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Parasitic infection can induce pathological injuries and impact the gut microbiota diversity
and composition of the host. Bacillus subtilis is a nonpathogenic and noninvasive probiotic
bacterium for humans and other animals, playing an important role in improving the host
immune system’s ability to respond to intestinal and liver diseases and modulating gut
microbiota. However, whether B. subtilis can impact biological functions in Schistosoma
japonicum–infected mice is unclear. This study used oral administration (OA) of B. subtilis
to treat mice infected with S. japonicum. We evaluated changes in the gut microbiota of
infected mice using 16 S rRNA gene sequencing and differentially expressed gene profiles
using transcriptome sequencing after OA B. subtilis. We found that OA B. subtilis
significantly attenuated hepatic and intestinal pathological injuries in infected mice. The
gut microbiota of mice were significantly altered after S. japonicum infection, while OA B.
subtilis remodel the diversity and composition of gut microbiomes of infected mice. We
found that theS. japonicum–infectedmice with OAB. subtilis had an overabundance of the
most prevalent bacterial genera, including Bacteroides, Enterococcus, Lactobacillus,
Blautia, Lachnoclostridium, Ruminiclostridium, and Enterobacter. Transcriptomic
analysis of intestinal tissues revealed that OA B. subtilis shaped the intestinal
microenvironment of the host responding to S. japonicum infection. Differentially
expressed genes were classified into KEGG pathways between S. japonicum–infected
mice and those without included cell adhesion molecules, intestinal immune network for
IgA production, hematopoietic cell lineage, Fc epsilon RI signaling pathway, Th1 and Th2
cell differentiation, Th17 cell differentiation, calcium signaling pathway, Fc gamma
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R-mediated phagocytosis, chemokine signaling pathway, phospholipase D signaling
pathway, NF-kappa B signaling pathway, B cell receptor signaling pathway, pancreatic
secretion, and phagosome. In conclusion, our findings showed that OA B. subtilis
alleviates pathological injuries and regulates gene expression, implying that B. subtilis
supplementation may be a potential therapeutic strategy for schistosomiasis. Our study
may highlight the value of probiotics as a beneficial supplementary therapy during human
schistosomiasis, but further studies are needed.

Keywords: probiotics, Schistosoma japonicum, pathological injury, gut microbiota, transcriptomics

BACKGROUND

Schistosomiasis, a result of infection with blood flukes of
Schistosoma, is considered as a neglected tropical disease,
causing over 250 million people to be infected globally and
threatening nearly one-eighth of the world population (Colley
et al., 2014; McManus et al., 2018). This zoonotic disease, which
seriously damages human and animal health and hinders
socioeconomic development, can be found in more than 78
countries in South America, Asia, and Africa (Lin et al., 2020;
McManus et al., 2018). In China, Schistosoma japonicum is the
only endemic parasitic flatworm of schistosomes and is mainly
prevalent in 12 provinces along the middle and the lower reaches
of the Yangtze River and in southern regions. S. japonicum
infection remains one of the most important public health
problems in mainland China, and there are still more than
29,214 advanced schistosomiasis cases documented in 2019
(Zhang LJ. et al., 2020).

S. japonicum infection can cause diarrhea, fatigue, and anemia
in the early stages and cause portal vein hypertension syndrome,
ascites, and hepatic fibrosis in the later stages. Previous studies have
demonstrated that schistosomal eggs, not adult worms, are the key
factor inducing hepatic fibrosis and even morbidity (Barnett, 2018;
Colley et al., 2014; McManus et al., 2018). The mature schistosome
lays a large number of eggs in the vessels of the intestinal wall
during schistosomiasis progression (Pearce and MacDonald,
2002). Many laid eggs are deposited in the liver via the portal
system and finally induce portal vein hypertension syndrome,
ascites, granuloma formation, and hepatic fibrosis (Colley et al.,
2014; McManus et al., 2018; Pearce and MacDonald, 2002).
Evidence suggests that upregulation of the serum cytokine levels
of interleukin 13 (IL-13), IL-5, IL-4, and TGF-βmay lead to hepatic
fibrosis (Hu et al., 2020; Qiu et al., 2017). Studies have indicated
that deposited eggs stimulate dominant CD4+ Th2 immune
responses accompanied by eosinophil, macrophage, hepatic
stellate cell, and lymphocyte recruitment and then induce
granuloma formation (Burke et al., 2009; Colley and Secor,
2014). Shifts in the Th1 response to the Th2 response are a
determining factor in the mechanism of granuloma formation
and hepatic fibrosis (Bourke et al., 2013; Qiu et al., 2017; Romano
et al., 2016). Targeting the Th1/Th2 balance in S.
japonicum–infected mice can attenuate hepatic fibrosis (Huang
et al., 2020). Furthermore, a schistosome infection can also cause a
wide range of clinical symptoms such as gut inflammation and
affect the gut microbiota of mice (Hu et al., 2020). However, the

mechanism of the complex interaction between host immunity and
S. japonicum remains unclear.

