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COVID-19, which was first reported in December 2019 in China, has caused a global outbreak. Five variants
of concern (VOCs) have been identified in different countries since the global pandemic, namely, Alpha
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) and Omicron (B.1.529). Although multiple vaccines
have been found to be effective, some of the amino acid changes may increase the infectivity of virus
and decrease the sensitivity to antibodies. Here we characterize the VOCs and discuss their sensitivity to
antibodies elicited by convalescent and vaccinee sera. In conclusion, several variants display a reduction
in the susceptibility to neutralization antibodies generated by natural infection or vaccination, which
threatens the containment of the epidemic.
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SARS-CoV-2 is a novel β-coronavirus causing COVID-19 [1,2]. It rapidly became a pandemic since first reported
in China in December 2019 [3]. Over 404 million confirmed cases and more than 5 million deaths have been
identified as of 12 February 2022. Coronaviruses have genetic proofreading mechanisms [4,5] and RNA viruses
are known to have higher mutation rates than DNA viruses [6,7]. Although SARS-CoV-2 shows evidence of some
seasonal waning [8], the emergence of variants under natural and environmental selective pressure increases the risk
of the spread of SARS-CoV-2. Five major variants of concern (VOCs) have been reported: Alpha (B.1.1.7) emerged
first in the UK [9], Beta (B.1.351) in South Africa [10], Gamma (P.1) in Brazil [11], Delta (B.1.617.2) in India [12] and
Omicron (B.1.529) [12] in South Africa.

SARS-CoV-2 encodes at least 29 proteins in its (+) RNA genome, among the four structure proteins (the
spike [S], membrane [M], envelope [E] and nucleocapsid [N] proteins), with S and N proteins representing the
most distinctive features of the virus [13,14]. SARS-CoV-2 interacts with human angiotensin-converting enzyme 2
(hACE2) for cell entry [3], and the spikes of SARS-CoV-2 have unusual freedom on the viral envelope, allowing
it to better engage with the cellular receptor, ACE2 [14]. The spike protein consists of S1 and S2 subunits, and it
is active when cleaved by proteases, which is important for the receptor recognition and membrane fusion [15,16].
S1 can be further divided into an N-terminal domain (NTD) and a C-terminal domain (CTD), both of which
can function as a receptor-binding entity. The S1 CTD was identified as the key region of SARS-CoV-2 that
interacts with the hACE2 receptor [16]. Most of the neutralizing antibodies and vaccines are designed based on
the spike protein sequence, especially the receptor-binding domain (RBD) [17,18]. The RBD-targeting antibodies
generally seem to exhibit higher neutralization activity to several VOCs, although the NTD-targeting antibody
also shows high neutralization activity to wild-type (WT) SARS-CoV-2 [19]. The Alpha variant is sensitive to most
RBD-directed antibodies, whereas both Alpha and Beta are markedly resistant to neutralization by NTD-directed
antibodies [20]. In addition, it has been reported that the neutralization activity of NTD-targeting antibodies against
virus carrying E484K and other mutations in the NTD was abolished [21]. However, RBD-targeting antibodies
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may induce resistance in VOCs; thus, the combination of non-RBD- and RBD-targeting antibodies could be used
as a therapeutic cocktail for the VOC [19,20].

Among coronaviruses, point mutations have been demonstrated to confer resistance to neutralizing antibodies
in MERS-CoV [22] and SARS-CoV [23,24]. Thus, single amino acid changes are worth monitoring because they
can be phenotypically and functionally relevant, and mutations in the spike protein and other proteins have been
detected in several SARS-CoV-2 variants. The first identified SARS-CoV-2 mutation is D614G. It is caused by an
A-to-G nucleotide change in the spike protein in WT [25]. The earliest examples of sequences carrying the D614G
were found in China and Germany in late January 2020. By early April 2020, G614 has become the dominant
form in the pandemic, and this is facilitated by the higher transmissibility of D614G.

