic model constructed
by Peng et al. (12) based on DNA methylation-related genes plays
an important role in the stratificationofpatientswithGC.However,
to the best of our knowledge, no study has comprehensively
analysed the vital functions of invasion-related genes in GC.

In this study, the gene expression profile data from public
databases, such as TCGA and GEO, were used to construct
molecular subtypes of GC based on tumour invasion-related genes.
In addition, these data were used to assess the correlation among the
molecular subtypes, prognosis and clinical features of GC.
Furthermore, a prognostic risk model was constructed using
differentially expressed genes (DEGs) among the STAD molecular
subtypes. This model performed better in terms of predicting the
prognosis of STAD samples. The results were further validated to
ensuredesirableperformanceusing theGEOgeneexpressiondataset.
METHODOLOGY

Data Source and Pre-Processing
The RNA-Seq data of patients with GC and their clinical follow-
up information were downloaded from TCGA database, whereas
Frontiers in Oncology | www.frontiersin.org 2
the expression data and clinical information of the GEO
microarray datasets GSE66229 and GSE26942 with time-to-live
(TTL) information were downloaded from the GEO database.
The invasion-related gene set was obtained from CancerSEA
(13), which included a total of 97 genes (Table S1).

The RNA-Seq data of the TCGA-STAD cohort were processed
as follows: 1) samples without clinical follow-up information were
excluded; 2) samples without TTL data were excluded; 3) samples
without information related to patient survival status were
excluded; 4) the Ensembl IDs were converted to Gene Symbol
and 5) the median value was recorded if there were multiple Gene
Symbol expressions. The GEO dataset was processed as follows:
1) samples without clinical follow-up information were excluded;
2) samples without information regarding the TTL and survival
status of patients were excluded; 3) the probe IDs were converted to
Gene Symbol; 4) probe IDs corresponding to multiple genes were
excluded and 5) the median value was recorded if there were
multiple Gene Symbol expressions. After preprocessing the data,
a total of 353, 202 and 300 samples were selected from the TCGA-
STAD,GSE26942 andGSE66229datasets, respectively. The clinical
information of these samples is presented in Table 1.

Non-Negative Matrix Factorization (NMF)
Algorithm
The expression data of 97 invasion-related genes were extracted
from TCGA database, and the STAD samples were clustered using
NMF. The ‘brunet’ criterion was selected for the method along with
100 iterations. The number of clusters k was set from 2 to 10. The
average contour width of the common membership matrix was
determined via theRpackage ‘NMF’. Theminimummembership of
eachsubclasswas set to10.The stabilityof clusters obtainedviaNMF
was reflected using the value of the cophenetic correlation, which
was between 0 and 1. The larger the value, the greater the cluster
stability. Furthermore, smaller values of residual sum of squares
(RSS)—used to reflect the clustering performance of the model—
were indicative of the better clustering performance of the model.
Optimal cluster numbers were determined based on the cophenetic,
dispersion and silhouettemetrics. Through the above algorithm, the
samples are divided into different molecular subtypes.

Identification and Functional
Analysis of DEGs
DEGs between molecular subtypes were identified, and volcano
plots demonstrating these DEGs were plotted using the limma
package (14), with the thresholds set as FDR < 0.05 and |log2FC| >
1. KEGG pathway and GO functional enrichment analyses of the
DEGs were performed using the R package WebGestaltR (v0.4.2).