Mammals harbor diverse bacteria that affect host biology and
health in various ways. Previous studies have shown alterations in
composition and structure of the gut microbiome and metabolite
profiling in S. japonicum–infected mice (Hu et al., 2020; Song
et al., 2020; Zhang B. et al., 2020). Evidence suggests that gut
microbiota composition is associated with Schistosoma mansoni
infection burden in rodent models (Cortes et al., 2020). Our
previous work and other reports revealed that schistosome
infection decreases the alpha diversity and richness of
beneficial bacteria of gut microbiota in mammals such as
rodents (Anter et al., 2020; Cortes et al., 2020; Hu et al., 2020;
Jenkins et al., 2018; Song et al., 2020; Zhang B. et al., 2020) and
humans (Gui et al., 2021; Kay et al., 2015). Lack of host gut
microbiota alters host immune responses to intestinal granuloma
formation and hepatic fibrosis in infected mice (Holzscheiter
et al., 2014). Therefore, a feature is that the gut microbiota of
hosts during schistosomiasis is lost and lacking. Homeostasis of
the composition and diversity of gut microbiota can be beneficial
for host health and biological functions after schistosome
infection.

Bacillus subtilis, a member of class Bacilli significantly
increased in humans after schistosome infection (Gui et al.,
2021), is a nonpathogenic and noninvasive probiotic
bacterium for humans and other animals. B. subtilis is one of
the 42 probiotics that can be orally administered directly and was
announced by the Food and Drug Administration (FDA) in 1989.
Evidence suggests that oral administration (OA) of B. subtilis
protects HFD-induced obese mice against obesity and modulates
host gut microbiota (Huang et al., 2021; Lei et al., 2015). B. subtilis
inhibits the occurrence of ulcerative colitis via changes in the
intestinal microecology (Wu et al., 2019). B. subtilis produces
surfactin, an antibacterial peptide, which protects the host against
copper sulfate–induced inflammation and hepatic injury in
zebrafish (Wang et al., 2021). In short, B. subtilis plays an
essential role in improving the host immune system’s ability to
respond to intestinal and liver diseases. Evidence has also
suggested that Bacillus species could inhibit the growth of
intestinal pathogens such as Escherichia coli, Helicobacter
pylori, Staphylococcus aureus, and Clostridium difficile (Duc
et al., 2004; Colenutt and Cutting, 2014; Piewngam et al.,
2018). However, whether B. subtilis can impact intestinal and
hepatic pathological injuries in mice infected with S. japonicum is
unclear.
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In this study, we hypothesized that B. subtilis would affect
intestinal and hepatic injuries in S. japonicum–infected mice and
modulate the biological aspects of hosts. To explore this
hypothesis, we collected hepatic, intestinal, and stool samples
from S. japonicum–infected mice treated with or without OA B.
subtilis. Subsequently, we evaluated pathological progression via
histological detection, investigated alterations in the gut
microbiota via 16 S rRNA gene sequencing, and analyzed the
gene expression profiles using transcriptomics through collected
samples. Our study demonstrated that OA B. subtilis may be a
beneficial supplementary therapy for human schistosomiasis.

METHODS

Ethics Approval and Consent to Participate
All experiments were conducted in strict accordance with the
Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health. The animal experiments were
reviewed and approved by the Institutional Animal Care and
Use Committee of Sun Yat-sen University (Permit No: 2016-104)
and the Medical Research Ethics Committee of Sun Yat-sen
University (SYSU-IACUC-2019-B517).

Preparation of Probiotic Bacterial Strain
B. subtilis CMCC(B) 63501 was purchased from Solarbio Science
and Technology Co., Ltd (Beijing). B. subtilis was cultured in a
lysogeny broth (LB) medium to spawn for 24 h. Then, bacteria
were successively washed with 1 M NaCl and 1 M KCl and
washed two times with distilled water. The LB agar plates
were incubated at 27°C for 12–24 h, and the number of CFUs
per plate was counted. Finally, the concentration of bacterial
suspension was adjusted to 3 × 108 CFU/ ml, 3 × 109 CFU/ ml, or
3 × 1010 CFU/ ml. Each animal was given 0.3 ml of the final
suspension every 3 days. The bacteria suspension was refreshed
every week.

Mice, Cercariae, Infection, and Probiotic
Treatment
A total of 36 male pathogen-free BALB/c mice, approximately
6 weeks old (body weight: 18 ± 2 g), were purchased from the
Experimental Animal Center of Southern Medical University.
They were reared in plastic cages with free access to autoclaved
chow and water in the Biosafety Level-2 (BSL-2) laboratory of
Sun Yat-sen University under controlled temperature and
humidity and a 12-h light and 12-h dark cycle. The animals
were randomly divided into groups for further experiments.
Oncomelania hupehensis was purchased from the Chinese
Center for Disease Control and Prevention (Shanghai). After
acclimating to the laboratory environment, each mouse was
infected with 20 ± 2 S. japonicum cercariae via shaved
abdominal skin. The probiotic supplement for mice was
performed 1 week before the first day of infection, and
treatment continued for 7 weeks. To conduct experiments, we
randomly divided mice into four groups: normal group (NG),
normal mice with OA B. subtilis group (NBS), S.

japonicum–infected group (SI), and S. japonicum–infected
mice with OA B. subtilis group (SIBS).

