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Abstract

We introduce a random strategy update rule for the evolutionary public goods game on net-

works based on survival of the fittest. A survival cost parameter is introduced to public

goods game. Players whose payoffs are below the survival cost will be deleted from the net-

work. The same number of new nodes are randomly connected to the network and randomly

designated cooperation or defection. Numerical results show that cooperation can flourish if

the multiplication factor of the public goods game is greater than the network degree. We

present a simple analytical method to explain this result. The fraction of cooperators reaches

the maximum for a suitable survival cost. Furthermore, the initial random network has

evolved into a heterogeneous network which facilitates the emergence of the cooperation.

Our work could be helpful to understand how natural selection favors cooperation. It sug-

gests a new method to investigate the impact of the survival cost on the evolution of

cooperation.

Introduction

The cooperative phenomena exist universally in nature and human society. Over the past half

century, scholars from biology, mathematics, physics, information and even social economy

have been investigating the mechanism behind the evolution of cooperation. Cooperators help

others at costs to themselves. Defectors can get other people’s profit and their short-term gains

are higher than cooperators. Why does natural selection favor cooperation? Evolutionary

game theory has provided a suitable theoretical framework to study evolution of cooperation

among selfish individuals [1–5]. A range of mechanisms have been proposed for the evolution

of cooperation, including direct reciprocity, indirect reciprocity, spatial structure, kin selec-

tion, group selection, social diversity and voluntary participation[6–8].

In order to understand the cooperation mechanism and promote cooperation, a variety of

strategy update rules have been studied, including the preferential selection rule [9], the repli-

cation dynamics [10] and Fermi dynamics [11]. For these update rules, individuals must learn

strategy information from winners in order to increase their earnings. However, in reality, the

strategy information of successful people is not clear, and individuals have their own nature,

and they do not always imitate successful people. Another update rule is the Moran process
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(death-birth update) [12]. For this update rule, in each time step, a randomly selected individ-

ual dies and its neighbors compete for the vacancy according to their fitness. The death-birth

process can also be understood as the meaning that individuals change strategy and imitate

neighborhood strategies according to their fitness. There is also a class of strategy update rules

based on aspirations [13–19]. The original strategy is maintained if individual incomes reach

the expected value. Otherwise, individuals change the original strategies or learn the neighbor-

hood strategies. The most famous example is the win-stay-lose-shift rule [13]. In addition,

Zhang et al. have investigated the influence of survival of the fittest rule on cooperative evolu-

tion [20]. They found that cooperation can be enhanced by adding survival of the fittest rule

on the basis of replication dynamics.

The strategy update rules based on aspirations can be understood to some extent as survival

of the fittest [13–19]. We can think of the expected return as the survival cost, and the strategy

change as the death of an individual. However, there are many differences between the two

types of rules. First of all, according to the rule based on aspirations, an individual who does

not achieve the expected benefit is generally changing his strategy without changing his rela-

tionship with other individuals. Second, more importantly, when individuals change their

strategies, they either adopt the opposite strategy or learn from their neighbors.

In this work, we introduce a random strategy update rule for the evolutionary public goods

game on networks based on survival of the fittest. Individuals whose payoffs are below a set

survival cost will die and new individuals are randomly reconnected to the network and ran-

domly assigned cooperation or defection. In our rules, there is no competition, imitation, and

individual consciousness. The evolution of cooperation is just a selection process based on the

game payoffs. Our model is different from group selection [21–24]. According to group selec-

tion, cooperation was costly to individuals, but beneficial to the group, so competition between

groups can lead to prosperity of cooperation. As far as we know, our models have not been

reported. In literature [20], authors introduced a survival cost parameter, Individuals whose

payoffs are below the survival cost will die. However, in their model, new individuals con-

nected to the network according to the preferred rules and learned the strategies of their neigh-

bors, which still is the framework of imitation dynamics. Our work could be helpful to

understand how natural selection favors cooperation.

The paper is organized as follows. In Section 2, a public goods game model in an evolution-

ary network is proposed, where the strategy update rule is designed according to survival of

the fittest. Then in Section 3, we have numerically investigated the relationship between the

fraction of cooperation and the survival cost. The evolution of the network degree distribution

is also analyzed. Finally, we conclude the paper in Section 4.

The model

Population structure is represented by a graph. The nodes of a graph represent the individuals

of an evolutionary game. The edges denote links between individuals in terms of game dynam-

ical interaction. In this work, the game starts in a random network graph. The structure of the

graph changes during the evolutionary process.