The Ct (the cycle threshold) is used as a surrogate for relative viral loads; lower Ct values indicate higher viral
loads. The association of the G614 variant with low Ct values in vivo has been reported [25–27], and G614-bearing
viruses had significantly higher infectious titers (2.6- to 9.3-fold increase) than their D614 counterparts [25]. G614
also seemed to increase the spike stability and membrane incorporation [28] and reduce S1 subunit shedding from
virions [28–30], which is associated with increased infectivity but not with increased mortality [31]. Studies on hamsters
demonstrated that the G614 variant is as sensitive to the serum specimens as the D614 strain [32], and convalescent
sera exhibited equivalent or better neutralization of G614-bearing pseudoviruses compared with D614-bearing
ones. This suggests that G614-bearing virions are not intrinsically more resistant to neutralization by convalescent
sera [25,33].

In this review, we sketched the key mutations and resistance to antibodies of the VOCs that pose a public health
challenge during the COVID-19 pandemic.

Variants of concern
On 26 November 2021, five SARS-CoV-2 variants have been designated as VOCs. The emergence of VOCs poses
a serious threat to the global public health as they harbor multiple mutations that cause the increasing transmission
and partly decreasing susceptibility to neutralization antibodies elicited by convalescents and vaccinees.

Alpha
Alpha is the first SARS-CoV-2 VOC that emerged in the UK in September 2020; later, it was detected in multiple
countries worldwide [34]. This variant presents 23 nucleotide mutations (14 nonsynonymous mutations, 6 synony-
mous mutations and 3 deletions). Multiple mutations encoding for the spike protein are of most concern, such as
the deletion 69–70, deletion 144, N501Y, A570D, P681H, D614G, T716I, S982A and D1118H (Table 1) [9].
Alpha is 56% more transmissible than pre-existing variants of SARS-CoV-2 [35]. One of the mechanisms account-
ing for increased transmissibility is enhanced spike protein-binding affinity for the ACE2 receptor. The RBD of
Alpha bound ACE2 with 1.98-fold greater affinity than the WT SARS-CoV-2 RBD (Kd 203.7 + 57.1 nM vs
402.5 + 112.1 nM) [36]. The N501Y mutation situated in the RBD has been shown to enhance binding affinity
to the host cell ACE2 receptor [37,38]. The P681H mutation located immediately adjacent to the furin cleavage site
in the spike protein is important for infection and transmission [39,40]. The deletion at positions 69 and 70 of the
spike protein is linked to immune evasion in immunocompromised patients and associated with diagnostic test
failure for the probe targeting of the spike protein [41]. Moreover, it has been demonstrated that the Alpha variant
increases the risk of mortality compared with pre-existing variants [42,43].

Beta
In December 2020 a new SARS-CoV-2 variant, namely, Beta, emerged and spread throughout South Africa. This
new strain presents 19 mutations. In addition to D614G, eight other mutations are situated in the spike protein.
The N501Y, E484K and K417N mutations are at key residues in the RBD, L18F, D80A and D215G located in
the NTD, A701V in loop2 (Table 1) [10]. The N501Y mutation recently identified in Alpha emerged in the UK, it
demonstrated the potential to enhance the binding affinity to hACE2 [37,38]. The uncommon mutation E484K has
been shown to modestly enhance the binding affinity of the ACE2 receptor [38]. Both E484K and N501Y located
at the receptor-binding motif (RBM), which is important for the binding with hACE2. The K417N mutation has
a negligible impact on the binding affinity to hACE2 [38], although the binding affinity of SARS-CoV-2 to hACE2
is also associated with K417 situated in the spike RBD region [10,44,45]. The Beta RBD bound ACE2 at 4.62-fold
greater affinity than WT SARS-CoV-2 RBD (Kd 87.6 + 25.5 nM vs 402.5 + 112.1 nM) [36]. The above analysis
revealed that Beta has been estimated to be 50% more transmissible than pre-existing variants in South Africa [46].
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Table 1. Non-synonymous mutations and deletions in variants of concern.
Alpha (B.1.1.7) Beta (B.1.351) Gamma (P.1) Delta (B.1.617.2) Omicron (B.1.529)