Sample Collection
The mice were sacrificed after chloral hydrate asphyxiation and
cervical dislocation of S. japonicum at 56 days postinfection (dpi).
Left liver lobes and colons were collected and immediately fixed
in 4% paraformaldehyde for histopathological analysis. Liver
samples were also collected for hydroxyproline content
measurement according to the protocol of the hydroxyproline
assay kit (Nanjing, China). Stool samples were collected the day
before sacrifice. Blood samples were drawn from orbital veins and
centrifuged at 1,500 × g for 15 min, and then the serum was
collected after clotting. In addition, both male and female S.
japonicum worms were collected from the portal vein. The
detections of worm length, worm burden, and egg burden
were determined as described in a previous study (Shen et al.,
2017).

Histological Staining
For histopathological analysis, fixed fragments from the intestine
and liver of mice were sliced into sections (5 μm thick). These
slices were subjected to H&E staining and Masson’s trichrome
staining. Images were captured under an inverted microscope
(Olympus, Japan). The percentage of the fibrotic area was
detected using a ZEISS Axio Scan. Z1 automated slide scanner
microscope (Germany). A full view of the whole tissue was also
obtained. We analyzed the whole tissue area and the blue-positive
region using Image-Pro Plus 6.0 software (Media Cybernetics,
USA). We calculated the percentage of the fibrotic area based on
the area of the blue-labeled region/the total area of the whole liver
tissue. Granulomatous responses in the colon were estimated by
calculating the ratio of the integrated optical density (IOD) to the
intestinal tissue area.

RNA Extraction, RNA Sequencing, and
Sequence Analysis
The liver and intestinal tissues were collected and stored in
TRIzol reagent (Invitrogen, USA) at −80°C until processing.
Total RNA was extracted as described in a previous study (Lin
et al., 2020). We quantified the total RNA using a NanoDrop 2000
spectrophotometer (Thermo Scientific, America).

RNA integrity was assessed using the RNA Nano 6000 Assay
Kit protocol in the Agilent Bioanalyzer 2100 system (USA). Total
RNA was used as input material for the RNA sample
preparations. PCR was performed with Phusion high-fidelity
DNA polymerase, universal PCR primers, and index (X)
primers. The PCR products were purified. The library quality
was assessed on a Qubit2.0 Fluorometer and Agilent Bioanalyzer
2100 system. The prepared library was sequenced on an Illumina
NovaSeq platform by Frasergen Company (Wuhan, China) and
150 bp paired-end reads were generated. After quality control of
raw data, we carried out transcriptome assembly, gene functional
annotation, differential expression analysis, KEGG enrichment
analysis, and GO enrichment analysis. Genes with an adjusted
fold change ≥2 were assigned as DEGs using the DESeq2 R
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package (1.20.0). The cluster profiler R package was used to test
the statistical enrichment of DEGs in KEGG pathways.

DNA Extraction
All stool samples were frozen at −80°C for further study. Total
DNA from stool samples was isolated under a sterile environment
according to the Hipure Stool DNA Kit protocol (Magen, China).
After extraction, the total DNA quality and quantity examination
were conducted using a NanoDrop 2000 spectrophotometer
(Thermo Scientific, America).

PCR Amplification and Sequencing
The V3–V4 region of the 16 S rRNA gene (approximately
500 bp) was amplified using a specific bacterial primer set
(forward primer 5′-ACTCCTACGGGAGGCAGCA-3′ and

reverse primer 5′-GGACTACHVGGGTWTCTAAT-3′) and
sequenced on an Illumina HiSeq 2500 platform. PCR
amplification was performed using Takara PrimeStar DNA
polymerase (China). The following PCR cycling conditions
were used: denaturation at 95°C for 5 min, 25 cycles of 95°C for
30 s, 50°C for 30 s, 72°C for 40 s, and final extension at 72°C for
5 min. The PCR products were analyzed by 2% agarose gel
electrophoresis. Finally, sequencing was performed by
Biomarker Technologies (China).