Immune Scores Between
Molecular Subtypes
The three scores, namely, the immune score, stromal score and
estimate score were assessed using the R package ESTIMATE,
whereas 10 immune cell scores were assessed using MCPcounter,
and 28 immune cell scores were assessed using the ssGSEA
function of the GSVA package (15). Molecular subtypes were
compared based on differences in their immune scores.
June 2022 | Volume 12 | Article 848163
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Construction of a Risk Model
The 353 samples in TCGA dataset were divided into the training
and validation sets. Random assignment bias, which influences
the stability of subsequent modelling, was avoided by randomly
grouping all samples 100 times with replacements in advance. In
addition, group sampling was performed at a ratio of 1:1
(training set:validation set), with 176 samples in the training
set and 177 samples in the validation set. Univariate Cox
proportional risk regression was performed on DEGs and
survival data of molecular subtypes in the training set using
the coxph function of the R package survival; a p-value of <0.05
was considered the threshold for screening prognosis-related
genes. Lasso regression analysis of the identified genes was
performed using the R package glmnet to reduce the number
of genes in the risk model (16). Eventually, a model was
constructed using the 5-fold cross-validation method.

GSEA
The relationship between the RiskScore of different samples and
biological functions was examined via single-sample GSEA using
the R package GSVA. The ssGSEA scores of each function, which
Frontiers in Oncology | www.frontiersin.org 3
corresponded to each sample, were obtained by calculating the
scores of each sample on different functions. After performing
additional calculations related to the correlation between these
functions and RiskScores, functions with a correlation coefficient
of >0.45 were selected.
RESULTS

Molecular Subtypes of STAD Based on
Invasion-Related Genes
The NMF algorithm was used for clustering TCGA-STAD
samples, with the optimal number of clusters selected as 2
(Figures 1A, B). The expression of prognosis- and invasion-
related genes in the two subtypes (Cluster 1 and Cluster 2) is
shown in Figure 1C, which demonstrates that the expression of
invasion-related genes was different in the Cluster 1(C1) and
Cluster 2(C2) subtypes. In addition, most genes were highly
expressed in the C1 subtype. On analysing the relationship
between the two subtypes and prognosis, a difference was
found in TTL between the C1 and C2 subtypes (Figure 1D,
log-rank p < 0.05).

Identification and Functional Analysis of
DEGs Between Molecular Subtypes
A total of 569 DEGs were observed between the C1 and C2
subtypes after filtering data according to a threshold (Table S2).
Of these DEGs, 562 were upregulated and 7 were downregulated.
This finding consequently highlighted the dominance of
upregulated differential expression between the C1 and C2
subtypes (Figure 2A). A heat map demonstrating the 50 most
upregulated DEGs and all downregulated DEGs is presented in
Figure 2B. Furthermore, GO functional enrichment analysis of
DEGs revealed that 456, 54 and 49 GO functional pathways were
annotated to BP, CC and MF, respectively, with differences (FDR
< 0.05) (Figures 2C, D; the first 15 annotations are shown in
Figure 2E). In addition, KEGG pathway enrichment analysis
revealed the presence of 15 annotations (FDR < 0.05)
(Figure 2F), which also included ECM–receptor interaction,
focal adhesion, PI3K–Akt signalling pathway, proteoglycans in
cancer and other tumour-related pathways.

Comparison of Immune Scores, Clinical
Features and Immune Subtypes Between
Molecular Subtypes
Immune scores were calculated and compared between
molecular subtypes using the ESTIMATE and MCPcounter R
software packages and the ssGSEA function of the GSVA
package. The results showed that the immune scores of the C1
subtype were higher than those of the C2 subtype (Figures 3A–C).
A heat map demonstrating the immune scores of the two subtypes
is shown in Figure 3D. Furthermore, the distribution of different
clinical features in the twomolecular subtypes was analysed, which
revealed differences in the surviving fraction of the two subtypes.
The C1 subtype had a higher proportion of death and a poor
prognosis (Figure 4A). Inter-subtype grading proportions were
TABLE 1 | Sample information.