ORF lab T1001I T265I S1188L P314L K856R P314L

A1708D K1655N K1795Q G662S S2083 del I1566V

I2230T H2799Y P1000L L2084I

S2900L A2710T

K3353R T3255I

SGF 3675–3677 del SGF 3675–3677 del P3395H

D4527Y E5665D LSG3674–3676 del

T59121 I3758V

S HV69–70 del T19R A67V G496S

L18F L18F E156 del HV69–70 del Q498R

D80A T20N F157 del T95I N501Y

Y144 del D215G P26S R158G GVY142–144 del Y505H

K417N K417T K417N K417N T547K

E484K E484K E484K N211 del D614G

N501Y N501Y N501Y T478K G339D H655Y

D614G D614G D614G D614G S371L N679K

A570D R246I D138Y D950N S373P P681H

P681H R190S P681R S375F N764K

A701V L452R Y145D
N440K

D796Y

T716I LLA241–243 del H655Y G446S Q954H

S982A T1027I S477N N856K

D1118H E484A Q954H

Q493R N969K

T478K L981F

Orf3a Q57H S26L

Orf8 Q27 stop S171L E92K D119 del

R52I Ins28269–28273 F120 del

Y73C

E P71L T9I

M I82T D3G

Q19E

A63T

N D3L T205I P80R D63G

S235F R203M

D377Y

Gamma
In December 2020, another new variant was detected in Manaus (Amazonas state, north Brazil), named Gamma,
and is associated with a case of reinfection [11,47]. Gamma has 17 unique amino acid changes, 3 deletions, 4
synonymous mutations and 1 four-nucleotide insertion (Table 1) [11]. The E484K and N501Y mutations situated
in the RBD detected in the Beta strain are also present in Gamma, which are associated with increased binding
affinity to hACE2 and infectivity [38]. In addition, Gamma and Beta share another mutation in the spike protein
(K417N/T), which is also situated in the RBD of S protein [10] and contributes to the enhanced binding affinity
of SARS-CoV-2 to hACE2 [44,45]. Furthermore, Gamma, Alpha, and Beta share the ORF1b deletion [11]. The
mutations shared between Gamma, Alpha, and Beta seem to be associated with increased transmissibility. Although
there is no evidence that Gamma causes more severe symptoms or higher mortality, cases of reinfection have been
reported. It is important to rapidly investigate whether the new variant leads to reinfection in previously exposed
individuals as well as to detect the possible emergence of new variants in the near future. Furthermore, it is notable
that the variants Alpha, Beta, and Gamma share an N501Y mutation, efficiently infecting cells carrying the ACE2
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orthologs of rats, mice and human, whereas the WT strain only infect cells expressing hACE2, the N501Y mutation
lead to the increase of the intermediate hosts and the potential risk of the spread of SARS-CoV-2 [48].

Delta
The Delta variant was first detected in October 2020 in India [12]. It presents multiple mutations situated in the spike
protein, including T19R, E156, and F157 deletion, R158G, L452R, T478K, E484K, D614G, P681R and D950N
(Table 1). Furthermore, some delta variants acquired an additional K417N mutation that has been reported to
increase the binding affinity of SARS-CoV-2 to hACE2 [44,45]. Moreover, L452R was found to significantly increase
the free energy of the RBD–ACE2 binding complex and was predicted to cause a much higher binding affinity to the
receptor and increased infectivity [49,50]. The mutations in the RBD of the spike protein may reduce susceptibility
to antibodies elicited by sera of prior infection and vaccination. The L452R and P681 mutations situated in the
RBD were found to be responsible for the resistance to certain monoclonal antibodies [51,52]. In addition, the Delta
variant is much more contagious owing to its higher replication rate and virus titers upon early infection [53,54].
The faster replication of the virus also poses challenges to the durability of COVID-19 vaccines.