Analysis of Sequencing Data
After the base calling analysis, the raw data files from the
sequencing platform were transformed into the original
sequenced reads and stored in FASTQ format. QIIME (version
1.8.0) was used to cluster reads into operational taxonomic units

FIGURE 1 | OA B. subtilis attenuated S. japonicum–induced hepatic and intestinal granulomas in mice (n � 6). (A) Time schedule for parasite infection, OA B.
subtilis, and sample collection. Mice were infected with 20 ± 2 S. japonicum cercariae at 0 weeks. Infected mice received B. subtilis at a dose of 0.3 × 8 × 108 CFU/ ml or
PBS at 1 week post-infection. Samples were collected at the indicated time points. (B) H&E staining and Masson’s trichrome staining of liver tissues. (C) The value of
granuloma area in the liver. (D) The value of fibrosis area in the liver. (E) Hydroxyproline content in the liver. (F) H&E staining of colon tissues. (G) The value of
granuloma area in the colon. Granulomatous responses in the colon were estimated by calculating the ratio of the integrated optical density (IOD) to the intestinal tissue
area. NG: normal mice with PBS group. BS: normal mice with OA B. subtilis group. SI: S. japonicum–infected mice group. SIBS: S. japonicum–infected mice with OA B.
subtilis group. Black arrows indicate granulomas or fibroses and red arrows indicate schistosome eggs. * and *** were considered statistically significant.
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(OTUs) and identified at 97% or more similarity (Caporaso et al.,
2010). We rarified the OTU table and calculated the species
abundance based on the OTUs and ACE indices using mothur
(version 1.33.3) (Grice et al., 2009). To analyze the alpha diversity.
As measures of beta diversity of the similarity, the nonmetric
multidimensional scaling (NMDS) and partial least squares
discrimination analysis (PLS-DA) plots with binary Jaccard
distance were performed in R with the vegan package
(Kambura et al., 2016). PERMANOVA was used to evaluate
the beta diversity between samples or groups using mothur
(version 1.33.3). We computed and explored the taxonomic
content of the sequencing dataset using MEGAN (Huson
et al., 2007). A ternary plot of the microbial community was

generated as described in a previous study (Han et al., 2018).
Based on the genus abundance of the gut microbiota of mice,
random forest algorithms with 1,000 random permutations were
conducted (Li et al., 2021). For range adjustment, all pairwise
comparisons between two groups were tested using Student’s
t-test.

Statistical Analysis
We calculated the results using GraphPad Prism version 6.0
(USA). Data are expressed as the mean ± SEM. The
differences between groups were analyzed by Student’s t-test
using SPSS 19.0 software (USA). *p < 0.05, **p < 0.01, and
***p < 0.001 were considered statistically significant.

FIGURE 2 | OA B. subtilismodulated community structures and alpha diversity of gut microbiota in S. japonicum–infected mice. (A) NMDS analysis. (B) PLS-DA
analysis. (C) The difference in microbial communities between the ND and SI groups using PERMANOVA analysis. (D) The difference in microbial communities between
the SI and SIBS groups using PERMANOVA analysis. (E) OTU number analysis. (F) ACE index analysis. NG: normal mice with PBS group. BS: normal mice with OA B.
subtilis group. SI: S. japonicum–infected mice group. SIBS: S. japonicum–infected mice with OA B. subtilis group. * was considered statistically significant. NS: not
statistically significant.
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RESULTS

Protection of Mice Against Schistosome
Infection by OA B. subtilis
To examine the role of B. subtilis in schistosomiasis-related
hepatic fibrosis in vivo, we infected the mice with a lethal dose
of S. japonicum cercariae. The infected mice were gavaged with B.
subtilis or PBS every 3 days. Experimental designs on schedule for
parasite infection, OA B. subtilis or PBS, and sample withdrawal
are shown (Figure 1A). The survival rate of mice is shown
(Supplementary Figure S1A).

Hepatic pathological injuries and fibrosis are severe symptoms
during schistosomiasis and may cause death in hosts. Therefore,
we next investigated whether OA B. subtilis (3 × 108 CFU/ ml)
protection involved attenuation of hepatic injuries and fibrosis.
Based on the results of Masson’s trichrome staining (Figures
1B–D) and hydroxyproline quantification (Figure 1E), we found
that infected mice displayed a significant reduction in the total
area of hepatic granulomas and fibrosis after OA B. subtilis. In
addition, the worm burden, egg count in the liver, and intestine
and worm length from the mice were not significantly different
between the groups (Supplementary Figures S1B–D).

However, whether the dead B. subtilis or living B. subtilis
plays a role in attenuating pathological injuries in S.
japonicum–infected mice is unclear. Subsequently, the
infected mice were administered living B. subtilis (SIBS) or
heat-killed B. subtilis (SIDBS). We found no significant
difference in the area of fibrosis between infected mice and
infected mice with OA-dead B. subtilis (Supplementary Figures
S2A, B), in addition to the differences in the hydroxyproline
quantification (Supplementary Figures S2A, C). However, it
was significantly different in infected mice with and without OA
living B. subtilis (Supplementary Figures S2). These findings
indicated that OA living B. subtilis attenuates hepatic
pathological injuries in S. japonicum–infected mice.

In addition, schistosome infection causes a wide range of
clinical symptoms including gut inflammation, mainly induced
by releasing eggs trapped in the intestinal wall. We next
investigated whether OA B. subtilis protection involved
attenuation of intestinal injuries. We found that S. japonicum
eggs were distributed in the submucosa or even involved in the
mucosa of infected mice (Figure 1F). These results indicated that
parasitic eggs may affect the integrity of the intestinal tissue.
Importantly, we found that infected mice treated with OA B.
subtilis displayed a significant reduction in the total area of
intestinal granulomas, as shown by HE staining (Figures 1F,G).