Each individual and his neighbors form a small group for a public goods game (PGG). In

this way, if the individual x has kx neighbors, he will participate in kx + 1 PGGs that are played

in the groups of himself and his kx neighbors. In each PGG, cooperators with kx neighbors

contribute a cost c and the defectors do not contribute. In accordance with previous studies

[7], we set c = 1/ (kx + 1). The total contribution is multiplied by a multiplication factor r and

the result is equally distributed between all kx + 1 members of the group. Hence, the payoff of

an individual y with a strategy sy (1 if C, 0 if D) associated with the PGGs played in a group of
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an individual x is given by

Py;x ¼
r

kx þ 1

Xkx

i¼0

si

kx þ 1
�

sy

kx þ 1
ð1Þ

Where i = 0 indicates the individual x itself, and si is the strategy of individual i. If the indi-

vidual i is a cooperator, si = 1, if i is a defector, si = 0. The total payoff of an individual is the

sum of payoffs resulted from all related PGGs.

In the end of each generation, all individuals update their strategies synchronously accord-

ing to survival of the fittest. A parameter m is introduced to be the survival cost that permits

players participation or not. Each player faces a same survival cost m. After each round of play-

ing, players whose total payoffs are less than m will be deleted from the network, together with

all their links. Conversely, remaining players will survive and continue to play in the next

round with unaltered strategies.

When the worse performing players are eliminated, new players will subsequently replace

them to maintain a fixed system size N. Each newcomer forms k connections to preexisting

nodes, which are chosen randomly. The parameter k is equal to the average degree of the net-

works. The two strategies, cooperation and defection, are randomly distributed to each

newcomer.

Results

All the simulations are carried out in a population of N = 2000 individuals occupying the verti-

ces of the random network graph initially, and the results are robust with the population size.

Before the evolution, the two strategies, cooperation and defection, are randomly distributed

to all players. So, at the beginning, the fraction of cooperators fc of the system is equal to 50%,

and the degree of the network is normal distribution.

We analyze relation of the fraction of cooperators fc to time step with different multiplica-

tion factor r and survival cost parameter m by using a graph of average degree k = 4. The results

are showed in the Fig 1. At each time step, according to the above model, the fraction of coop-

erators fc of the system is recorded. When r = 3 and m = 0.6, the fraction of cooperators fc is

reduced to less than 50%, that is, the number of defectors in the network is more than that of

the cooperators. However, when r = 6 and m = 2.8, the fraction of cooperators fc in the network

gradually increased to more than 70%, and gradually reached a stable value with the increase

of the simulation time step. As r and m are further increase to 15 and 9.2 respectively, the

steady state fraction of cooperators fc increase to over 90%. We should also note that the steady

state fc will drop significantly to about 60% when r = 15 is maintained and m is increased a little

to 9.4.

In each PGG group, the payoffs of the defectors are always greater than that of the coopera-

tors. Why are more defectors eliminated? In different PGG group, the payoff of the coopera-

tors whose group have more cooperators may be greater than that of the defectors whose

group have more defectors. The payoff of all individual is equal to zeros in a network with all

defectors. If a cooperator enter this network, his payoff is rc/(k + 1)—c according to our

model, the payoff of the defectors in this group is rc/(k + 1), which is greater than that of coop-

erator, where k is degree of the network. However, the payoff of the defectors in other group is

still zero. If r> k+1, rc/(k + 1)—c> 0. The payoff of the cooperator is greater than most of the

defectors. If a suitable m is selected, cooperator will flourish.

In order to understand these problems, we further analyze the effects of the multiplication

factor r and the survival cost m on the fraction of cooperators fc, as shown in Fig 2. Fraction of

cooperators fc reach a stable value when the time step t> 1000. For t> 1000, the steady state fc
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is obtained by averaging over the last 1000 generations. By changing the values of r and m, we

get the change curve of the steady state fc over r and m. When r> k, with increase of m, fc
increase from 50% to a max value, then decrease to 50%. When r< k, with increase of m, fc
decrease from 50% to a min value, then increase to 50%. When r = k, as shown in Fig 2C, r =

k = 6, with increase of m, fc is approximately equal to 50% all along.

When m is very small, the payoff of all individuals is larger than m. No player is eliminated,

so fc = 50%. With increase of m, if r> k, the average payoff of cooperators is greater than that

of defectors, so more defectors are eliminated. Newcomers select randomly cooperate or

defect, so fc >50%. The more increase of m, the more obvious this effect is. Because of this

effect, we can see that fc continues to increase to a maximum. When m increase to the payoff

value of most cooperators, most of the cooperators are also eliminated along with the defec-

tors. And then fc starts to drop rapidly. When m is greater than the payoff of all players, all

players are eliminated, so fc go back to 50%. If r< k, the average payoff of cooperators is less

than that of defectors, more cooperators are eliminated. In this case, fc decrease from 50% to a

min value, then increase to 50%.