Clinical Features TCGA-STAD GSE26942 GSE66229

OS
Alive 210 114 148
Dead 143 88 152
T Stage
T1 18
T2 74
T3 163
T4 94
TX 4
N Stage
N0 103
N1 96
N2 72
N3 71
NX 11
M Stage
M0 314
M1 23
MX 16
Stage
I 48
II 109
III 146
IV 35
X 15
Grade
G1 9
G2 128
G3 207
GX 9
Gender
Male 228
Female 125
Age
≤65 158
>65 192
Unknown 3
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notably different, with a higher proportion of the more
differentiated G3 observed in the poorly prognostic C1 subtype
(Figure 4B). T staging proportion was different between the two
subtypes, with the poorly prognostic C1 subtype having higher
proportions of T2, T3 and T4 samples (Figure 4C). Staging
proportions were different between the two subtypes, with a
higher proportion of stage II, III and IV samples observed in the
poorly prognostic C1 subtype (Figure 4D).

A total of 33 cancers have been previously examined in TCGA
project, and the tumours have been categorised into six immune
subtypes as follows: C1 (wound healing), C2 (IFN-g dominant),
C3 (inflammation), C4 (lymphocyte depletion), C5
(immunologically silent) and C6 (TGF-beta dominance). The
C1, C2 and C6 subtypes correlate with a poor prognosis (17).
The following four molecular subtypes of GC have been reportedly
identified through molecular evaluation of 295 primary GC
samples from TCGA database: chromosomal instability (CIN),
Epstein–Barr virus (EBV) positivity, genetic stability (GS) and
microsatellite instability (MSI) (18). In this study, further
comparison of the sample distribution between these molecular
subtypes and the two subtypes analysed in this study (Figures 4E–
G) demonstrated that the C2 subtype had the highest proportion
of immune subtype C2 (IFN-g dominant), (58%). However, the
proportion of immune subtype C3 (inflammation) (14%) was
higher in the C1 subtype than in the C2 subtype. Compared with
the previously established molecular subtypes of GC, the C2
Frontiers in Oncology | www.frontiersin.org 4
subtype in the present study comprised the highest proportion
of the CIN subtype, whereas the proportion of the GS subtype was
higher in the C1 than in the C2 subtype.

Construction and Evaluation of a
Four-Gene Signature
Univariate Cox regression analysis of TCGA training set for
screening DEGs between the C1 and C2 subtypes revealed that
32 genes correlated with prognosis (Table S3). The number of
genes was further reduced using lasso–Cox regression analysis
(Figure 5A), in which a gradual increase in lambda resulted in a
gradual increase in the number of corresponding independent
variable coefficients tending to zero. A model was constructed
using 5-fold cross-validation. Confidence intervals (CIs) for each
lambda (Figure 5B) showed that the model was optimal when
the value of lambda was 0.07371266. Therefore, four genes
(SERPINE1, MATN3, AMIGO2 and NOX4) with a lambda of
0.0737 were selected as target genes for the subsequent process.
The formula of the final four-gene signature is as follows:
RiskScore = 0.146 * SERPINE1 + 0.171 * MATN3 + 0.06 *
AMIGO2 + 0.149 * NOX4.

On comparing the expression of these four genes in TCGA
dataset, it was found that the expression of these genes was
higher in tumour samples than in healthy tissues. Moreover, the
expression of SERPINE1 and NOX4 was significantly different
between the two sample types (Supplementary Figure 1).
A B

DC

FIGURE 1 | Molecular subtypes of STAD based on invasion-related genes. (A) Consensus map of NMF clustering. (B) Distribution of cophenetic, RSS and
dispersion with a rank of 2–10. (C) Heat map of 40 prognosis-related gene clusters. (D) Prognostic survival curve of STAD in molecular subtypes.
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Subsequently, we compared the expression of these genes in
different TNM stages (Supplementary Figure 2).