Modulating the Diversity and Community
Structure of the Gut Microbiota in S.
japonicum–Infected Mice After OA B.
subtilis
Evidence suggests that S. japonicum infection contributes to the
dysbiosis of gut microbiota in mice, so we next investigated
whether OA B. subtilis can affect the gut microbiota of mice
during schistosomiasis using 16 S rRNA gene high-throughput
sequencing. We analyzed the bacterial community structure and
diversity of the intestinal contents of 36 individual mice. A total of
2,813,530 valid reads and 2,515,622 clean tags were retained from
36 stool samples, with an average of 69,878 clean tags per sample
after filtering (Supplementary Table S1). A total of 416 OTUs
were obtained at a 97% similarity level among all samples based
on the Silva database. The sequenced samples were taxonomically
clustered into 9 phyla, 15 classes, 21 orders, 37 families, 97 genera,
and 102 species (Supplementary Table S2).

The mouse gut microbiota harbored 21 bacterial phyla, with
two dominant phyla (Firmicutes and Bacteroidetes) accounting
for over 73.4% of the total relative abundance

FIGURE 3 | Phylogenetic diversity and taxonomical content of the gut
microbiota sequences from all groups computed by MEGAN. In this figure,
each circle represents a bacterial taxon in the NCBI taxonomy and is labeled
by its name. The size of the circle represents the number of reads. NG:
normal mice with PBS group. BS: normal mice with OAB. subtilis group. SI: S.
japonicum–infected mice group. SIBS: S. japonicum–infectedmice with OAB.
subtilis group.
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(Supplementary Figure S3A). The phylum Firmicutes was the
most frequent taxon in the mouse gut at the phylum level, followed
by Bacteroidetes, Proteobacteria, and Epsilonbacteraeota. We found
that Bacteroidia, Clostridia, and Bacilli were the most abundant gut
bacteria at the class level, with total average relative abundances of
over 72.5% in the six groups (Supplementary Figure S3B). was the
most prevalent abundant bacterium in all groups at the family level,
followed by Muribaculaceae, Rikenellaceae, Ruminococcaceae,
Prevotellaceae, and Lactobacillaceae. (Supplementary Figure S3C).
At the genus level, uncultured bacteria of Muribaculaceae and
Alistipes were the most prevalent gut microbiota detected in BS
and NG group mice, while Alloprevotella and Lactobacillus were the
most prevalent gut microbiota detected in SIBI and SI groups
(Supplementary Figure S3D).

To evaluate bacterial community differences, we further analyzed
the beta diversity of gutmicrobiota among groups.We found that the
bacterial communities of normal mice with and without OA B.
subtilis were similar (quantified by NMDS analysis) (Figure 2A).
After S. japonicum infection, significant differences in bacterial
community structures between infected mice and normal mice
were found (quantified by NMDS and PLS-DA analysis,
permanova: p < 0.05) (Figures 2A–C). Moreover, the community
structures of the gut microbiota of S. japonicum–infected mice with
OA B. subtiliswere significantly different from those of infected mice
(quantified by NMDS and PLS-DA analysis, permanova: p < 0.05)
(Figures 2A,B,D). Our findings suggested that OA B. subtilis can
significantly modulate the beta diversity of gut microbiota in S.
japonicum–infected mice.

To evaluate how OA B. subtilis affects the diversity of the gut
microbiota of S. japonicum–infected mice, we next analyzed the
diversity of the gut microbiota in the intestinal contents. We
found that S. japonicum–infected mice showed significantly lower
diversities of gut microbiota than the control mice

(Figures 2A,B). Interestingly, the alpha diversity of the gut
microbiome of both infected and normal mice increased
significantly after OA B. subtilis (Figures 2A,B). Our findings
suggested that OA B. subtilis can modulate the alpha diversity of
gut microbiota in S. japonicum–infected mice.

Modulating the Composition of Gut
Microbiota in S. japonicum–Infected Mice
After OA B. subtilis
To further examine how OA B. subtilis affects the composition of
the gut microbiota of S. japonicum–infected mice, we next
performed taxonomic analysis using MEGAN. Differences in
the top 38 bacterial taxa were noted among groups (Figure 3).
SIBS mice had an overabundance of most bacterial genera,
including Bacteroides, Allporevotella, Enterococcus,
Lactobacillus, Blautia, Lachnoclostridium, Anaerotruncus,
Ruminiclostridium, Rhodospirillales, and Enterobacter
(Figure 3). Interestingly, most bacterial genera belonging to
Firmicutes, which are considered beneficial bacteria, were
overabundant in the SIBS population. Moreover, the ternary
plot of microbial communities in different groups also
revealed that the relative number of microbes belonging to the
phylum Firmicutes was closer to the SIBS population than to the
SI group (Supplementary Figure S4).