Now let’s calculate the average payoff of cooperators and defectors in a random network

with an average degree of k. The probability that each individuals in a network is assigned as a

cooperator or defector is 50%. According to our model, on average, the payoff of a cooperator

Pc is the sum of the payoffs of his participation in the k + 1 game. Pc can be calculated by

Pc ¼ Pc1þ Pc2þ Pc3 ð2Þ

Fig 1. Fraction of cooperators fc as a function of t for different r and m on an evolutionary network of average

degree k = 4.

https://doi.org/10.1371/journal.pone.0204616.g001
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Pc1 ¼
ðk

2
þ 1Þcr
kþ 1

� c ð3Þ

Pc2 ¼
k
2
ð
ðk� 1

2
þ 2Þcr

kþ 1
� cÞ ð4Þ

Pc3 ¼
k
2
ð
ðk� 1

2
þ 1Þcr

kþ 1
� cÞ ð5Þ

Where Pc1, Pc2 and Pc3 in Eq (2) are payoffs of a cooperator in self-centered PGG group

(group I), in PGG groups centered around his cooperative neighbors (group II) and PGG

Fig 2. Fraction of cooperators fc as a function of m for different r on network of different degree k. (a) k = 2, (b) k = 4, (c) k = 6, (d) k = 8.

https://doi.org/10.1371/journal.pone.0204616.g002
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groups centered around his defective neighbors (group III) respectively, as shown in Fig 3.

Obviously, there is one group in the first type, k/2 groups in the second type, and k/2 groups in

the third type, all which up to k + 1 groups. There are k + 1 players in each group. In Eq (3), k/

2 + 1 represents the number of cooperators in group I because 50% of the k neighbors are

cooperators and plus itself. Two of the k + 1 players in group II were already cooperators, and

the probability of the remaining k—1 players being cooperators was 50%, so the number of

cooperators in group II was (k—1)/2 + 2 in Eq (4). In group III, there is already a cooperator

and a defector, and 50% of the remaining k—1 players are cooperators, so the number of coop-

erators in group III was (k—1)/2 + 1 in Eq (5).

Similarly, the payoff of a defector Pd is the sum of the payoffs of his participation in the k
+ 1 game. Pd can be calculated by

Pd ¼ Pd1þ Pd2þ Pd3 ð6Þ

Pd1 ¼
k
2

cr
kþ 1

ð7Þ

Pd2 ¼
k
2

ðk� 1

2
þ 1Þcr

kþ 1
ð8Þ

Pd3 ¼
k
2

k� 1

2
cr

kþ 1
ð9Þ

From Eqs. (2–9), we can see that the cooperator pays c more than the defector in each game.

However, the numbers of the cooperators in the group for the defectors are one less than those

for the cooperators. By solving the inequality equation Pc > Pd, we can get r> k +1. This result

indicates that if r> k +1, the average payoff of the cooperators is greater than that of defectors,

so cooperators can thrive. In the actual numerical simulation, this condition is r> k, which is

a little bit less than the theoretical calculation.

We should also notice that mc increase with increasing r, where mc is the survival cost m
when stable-state fc increase to a maximum. Fig 4 shows mc as a function of r on network of

different average degree k. We can see that mc and r is linear. Solid lines are line fitting curves.

The slope of the lines for different k is basically the same, about 0.7. For same r, the larger the

k, the smaller the mc. When r< k, fc < 50%. fc have not a maximum, so the curve in this case

isn’t plotted.

When r> k and m< mc, fc increases gradually from 50% to a stable constant value with

time step t increase. After this time step, no individual is eliminated because the payoff of all

individuals is higher than m. When r is unchanged and m increases, more individuals are elim-

inated. If defectors in these eliminated individuals are more than cooperators, fc will increase

and the minimum of the payoff of all individuals pm also increases. When pm increases to over

new m, no player is eliminated, fc reach stable-state value again. The stable-state fc increases

with growth of m until the number of cooperators eliminated is greater than that of the defec-

tors. So mc represents the minimum of the payoff of all individuals when stable-state fc reach

maximum. The payoff of the individuals is proportional to r, so mc is proportional to r.

Finally, we focus our attention on the evolving network structure, e.g. the resulting degree

distributions, when the system reaches a steady state. Fig 5 Shows the networks degree distri-

butions with different m values for r = 15 on network of k = 6. When m is small, payoff of all

players is higher than m. No player is eliminated. The degree of network is approximately nor-

mal distribution. With the increase of m, the small degree nodes are eliminated due to the low
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payoff. So the network structure changes, the nodes with large degree increase, and the small

degree nodes gradually disappear. When m reaches mc = 8.8, this effect reaches the maximum.

If m goes up further, many large degree nodes are also eliminated and small degree nodes

appear in the network again.