The RiskScore of each sample was calculated according to gene
expression, and the RiskScore distribution of samples was plotted
(Figure 6A). The TTL of STAD samples with high RiskScores was
significantly shorter than that of samples with low RiskScores,
suggesting that a high RiskScore was associated with a relatively
poor prognosis. In terms of changes in the expression of the four
genes with an increasing RiskScore, high expression of SERPINE1,
MATN3, AMIGO2 and NOX4 was correlated with a high risk of
STAD. Furthermore, ROC analysis was performed using the R
package timeROC (Figure 6B) to evaluate the prognostic
efficiency of the RiskScore at 1, 3 and 5 years. The results revealed
Frontiers in Oncology | www.frontiersin.org 5
that the RiskScore model had a high area under the ROC curve
(AUC). Evaluation of the z-score revealed that samples with a
RiskScore of >0 were classified as high risk, whereas those with a
RiskScore of <0 were classified as low risk. Among these samples, 82
were classifiedashigh risk,whereas 94were classifiedas lowrisk, and
KMcurves demonstrated differences between thehigh- and low-risk
groups (p < 0.01; Figure 6C).

Robustness of the Risk Model Validated
Using Internal and External Datasets
The robustness of theRiskScoremodelwas validatedusing the same
coefficients as the training set, and theRiskScore of each samplewas
calculated based on gene expression. Figures 7A, 8A demonstrate
A B

D

E F

C

FIGURE 2 | Identification and functional analysis of DEGs between molecular subtypes. (A) Volcano map of DEGs between the C1 and C2 subtypes. (B) Heat map
of DEGs between the C1 and C2 subtypes. (C) BP annotation map of differentially upregulated genes in the molecular subtypes. (D) CC annotation map of
differentially upregulated genes in the molecular subtypes. (E) MF annotation map of differentially upregulated genes in the molecular subtypes. (F) KEGG annotation
map of differentially upregulated genes in the molecular subtypes.
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the RiskScore distribution of TCGA validation set and the whole
dataset. According to these figures, the TTL of STAD samples with
high RiskScores was shorter than that of samples with low
RiskScores, indicating that samples with high RiskScores had a
poorer prognosis. As mentioned earlier, high expression of
SERPINE1, MATN3, AMIGO2 and NOX4 indicated a high risk
for STAD,whichwas consistentwith resultsobtained in the training
set. ROC analysis was performed using the R package timeROC to
analyse the prognostic efficiencyof theRiskScores at 1, 3 and5 years
(Figures 7B, 8B). In TCGA validation set, 81 and 96 samples were
classified as high and low risk, respectively. KM curves
demonstrated differences between the high- and low-risk groups
(p < 0.01; Figure 7C). In the whole dataset, 165 samples were
classified as high risk, whereas 188 samples were classified as low
risk, and KM curves demonstrated differences between the high-
and low-risk groups (p < 0.001; Figure 8C).

In the external datasets GSE66229 and GSE26942, we used
models and coefficients similar to those used in the training set to
calculate the RiskScore of each sample according to gene
Frontiers in Oncology | www.frontiersin.org 6
expression. Figures 9A, 10A demonstrate the RiskScore
distribution of the independent validation datasets GSE66229
and GSE26942, respectively. As shown in the two figures, the
TTL of STAD samples with high RiskScores was shorter than
that of samples with low RiskScores, indicating that samples with
high RiskScores had a relatively poor prognosis. This result was
consistent with that observed in the TCGA training set.
Figures 9B, 10B demonstrate the prognostic efficiency of the
RiskScore in the two datasets at 1, 3 and 5 years. In the GSE66229
dataset, 132 and 168 samples were classified as high and low risk,
respectively, and KM curves demonstrated significant differences
between the high- and low-risk groups (p < 0.001; Figure 9C). In
the GSE26942 dataset, 92 and 110 samples were classified as high
and low risk, respectively, and KM curves demonstrated
significant differences between the high- and low-risk groups
(p < 0.01; Figure 10C).