Intestinal mRNAExpression Profiles ofMice
Against Schistosome Infection by OA B.
subtilis
Since OA B. subtilis significantly changed the gut microbiota
composition and diversity of infected mice, we asked whether OA
B. subtilis could also modulate the host response to schistosome

FIGURE 4 | The correlation of intestinal mRNA expression profiles between groups. (A) Correlation shown by gene correlation. (B) Correlation shown by heatmap.
NG: normal mice with PBS group. BS: normal mice with OAB. subtilis group. SI: S. japonicum–infectedmice group. SIBS: S. japonicum–infectedmice with OAB. subtilis
group. “-colon” indicates colon tissue. “-si” indicates small intestine tissue.
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infection. To this end, we performed small intestine and colon
RNA-Seq in NG, SI, and SIBS mice after 8 weeks of infection. We
found that the mRNA expression profiles between small intestine
samples were strongly correlated (r ≥ 0.894), in addition to those
between colon samples (Figure 4A). Meanwhile, there was also a
strong correlation (r ≥ 0.739) between the small intestine and
colon samples (Figure 4A). Similar results between sequenced

samples are shown in the heatmap (Figure 4B). In addition, 275
of the total OTUs in the small intestine were commonly shared
between the SI and SIBS groups (Supplementary Figure S5A).
There were 330 OTUs in the small intestine uniquely identified in
the NG versus (vs.) SIBS groups compared with the NG vs. SI
groups. The shared and unique OTUs of expression profiles in the
colon between groups are also displayed in the Venn diagram

FIGURE 5 | Comparison of DEGs in the small intestinal tissues were analyzed by KEGG enrichment and volcano diagram analysis. (A,B) Comparison of DGEs
between the NG and SI groups. (C,D) Comparison of DGEs between the NG and SI groups. NG: normal mice with PBS group. SI: S. japonicum–infected mice group.
SIBS: S. japonicum–infected mice with OA B. subtilis group. The size of each circle represents the number of genes.
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(Supplementary Figure S5B). These findings suggested that host
immune system’s abilities between small intestine and colon to
respond to intestinal and liver diseases are different.

The DEGs (based on fold changes) in small intestinal tissues
between the NG and SI groups are shown as heatmaps in
Figure 5A. Based on the assessments of the mRNA expression
profiles of various genes in the small intestine of the NG vs. SI

groups, we found that 514 genes were upregulated and 397 genes
were downregulated (Supplementary Figure S6A;
Supplementary Table S3). To identify the KEGG biological
pathways enriched between the NG and SI groups, we
revealed the top 10 most change enriched pathways, including
the Fc epsilon RI signaling pathway, B cell receptor signaling
pathway, Fc gamma R-mediated phagocytosis, intestinal immune

FIGURE 6 | Comparison of DEGs in the colonal tissues were analyzed by KEGG enrichment analysis. (A,B) Comparison of DGEs between the NG and SI groups.
(C,D) Comparison of DGEs between the SIBS and SI groups. NG: normal mice with PBS group. SI: S. japonicum–infected mice group. SIBS: S. japonicum–infected
mice with OA B. subtilis group. The size of each circle represents the number of genes.
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network for IgA production, hematopoietic cell lineage, NF-
kappa B signaling pathway, phospholipase D signaling
pathway, pancreatic secretion, and phagosome (Figure 5B).
Based on the KEGG classifications of DEGs, transport and
catabolism, signal transduction, translation, lipid metabolism,
and immune system ranked at the top of five KEGG
categories, which included cellular processes, environmental
information processing, genetic information processing,
metabolism, and organismal systems (Supplementary Figure
S7A). Based on the GO classification, these DEGs were
classified into the cellular process, cell, and binding categories,
ranking at the top of the biological process, cellular component,
and molecular function classes, respectively (Supplementary
Figure S8A). In addition, the DEGs (based on fold changes)
in small intestinal tissues between the NG and SI groups are
shown as heatmaps in Figure 5C. The comparative DEGs of small
intestinal mRNA expression in profiles between the SI and SIBS
groups revealed 541 upregulated and 348 downregulated genes
(Supplementary Figure S6B; Supplementary Table S4). The
KEGG pathway enrichment results between the SI and SIBS
groups showed that the top 10 most prevalent pathways
included the intestinal immune network for IgA production,
Fc epsilon RI signaling pathway, NF-kappa B signaling
pathway, Fc gamma R-mediated phagocytosis, calcium
signaling pathway, B cell receptor signaling pathway,
hematopoietic cell lineage, phospholipase D signaling pathway,
pancreatic secretion, and phagosome (Figure 5D). The KEGG
classification (Supplementary Figure S7B) and GO classification
(Supplementary Figure S8B) are shown in the additional figures.