Omicron
Omicron was first reported in South Africa and was designated as VOC in November 2021 [12]. The new variant
harbors the largest number of mutations among the five VOCs, with 37 mutations in the spike and more than
20 mutations outside the spike (Table 1). It is noteworthy that Omicron shares important mutations in the spike
with the other four VOCs, including N501Y, K417N, P681H and E484K/A [9,10]. The emergence of Omicron
increased the risk of breakthrough infections as it has the potential for immune evasion. Breakthrough infections
mean that individuals who have received vaccines are infected with the SARS-CoV-2 variant. Omicron breakthrough
infections have been reported in individuals who received three doses of mRNA vaccines [55].

Taken together, with the persistence of the SARS-CoV-2 pandemic, several SARS-CoV-2 variants have been
identified. These variants with multiple shared mutations in the spike protein are potentially associated with an
increase in transmissibility and disease severity or propensity for reinfection of individuals. Thus, it is critical
to monitor the new emergence mutations and assess the efficacy of existing vaccines or antibodies used for the
prevention or treatment of COVID-19.

Neutralization heterogeneity of VOCs to sera elicited by vaccines or previous infections
In response to the urgent need to develop effective vaccines against SARS-CoV-2, numerous vaccine development
technologies have been explored. Multiple vaccines against SARS-CoV-2 have been approved by different countries
for clinical use, for example, two mRNA vaccines (BNT162b2 from Pfizer-BioNTech, USA; mRNA-1273 from
Moderna, USA) [56,57], three inactivated vaccines (BBIBP-CorV from Sinopharm, China; CoronaVac from Sinovac,
China) [58–60], and four adenoviral vectored vaccines (Sputnik V, Russia; AZD1222 from AstraZeneca-Oxford, UK;
JNJ78436735 from Johnson & Johnson, USA; Ad5-nCoV, China) [61–63].

The trimeric S protein mediates host cell binding and entry, and the design of the major targets of neutralizing
antibodies and vaccines is based on the spike protein sequence of the first isolated virus (Wuhan-Hu-1; GenBank
accession no. NC 045512) [17,18,64]. However, mutations that occurred within the spike RBD region might
lead to the decrease in the neutralization effect of antibodies elicited by convalescent sera and vaccines designed
according to the spike sequence of early SARS-CoV-2 strains, posing additional challenges in controlling the
pandemic. The aforementioned lineages are each characterized by numerous mutations in the spike protein, raising
concerns of whether they can escape from therapeutic antibodies and vaccine-induced sera. Here, we elaborated
the neutralization heterogeneity of SARS-CoV-2 variants to antibodies elicited by convalescents and vaccinees
(Table 2).

Convalescent sera harbored similar neutralization activity against Alpha when compared with the D614G
strain [20,65–67]. Furthermore, the sera elicited by Pfizer BNT162b2 and Moderna mRNA-1273 vaccines also
maintain effective neutralization activity against the Alpha variant [20,31,65–70]. The Novavax COVID vaccine was
more than 85% effective against Alpha lineage [71]. The Alpha variant showed little resistance to the neutralizing
activity of the BBIBP-CorV and the CoronaVac vaccinee sera [59]. However, Alpha is refractory to neutralization
by most antibodies to the NTD of the spike protein and relatively resistant to a few monoclonal antibodies to
RBD [20,48,67].
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Beta is more worrisome when compared with Alpha in that it is not only refractory to neutralization by most NTD
antibodies and multiple RBD antibodies [20,48] but also exhibits varying degrees of resistance to convalescent serum
and vaccine-elicited antibodies [20,31,65,66,70,72,73]. Antibodies elicited by BNT162b2 neutralized pseudotyped virus
carrying the Beta spike protein with a 3.1-fold reduction in IC50 compared with D614G [58]. The Novavax COVID
vaccine is less than 50% effective against the Beta strain [71]. Neutralizing antibody titers to Beta reduced 3.5-fold
from recipients of mRNA-1273 as compared with D614G [68]. The neutralization activity of the BBIBP-CorV
and CoronaVac vaccinee sera against Beta also significantly decreased [33]. In addition, it has been reported that
7 days after the booster vaccination, neutralizing activity against Beta (median neutralizing titer of 1:5) significantly
reduced in comparison with the D614G mutation (1:160) [65]. This indicates the necessity of vaccination even in
people who had recovered fromCOVID-19 to avoid reinfection with the SARS-CoV-2 variants.