RiskScore and Prognostic Analysis of
Clinical Features
The relationship between the RiskScore and clinical features was
analysed, and it was found that the RiskScore constructed based on
the four-gene signature distinguished the high- and low-risk groups
according to age, male sex, T stage, N stage, M0 stage, cancer stage
and cancer grade (Figures 11A–L; p < 0.05). This finding
consequently indicated that the risk model had a strong predictive
ability across clinical features. Among the M stage samples, the M0
subgroup was divided into two groups based on the risk model;
however, the M1 subgroup could not be divided based on the
model. This inconsistency could be attributed to the relatively small
M1 stage sample size. The T stage subgroups showed significant
differences in terms of their RiskScores (Figure 11M; p < 0.001).
The more advanced the T stage, the higher the RiskScore.
Comparison of RiskScores between molecular subtypes showed
that the RiskScores were significantly higher in the C1 subtype
with a poorer prognosis than in the C2 subtype with a better
prognosis (Figure 11N; p < 0.001). The RiskScores were
significantly different between the available molecular subtypes
(Figures 11O–P; p < 0.05).

Relationship Between the
RiskScore and Pathways
The relationship between the RiskScores and biological
functions of different samples was analysed using GSEA.
Figure 12A shows the functions with a correlation coefficient
of >0.45. A total of 25 functions had a positive correlation with
the RiskScores. Clustering analysis performed according to the
enrichment scores of the top 25 most relevant KEGG pathways
(Figure 12B) suggested that among the 25 pathways, the activity
o f KEGG_WNT_SIGNALING_PATHWAY, KEGG_
FOCAL_ADHESION, KEGG_PATHWAYS_IN_CANCER,
KEGG_TGF_BETA_ SIGNALING_PATHWAY, and other
tumour-related pathways increased with an increase in the
RiskScore (Figure 12).

Construction of a Nomogram
In TCGA dataset, univariate Cox regression analysis revealed
that RiskScore was correlated with survival, whereas multivariate
A

B C

D

FIGURE 3 | Comparison of immune scores and immune subtypes between
molecular subtypes. (A) Comparison of immune scores calculated using ssGSEA
between the molecular subtypes of TCGA dataset. (B) Comparison of immune
scores calculated using MCPcounter between the molecular subtypes of TCGA
dataset. (C) Comparison of immune scores calculated using ESTIMATE between
the molecular subtypes of TCGA dataset. (D) Clustering heatmap of molecular
subtypes of immune infiltration patterns between different algorithms.*p < 0.05,
**p < 0.01, ***p < 0.001.
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COX regression analysis revealed that RiskScore (HR = 1.96, 95%
CI = 1.37–2.81, p < 1e-5) was correlated with survival. Age (HR =
1.85, 95% CI = 1.28–2.67, p < 0.001) was also correlated with
patient prognosis (Figures 13A, B), consequently highlighting
the good predictive performance of the four-gene signature in
terms of clinical application value. Because the nomogram is an
Frontiers in Oncology | www.frontiersin.org 7
effective tool to visualise results, it is relatively more convenient
for prognostic prediction (19). In this study, clinical features,
such as age, and RiskScore were integrated into a nomogram
based on the results of univariate and multivariate analyses
(Figure 13C). The results demonstrated that RiskScore had the
greatest impact on survival prediction, indicating that the four-
A B D

E F G

C

FIGURE 4 | Comparison of clinical features between molecular subtypes. (A–D) Comparison of the distribution of different clinical features between the two molecular
subtypes in TCGA dataset. (E) Sankey diagram demonstrating the comparison between the molecular subtypes and existing subtypes. (F) Comparison between the
molecular subtypes established in this study and immune subtypes in existing TCGA cancers. (G) Comparison between the molecular subtypes established in this study
and the four molecular subtypes in TCGA gastric cancer data.*p < 0.05, **p < 0.01, ***p < 0.001.
A B

FIGURE 5 | Construction of a multigene model using lasso–Cox regression. (A) Trajectory of each independent variable, wherein the horizontal axis represents the
log value of the independent variable lambda and the vertical axis represents the coefficient of the independent variable. (B) Confidence interval under each lambda.
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A B