In addition, the comparative mRNA expression profiles in
the colon of the NG vs. SI groups and SI vs. SIBS groups revealed
that 1,693 genes (598 upregulated and 1,095 downregulated)
(Supplementary Figure S6C; Supplementary Table S5) and
2,358 genes (1,783 upregulated and 575 downregulated)
(Supplementary Figure S6D; Supplementary Table S6) were
differentially expressed. They are shown as heatmaps in Figures
6A,C, respectively. The KEGG pathway enrichment results
showed that the intestinal immune network for IgA
production, hematopoietic cell lineage, B cell receptor
signaling pathway, natural killer cell–mediated cytotoxicity,
NF-kappa B signaling pathway, CAMs, Fc epsilon RI
signaling pathway, phagosome, Fc gamma R-mediated
phagocytosis, and Th17 cell differentiation were the top 10
most frequently enriched pathways in the colon between the NG
and SI groups (Figure 6B). The KEGG classification
(Supplementary Figure S7C) and GO classification
(Supplementary Figure S8C) between the NG and SI groups
are shown. In addition, CAMs, intestinal immune network for
IgA production, hematopoietic cell lineage, Th1 and Th2 cell
differentiation, Th17 cell differentiation, calcium signaling
pathway, chemokine signaling pathway, NF-kappa B
signaling pathway, B cell receptor signaling pathway, and
phagosome were the 10 most change enriched pathways in
the colon between the SIBS and SI groups (Figure 6D).
Based on the DEGs between the SIBS and SI groups, the
KEGG classification (Supplementary Figure S7D) and GO
classification (Supplementary Figure S8D) were performed.

DISCUSSION AND CONCLUSIONS

As one of the world’s most prevalent neglected tropical diseases,
schistosomiasis affects public health in over 240 million people
worldwide and results in approximately 70 million disability-
adjusted life years lost annually (Colley and Bustinduy et al.,
2014). Human blood flukes, including S. japonicum and S.
mansoni, lay eggs in the portal venous system, and these eggs
are subsequently trapped in the liver and intestine (Pearce and
MacDonald, 2002). Schistosoma eggs could finally induce a
variety of fibrotic diseases and lead to intestinal inflammation
and gut microbiota dysbiosis (Gui et al., 2021; Holzscheiter et al.,
2014; Hu et al., 2020). The probiotic bacterium B. subtilis could
respond to hepatic and intestinal diseases and modulate the host
gut microbiota (Lei et al., 2015; Rhayat et al., 2019; Wu et al.,
2019). However, whether B. subtilis can protect mice against S.
japonicum infection is unclear.

In this study, our findings indicated that OA B. subtilis
significantly reduced intestinal fibrosis and hepatic fibrosis in
S. japonicum–infected mice, as well as hepatic fibrosis. Fibrosis is
the final pathological consequence of chronic inflammatory
diseases, including schistosomiasis. Fibrotic diseases induced
by S. japonicum infection affect many organs in mice and
even cause mortality during the acute phase (Gunda et al.,
2020; He et al., 2018; McManus et al., 2018). Praziquantel
(PZQ), which has improved the prevention and control of
schistosomiasis in endemic regions, is commonly used as an
anti-schistosome drug (Colley and Bustinduy et al., 2014).
However, until now, there have been no approved effective
antifibrotic therapies (Wynn and Ramalingam, 2012).
Although a mouse experiment showed that PZQ had specific
antifibrotic effects (Liang et al., 2011). The clinical results showed
that some patients with schistosome infection still developed to
an advanced stage after treatment with PZQ. This development
implied that PZQ could not significantly alleviate the
fibrogranulomatous inflammation induced by schistosomal
eggs (Colley et al., 2014). Therefore, in the clinic, PZQ plus
liver protection by traditional Chinese medicine is usually used to
prevent advanced schistosomiasis (Zhang and Xia, 2017; Yuan
and Dai, 2021). Probiotics have been used as dietary supplements
or medicinal supplements in humans, veterinary, and aquaculture
(Duc et al., 2004; Cutting, 2011). Evidence suggests that B. subtilis
supplementation attenuates hepatic injury (Wang et al., 2021). In
addition, a previous study reported that B. subtilis contributes to
the limitation of the intestinal inflammatory response and
homeostasis in mice (Fujiya et al., 2007; Rhayat et al., 2019).
Our study first revealed that OA B. subtilis alleviated liver and
intestinal injury in mice infected by S. japonicum, implying that
probiotic supplements may contribute to host biology during
schistosomiasis.