Discussion and conclusions

In this paper we have studied the coevolution of cooperation and network based on survival of

the fittest. In our model, individuals who earn less than the survival cost are eliminated and

new individuals randomly choose cooperation or defection. The numerous simulations sug-

gest that cooperation can emerge and thrive if the multiplication factor of public goods game r
is greater than the network average degree k. This conclusion is similar to previous studies

shown in Refs. [6,7,12] with different models, In reference [12], authors described a simple

rule: natural selection favors cooperation, if the benefit of the altruistic act, b, divided by the

cost, c, exceeds the average number of neighbors, k, which means b/c> k. In our model, the

benefit of the altruistic act b = rc, so our parametric condition r> k is consistent with previous

studies. However, our model is quite different from previous work. First of all, the updating

rules adopted in reference [12] mainly include death–birth updating, birth–death updating

and imitation updating, which are essentially imitative dynamics. In our model, the individual

does not actively update the strategy. The updating of the strategy originates from an elimina-

tion process, that is, the payoff of the individuals below the cost of survival are eliminated and

the new individuals are randomly assigned to the strategy, which we call elimination dynamics.

In addition, the previous work mainly analyzed the weak selection situation. The fitness of a

Fig 3. Three types of PGG groups in which a cooperator participate for k = 4.

https://doi.org/10.1371/journal.pone.0204616.g003
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player is given by 1 –w + wP, where P is the payoff of players and w measures the intensity

of selection. Strong selection means w = 1. Weak selection means w� 1. In our model,

the fitness of the player is equal to his payoff, that is, w = 1, which is the strong selection

situation.

Obtaining analytical insights into our results seems to be a natural topic. In reference [12],

authors have calculated the fixation probability of a randomly placed mutant for any two-per-

son, two-strategy game on a regular graph by using pair approximation and diffusion approxi-

mation. The fixation probability is the probability that a single cooperator starting in a

random position turns the whole population from defection to cooperation. If selection nei-

ther favors nor opposes cooperation, then this probability is 1/N, which is the fixation proba-

bility of a neutral mutant, where N is the population size. If the fixation probability of a single

cooperator is greater than 1/N, then selection favors the emergence of cooperation. They have

found that cooperators have a fixation probability greater than 1/N if b/c> k. In our model,

selection favors the emergence of cooperation on the condition that the average payoffs of the

cooperators is higher than those of the defectors. After a simple calculation, we get the result

r> k + 1. The core idea of our calculation method is that if we only consider the payoff gener-

ated by the individual’s own cost, when r> k + 1, the payoff of a cooperator is rc/(k + 1),

which is greater than his cost c, and the defector does not pay, there is no benefit. The calcula-

tion process is still not perfect, but we provide a new method to solve such problems.

Another important result of this work is that the survival cost has a great influence on the

evolution of cooperation. Too big or too small survival cost is not conducive to the flourish of

cooperation, and the cooperation ratio reaches the maximum when the survival cost is equal

Fig 4. The survival cost mc as a function of r on network of different average degree k. Solid lines are line fitting

curves.

https://doi.org/10.1371/journal.pone.0204616.g004
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to a suitable value mc, which increase linearly with multiplication factor r. These results are

similar to previous studies based on aspiration update [13–19]. In reference [14], Chen et al.

had studied the evolutionary prisoner’s dilemma game on small-world networks for different

average aspiration levels based on aspiration update rule. According to the aspiration update

rule, during the evolutionary process, player x will compare the collecting payoff Px from

neighbors with the aspiration level Pxa, and change its current strategy to its opposite strategy

with a probability depending on the difference (Px−Pxa). They found that there exists an appro-

priate intermediate aspiration level leading to the maximum value of cooperation. Since then,

the role of aspirations in evolutionary games had received a lot of attention. In reference [16],

authors incorporate individual aspirations into the traditional imitation rule, and investigate

how cooperation evolves under the aspiration-based conditional learning in the spatial prison-

er’s dilemma game. Although these studies produced similar results to ours, our model is sub-

stantially different from previous work. In our model, more intuitive results can be obtained

by introducing the concept of the survival cost.

In recent years, coevolutionary games on networks have received great attention. Scholars

try to study the influence of evolutionary game dynamics on networks, and explain the emer-

gence mechanism of complex network structures [25–29]. In our model, the degree distribu-

tion of the network changes gradually with the increase of time step. The initial random

network has been evolved into a heterogeneous network which facilitates the emergence of the

cooperation. Evolution of network structure may present an exciting challenge for future

research.

Fig 5. The networks degree distributions with different m values for r = 15 on original network of average degree

k = 6.

https://doi.org/10.1371/journal.pone.0204616.g005
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