C

FIGURE 6 | Validation of the four-gene signature in the training set. (A) RiskScore, survival status and the expression of four genes in TCGA training set. (B) ROC
curve and AUC of the four-gene signature. (C) KM curve demonstrating survival predicted by the four-gene signature in the training set.
A B

C

FIGURE 7 | Validation of the four-gene signature in the validation set. (A) RiskScore, survival status and the expression of four genes in TCGA validation set.
(B) ROC curve and AUC of the four-gene signature. (C) KM curve demonstrating survival predicted by the four-gene signature in the validation set.
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A B

C

FIGURE 8 | Validation of the four-gene signature in the whole TCGA dataset. (A) RiskScore, survival status and the expression of four genes in the whole TCGA
dataset. (B) ROC curve and AUC of the four-gene signature. (C) KM curve demonstrating survival predicted by the four-gene signature in the whole TCGA dataset.
A B

C

FIGURE 9 | Validation of the four-gene signature in the GSE66229 dataset. (A) RiskScore, survival status and the expression of four genes in the independent
validation dataset GSE66229. (B) ROC curves and AUC of the four-gene signature. (C) KM curve demonstrating survival predicted by the four-gene signature in the
independent validation dataset GSE66229.
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gene signature was better in terms of predicting the prognosis. In
addition, the nomogram data at 1, 3 and 5 years were corrected
for visualising its performance (Figure 13D), which indicated
that the risk model was accurate.

Comparison of the Risk Model With Others
Based on the literature review, we selected the following three
prognosis-related risk models and compared them with the four-
gene signature established in this study: a three-gene signature (20), a
five-gene signature (21) and an eight-gene signature (22). To
compare the models, the RiskScores of each STAD sample in
TCGA dataset were calculated according to the corresponding
genes in these four models using the same method used to calculate
the z-scores of the RiskScore, wherein samples with a RiskScore of >0
were classified as high risk, whereas thosewith aRiskScore of <0were
classified as low risk. Consequently, the intergroup prognostic
differences were calculated. The ROC and KM curves
(Figures 14A–F) showed that the AUC values of the three-, five-
and eight-gene signature models at 1, 3 and 5 years were lower than
the AUC value of the four-gene signature established in this study.
Among them, the signatures of Song et al. and Wei et al. have
significant prognostic difference in high and low groups, while the
signature of Wu et al. has no significant difference in prognosis. The
four-gene signature established in this study yielded a more valid
model with fewer genes. To compare the predictive performance of
these models for STAD samples, the concordance index (C-index)
between the three models and the four-gene model of this study was
calculatedusing theRMSpackage inR.Theresults showedthat theC-
Frontiers in Oncology | www.frontiersin.org 10
index of the RiskScoremodel was the highest among the fourmodels
(Figure 14G). Therefore, the overall performance of the model was
better than that of the other three models. The DCA curve revealed
that the RiskScore has the highest net benefit when compared with
the other models, thereby suggesting that the model established in
this study has better clinical applicability (Figure 14H).
DISCUSSION

GC is a common malignant tumour of the digestive system. At
present, the prognosis of patients with GC is established primarily
based on tumour pathology (T), lymph node biopsy (N) and distant
organ metastasis (M). However, owing to the genetic heterogeneity
of GC, the prognosis of GC based on the TNM classification is often
different. Moreover, at present, individualised and accurate
prognosis prediction is not possible. Therefore, the identification
of a more effective prognosis prediction method for GC is of
paramount importance. In addition to being important biological
features of GC, invasion and metastasis are key factors leading to
tumour recurrence and affecting prognosis. Tumour spread is
initiated after invasion of the basilar membrane by GC cells,
which is one of the crucial steps leading to metastasis (23). GC
cell invasion and metastasis involve an active process that is
multistep, multistage, multigene, continuous, complex and
multifactorially regulated. Invasion- and metastasis-related genes
play an important role in this process. Potential prognostic
biomarkers have been widely identified in several cancer types
A B