The gut microbiota plays an important role in host health and
immunity in all mammals (Browne et al., 2017). Dysbacteriosis of
the gut microbiota can affect host health and biology and induce
diseases such as cirrhosis (Bajaj et al., 2018; Kang et al., 2016) and
inflammatory bowel disease (Lavelle and Sokol, 2020; Nishida
et al., 2018). Therefore, homeostasis of the composition and
diversity of gut microbiota is vital for biological aspects of the
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host (Eckburg et al., 2005; Liao et al., 2019). However, previous
studies have demonstrated that schistosome infection can induce
the loss and dysbiosis of gut microbiota in both mice (Cortes
et al., 2020; Holzscheiter et al., 2014; Hu et al., 2020; Jenkins et al.,
2018; Zhang B. et al., 2020) and humans (Gui et al., 2021; Kay
et al., 2015). Our findings demonstrated that OA B. subtilis not
only enhanced the alpha diversity but also remodeled the
composition and community structures of the gut microbiome
of S. japonicum–infected mice. Based on cohousing experiments,
our previous study demonstrated that the gut microbiota plays a
role in alleviating intestinal injury in mice during S. japonicum
infection. A previous study demonstrated that the susceptibility
to Schistosomamansoni infection inmice partially depends on the
composition of the host baseline microbiota, implying that the
gut microbiota is associated with schistosome infection in rodent
models (Cortes et al., 2020). These findings implied that the gut
microbiota plays an important role in modulating intestinal and
liver diseases induced by S. japonicum infection. For quite a long
time, PZQ has been widely used for the treatment of
schistosomiasis. However, PZQ acts against adult schistosome
worms but plays a poor role in activity against deposited parasitic
eggs (Cioli and Pica-Mattoccia, 2003; Colley et al., 2014). PZQ
does not protect infected mice against fibrogranulomatous
inflammation. Together, our study provides a new direction in
which targeting the diversity of gut microbiota in S.
japonicum–infected mice may attenuate hepatic and intestinal
diseases.

Transcriptomics concerning schistosome–host interactions is
an important tool for investigating new schistosome drug targets
(Gobert and Jones, 2008). Previous studies on comprehensive
transcriptomics have attempted to analyze host responses during
the disease process, providing great insights into the dynamics of
Th1/Th2 immune responses during schistosomiasis (Edungbola
et al., 1982; Sandler et al., 2003). Nevertheless, the exact
mechanisms of egg-induced fibrosis pathology remain largely
unknown. To elucidate the role of OA B. subtilis in S. japonicum
infection, we first analyzed the interaction between probiotics
and the host using the transcriptome. The DEG profiles were
different between the small intestine and colon in infected mice
in our study. We also found a range of gut DEGs between
infected mice with OA B. subtilis and those without OA B.
subtilis. These DEGs were classified into KEGG pathways,
including CAMs, intestinal immune network for IgA
production, hematopoietic cell lineage, Fc epsilon RI signaling
pathway, Th1 and Th2 cell differentiation, Th17 cell
differentiation, calcium signaling pathway, Fc gamma
R-mediated phagocytosis, chemokine signaling pathway,
phospholipase D signaling pathway, NF-kappa B signaling
pathway, B cell receptor signaling pathway, pancreatic
secretion, and phagosome. DEGs in mouse DSS-induced
inflammatory bowel disease were mainly classified into KEGG
pathways, including the PPAR signaling pathway, influenza A,
herpes simplex infection, synthesis and degradation of ketone
bodies, measles, antigen processing and presentation, and
ECM–receptor interaction (Wang et al., 2017). DEGs from
transcriptomic profiles revealed that KEGG pathways involved
in host responses to Entamoeba histolytica infection mainly

included signal transduction, cytoskeletal rearrangement,
proteasome activity, DNA repair factors, stress response,
antimicrobial activity, vesicular trafficking, energy metabolism,
virulence-related, detoxification pathway, transcriptional
regulation, and translation and ribosome (Naiyer et al., 2019).
These results suggested that host immune responses to different
pathogens or nonpathogenic factors are remarkably different. In
total, OA B. subtilismay alleviate intestinal injury by modulating
gene expression profiles in mice during schistosomiasis.

In 2019, a total of 605,965 bovines were found in the
schistosomiasis endemic areas of China, and 183,313 bovines
underwent serological examinations with 1,176 positives detected
(Zhang LJ. et al., 2020). In addition, previous studies have
revealed that bovines play a major role in the transmission of
S. japonicum in the lake and marshland regions in southern
China (Gray et al., 2009; Guo et al., 2006). Mathematical
modeling predicted that bovines are responsible for 75–90% of
human blood flukes transmission (Gray et al., 2009; Guo et al.,
2006). As we have known, parasitic infection can impact the body
weight and immune system of the host. Moreover, B. subtilis is a
common probiotic applied in agricultural and animal husbandry.
We found that OA B. subtilis can increase the body weight of both
S. japonicum–infected and normal mice and alleviate pathological
injuries (Supplementary Figure S9). These findings implied that
B. subtilis supplementation may be a potential control strategy for
schistosomiasis in endemic regions.

Our findings demonstrated that OA B. subtilis attenuated
intestinal and liver pathological injuries in S. japonicum–infected
mice. We found that OA B. subtilis modulated the diversity and
composition of gut microbiota in S. japonicum–infected mice. In
addition, our results revealed that OA B. subtilis induced a range of
DEG profiles in infected mice, which may be related to CAMs and
intestinal immune network for IgA production. Our study may
provide a potential complementary and therapeutic strategy for the
treatment of human schistosomiasis.
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