Beta and Gamma share the same mutations in the RBD region, except for the K417N mutation is situated in the
RBD of Beta and Gamma RBD adopted a K417T mutation, thus it’s reasonable that Gamma is also highly resistant
to therapeutic antibodies [10,11,38] and sera from convalescent and vaccinee. It has recently been demonstrated that
the Gamma lineage is also resistant to multiple monoclonal antibodies, including monoclonal antibodies targeting
RBM and NTD [74]. In addition, the neutralization activity of antibodies from the sera of convalescents and
vaccinees to Gamma is also reduced, although the magnitude of the loss is modest as compared with that for
Beta [20,74–76].

Delta also exhibits resistance to antibodies elicited by vaccinee and convalescent sera. It has a higher replication
rate and the ability to evade immunity, which contribute to the rapid spread of the variant. Based on the real-world
data, vaccines remain protective against the variant, although multiple vaccines seemed to reduce the effectiveness
against Delta [77]. The effectiveness of BNT162b2 and mRNA-1273 to persons infected with Delta is 88 and 67%,
respectively [78]. Furthermore, the neutralization antibody from vaccines (BNT162b2, mRNA-1273 or AZD1222)
and convalescent sera exhibited less neutralizing activity against Delta, and the waning immunity may be responsible
for the declined effectiveness and increased risk of reinfection [77,79–81].

Although it may not cause severe disease or death, Omicron evades neutralization antibodies from convalescents
and vaccinees. In addition, the reduced effectiveness of vaccines against Omicron has been reported, and the
effectiveness of BNT162b2 reduced to 70% [82]. The neutralization activity of BNT162b2, mRNA-1273, and
AZD1222 against Omicron decreased by 44-, 33- and 36-fold, respectively [83]. However, booster vaccines may
increase the neutralization antibody titers and reduce the risk of breakthrough infection [84].

Furthermore, studies have demonstrated that the neutralization antibody titers decreased 6 months after receiving
the second dose of the vaccines [85]; thus, booster vaccination is needed to enhance the waning immunity and
prevent virus or breakthrough infection. Homologous and heterologous prime-boost vaccination strategies have
been approved, and their effectiveness and safety have been evaluated. To overcome the ongoing pandemic and
the shortage of vaccines worldwide, the safety and efficacy of heterologous prime-boost vaccination strategies have
been studied. Heterologous prime-boost vaccination means two doses of vaccine used to prevent COVID-19 are
different. The first and second doses of vaccine may be from different platforms, for example, ChAdOx1 for the first
dose and mRNA-1273 or BNT162b2 for the booster dose. Heterologous prime-boost vaccination regimes could
induce a more robust humoral immunity, and only mild adverse events were reported [77,86,87]. Higher neutralization
antibody titers were elicited after heterologous prime-boost vaccination. Homologous boost vaccines were found to
increase the neutralization titers by 4.2- to 20-fold after administration, whereas heterologous prime-boost vaccines
increased by 6.2- to 76-fold) [86]. Heterologous prime-boost vaccination may be an excellent strategy to control the
SARS-CoV-2 pandemic.

Conclusion
The emergence of SARS-CoV-2 in December 2019 posed a significant threat to global health. Five VOCs subse-
quently emerged and widely spread during the pandemic. Alpha was the first detected variant, and it demonstrated
increased transmissibility and mortality. Beta shares several mutations with Alpha and also presents a higher trans-
missibility compared with WT. Gamma was subsequently detected in December 2020 in Brazil. It is also more
infectious and associated with reinfection. The emergence of Delta caused resurgence of SARS-CoV-2 outbreak.
The increased transmission of Delta is related to the higher replication rate. Omicron has recently emerged in
multiple countries, which harbors a high number of mutations in the spike protein and may also be associated with
higher transmissibility.