C

FIGURE 10 | Validation of the four-gene signature in the GSE26942 dataset. (A) RiskScore, survival status and the expression of four genes in the independent
validation dataset GSE26942. (B) ROC curve and AUC of the four-gene signature. (C) KM curve demonstrating survival predicted by the four-gene signature in the
independent validation dataset GSE26942.
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based on the comprehensive analysis of data from large public
databases (24, 25). Multigene RiskScores constructed according to
univariate and multivariate Cox regression models and lasso
regression analysis have a higher prognostic value than single
prognostic biomarkers (26–28). Therefore, in the present study,
we used TCGA and GEO data to construct STAD molecular
subtypes based on tumour invasion-related genes and constructed
a four-gene signature to predict the prognosis of patients with GC
based on DEGs between the two STAD molecular subtypes.

Based on the expression of tumour invasion-related genes,
TCGA-STAD cohort was divided into two subtypes, with most
genes being highly expressed in the C1 subtype. In addition,
the C1 subtype had a worse prognosis than the C2 subtype,
thus confirming the involvement of tumour invasion-related
genes in the malignant progression of GC and their influence
on prognosis. Inter-subtype DEG analysis showed that DEGs
Frontiers in Oncology | www.frontiersin.org 11
were mainly enriched in the following: ECM–receptor
interaction, proteoglycans in cancer, focal adhesion, PI3K–
Akt signalling pathway and other tumour-related pathways. In
a study, the knockdown of OLFM4 enhanced the invasiveness
of GC cells by activating focal adhesion signalling (29). ORAI2
promotes the occurrence and metastasis of GC through PI3K/
Akt signalling and MAPK-dependent local adhesion
dissociation (30), suggesting that STAD molecular subtypes
may be involved in GC progression through invasion- and
metastasis-related pathways. Comparison of molecular
subtypes with different clinical features revealed a higher
proportion of T2, T3 and T4 samples and a higher
proportion of stage II, III and IV samples in the C1 subtype
with a poor prognosis. Therefore, the molecular subtypes
established in this study can stratify early and advance GC to
some extent. In lung cancer, immune activation and escape
A B D
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FIGURE 11 | Risk score and prognostic analysis of clinical features. (A–L) Performance of the risk model based on different clinical features. (M) Comparison of the
RiskScore among T Stage group samples. (N) Comparison of the RiskScore among the samples of molecular subtypes established in this study. (O) Comparison of
RiskScore between samples with existing immune molecular subtype groups; (P) Comparison of RiskScore between samples with existing molecular subtype groups.
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reportedly precede tumour invasion (31). In this study, further
assessment of the relationship between the molecular subtypes
and immune scores showed that the immune scores of the C1
subtype were higher than those of the C2 subtype, regardless of
the evaluation method. The proportion of immune subtype C3
(inflammation) was higher in the C1 subtype than in the C2
subtype when compared wi th the ex i s t ing TCGA
immunophenotyping. Systemic inflammation score (SIS)
with preoperat ive serum albumin (Alb) levels and
lymphocyte-to-monocyte ratio (LMR) has been proposed as
a novel score for several malignancies, including GC (32).
AEG-1-induced uncontrolled inflammation promotes GC
presentation and predicts a poor prognosis (33). The
results of this study indicate that invasion-related genes play
an important role in the inflammatory response in GC;
however, additional in-depth mechanistic studies are
warranted to validate this finding.

Prognostically relevant DEGs were further screened to
construct a four-gene signature, including the genes SERPINE1,
MATN3, AMIGO2 and NOX4. SERPINE1 belongs to the serine
Frontiers in Oncology | www.frontiersin.org 12
protease inhibitor superfamily and is a multifunctional
glycoprotein that plays a critical role in various cellular
processes, such as EMT (34). SERPINE1 is overexpressed in the
EMT subtype of GC (35); this overexpression consequently
promotes EMT-mediated metastasis by activating STAT3
signalling in NSCLC cells (36). SERPINE1 expression induced
by TGFb stimulation increases the expression of EMT markers
(37). The expression of SERPINE1 is higher in GC tissues than in
healthy tissues, leading to a poor prognosis (38, 39). NADPH
oxidase 4 (NOX4), a member of the NOX family, is an important
source of reactive oxygen species and plays an important role in
tumour cell proliferation and apoptosis. NOX4 can promote GC
cell proliferation by activating the GLI1 pathway (40) and can
regulate resistance to apoptosis in GC cells by generating reactive
oxygen species and inducing EGFR (41). NOX4 knockdown
inhibits the malignant progression of GC by inhibiting the
JAK2/STAT3 pathway (42). Therefore, NOX4 can be used as a
prognostic marker for GC (43). MATN3, a protein-coding gene,
encodes a member of the protein family containing the von
Willebrand factor A structural domain (44). MATN3 proteins
A

B

FIGURE 12 | Relationship between the RiskScore and pathways. (A) Correlation between KEGG pathways with a correlation coefficient of >0.45 and the RiskScore.
(B) Relationship between the ssGSEA scores of KEGG pathways with a correlation coefficient of >0.45 and increasing RiskScores in each sample, wherein the horizontal
axis represents samples with increasing RiskScores from left to right. ***p < 0.001.
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are present in the extracellular matrix of the cartilage and play a
role in homeostasis and cartilage and bone development (45).
Studies on the mechanisms of MATN3 and AMIGO2 in GC are
limited. Some studies have shown that MATN3 and AMIGO2 are
overexpressed in gastric adenocarcinoma and can serve as markers
of poor prognosis (46, 47). AMIGO2 plays a pathological role in
tumour growth, collagen adhesion and migration of GC cells (48).
In the future, we aim to perform an in-depth study on
mechanisms underlying the involvement of MATN3 and
AMIGO2 in GC. In this study, the RiskScore constructed using
the four-gene signature could classify GC samples as high and low
risk, and the prognosis of the high-risk group was worse than that
of the low-risk group. Both internal and external datasets verified
Frontiers in Oncology | www.frontiersin.org 13
the robustness of the risk model. Furthermore, comparison of the
RiskScores between molecular subtypes showed that the
RiskScores of the C1 subtype with a poorer prognosis were
significantly higher than those of the C2 subtype with a better
prognosis, which is consistent with the previous findings of this
study. Compared with three previously reported prognostic
models for GC (20–22), the model established in this study
incorporated fewer genes, was more operational in clinical
practice and had the highest C-index value, indicating that its
overall performance was better than that of the other three models.
To the best of our knowledge, this study is the first to construct a
prognostic model using tumour invasion-related genes, which can
provide more insights into the role of prognostic models in the
A

B

DC

FIGURE 13 | Construction of a nomogram. (A) Results of univariate analysis between clinical features and RiskScore. (B) Results of multivariate analysis between clinical
features and RiskScore. (C) Nomogram constructed based on clinical features and RiskScore. (D) Calibration curve of the nomogram for predicting survival rates.
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development of GC. The nomogram constructed based on the
RiskScores can be used to guide prognosis prediction and clinical
treatment of patients.

However, this study has several limitations. First, TCGA
cohort is predominantly composed of patients with Caucasian
and African ethnicities and lacks Asian representation in the
data. Although a GEO external dataset was used for validation to
reduce racial bias, further validation in real-world data with large
sample size is necessary. Second, owing to the retrospective
nature of the study, a prospective study is required for further
validation. Finally, additional examination of the four genes
identified is necessary to further examine their mechanism of
action in the malignant progression of GC.

CONCLUSION

In the present study, molecular typing of GC was performed
based on tumour invasion-related genes. The four-gene signature
Frontiers in Oncology | www.frontiersin.org 14
developed for prognostic prediction using molecularly typed
DEGs can be used as a tool to assess the prognostic risk of
patients with GC.
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