10.2217/fvl-2021-0100 Future Virol. (Epub ahead of print) future science group
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Vaccines are effective against infection with the original SARS-CoV-2, however, their effectiveness against several
VOCs is reduced. The emergence of VOCs harbored multiple mutations in the spike protein could escape the
neutralizing antibody response. Sera obtained from vaccinees exhibited slightly reduced but largely preserved
activity against Alpha. The Beta variant is more worrisome as it is less sensitive or even insensitive to a large
part of the vaccinee sera tested. Gamma shares three mutations in RBD with Beta, namely, E484K, K417N/T,
and N501Y, and also has significantly decreased neutralization activity even in fully vaccinated individuals. Delta
also exhibits resistance to antibodies elicited by vaccinees and convalescents. In addition, Gamma and Delta may
increase the risk of reinfection. Omicron also has the potential to evade immunity as it shares several mutations of
concern with other VOCs. The waning immunity is another important reason for the resurgence of epidemic, and
booster vaccines could induce a strong immune response without causing serious adverse reactions. Heterologous
prime-boost vaccination strategies have been employed to deal with the waning immunity.

Future perspective
We speculate that SARS-CoV-2 will not be eliminated in the next few years and will even coexist with people for a
long time as the virus may continue to evolve. It is possible that many more serious variants that have the ability
to evade immunity will emerge worldwide over time. Genetic surveillance is necessary for the early identification
of newly emerging variants. Furthermore, resistance to antibodies, faster replication, and waning immunity pose
challenge to vaccines. We could not rely on vaccines alone to avoid infection; measures such as wearing of mask,
social distancing, frequent handwashing and ventilation improvement should be taken to reduce the spread of
SARS-CoV-2. Meanwhile, next-generation vaccines against key mutations should also be fabricated to avoid a new
wave. We believe that the epidemic will be controlled through global cooperation.

Executive summary

Variants of concern
• Five SARS-CoV-2 variants have been currently designated by the WHO as variants of concern (VOCs), namely,

Alpha, Beta, Gamma, Delta and Omicron.
• Alpha is the first VOC that emerged, and it increased the risk of mortality. The N501Y and P681H mutations in the

spike protein increased the transmissibility of the virus.
• Beta shares the D614G and N501Y mutations with Alpha, which is more transmissible than wild-type (WT). The

E484K mutation occurred in the receptor-binding domain, which is also responsible for the increased affinity to
hACE2.

• Gamma shares the N501Y mutation with Alpha and Beta; it also shares the K417N/T and E484K mutations in the
spike protein with Beta. Gamma exhibits increased transmissibility and risk of reinfection.

• Delta became the dominant variant by late 2021 in multiple countries since first detected in October 2020. In
addition to the D614G, E484K and K417N mutations, L452R also increased infectivity. It is more contagious
because of the faster replication rate and higher virus titers upon early infection.

• Omicron raises serious concerns as it harbors numerous mutations in the spike protein. It shares important
mutations, namely, N501Y, K417N, P681H and E484K/A, in the spike protein with other four VOCs, which have
been demonstrated to increase the infection and transmission rates.

Neutralization heterogeneity of VOCs to sera elicited by vaccines or previous infections
• Mutations in the spike proteins of VOCs might limit antibody-mediated neutralization because the design of

major vaccines is based on the spike protein sequence of WT.
• Alpha demonstrated little resistance to antibodies elicited from convalescent and vaccine sera.
• Beta is more worrisome as it showed varying degrees of resistance to convalescent serum and vaccine-elicited

antibodies.
• The neutralization activity of antibodies from convalescent sera and vaccinated individuals to Gamma was also

reduced, although it is modest as compared with Beta.
• Vaccines remain protective against Delta, although multiple vaccines seemed to exhibit reduced effectiveness

against the variant.
• The waning immunity may be responsible for the declined effectiveness and increased risk of reinfection.
• Booster vaccination is needed to enhance the waning immunity and prevent virus or breakthrough infection

since the neutralization antibody titers decreased 6 months after receiving the second dose of the vaccines.
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